View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Washington University St. Louis: Open Scholarship

Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-90-16

1990-04-01

MOBAD Model-Based Diagnosis

Amy Brodbeck, Paul Calabrese, Joanna Liu, and Mark Maxwell

Troubleshooting measurement equipment can be complex and time consuming task. We
developed a system that incorporates model-based diagnosis to troubleshoot measurement
instrumentation systems. It consists of a knowledge representation scheme for modeling the
structure and behavior of measurement systems and the ability to reason from first principles
about these models. It accepts observed values from the user and returns a list of components
that are suspected of failing. The current system was developed using the object oriented
approach and was designed to be reusable for a variety of measurement systems. We discuss
our expansion of Randy Davis' approach to... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Brodbeck, Amy; Calabrese, Paul; Liu, Joanna; and Maxwell, Mark, "MOBAD Model-Based Diagnosis" Report
Number: WUCS-90-16 (1990). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/691

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://core.ac.uk/display/233199099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/691?utm_source=openscholarship.wustl.edu%2Fcse_research%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/691

MOBAD Model-Based Diagnosis

Amy Brodbeck, Paul Calabrese, Joanna Liu, and Mark Maxwell

Complete Abstract:

Troubleshooting measurement equipment can be complex and time consuming task. We developed a
system that incorporates model-based diagnosis to troubleshoot measurement instrumentation systems.
It consists of a knowledge representation scheme for modeling the structure and behavior of
measurement systems and the ability to reason from first principles about these models. It accepts
observed values from the user and returns a list of components that are suspected of failing. The current
system was developed using the object oriented approach and was designed to be reusable for a variety
of measurement systems. We discuss our expansion of Randy Davis' approach to model-based diagnosis
to include instrumentation systems.

https://openscholarship.wustl.edu/cse_research/691?utm_source=openscholarship.wustl.edu%2Fcse_research%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/691?utm_source=openscholarship.wustl.edu%2Fcse_research%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages

MOBAD
Model-Based Diagnosis

Amy Brodbeck, Paul Calabrese,
Joanna Liu and Mark Maxwell

WUCS-90-16

April 1990

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

CS 513 Final Report

TABLE OF CONTENTS

R § Y 5 Lo ATz o .« A OO 1
2. Background and SignifiCameeouueueeii i eereret s et e aas 2
3. ADDTOACH (o ititi it a s 4
B Ko T B T =T n 1o s W TR TOUTTUPI 5
5. Implementation ..o e e raanas 5

T8 S 1V Lot by - U 5

B B aVIOr i e anaas 6

ST N B E T o[0T L PR 7

5.4 User INterface .o et e as 8
LSRN 152D 1 11 o) £ O TN 8
7. LesS0mS Learned .o evre ittt e et et e et et e aaanas 13
8. Future Development IS81eS ...cocviuiiieiiiiee et i e eer e 15
1o T O] o ol K1 13 1) o =TT 16
R E R E N G . ettt ettt e et e e e e e e e e r et s rarasaasnnaenans 17
APPENDIX A User's Manual.....o.veeueeriiiieitieaaeaeaeneneesesaseseneneassenenes A-1
APPENDIX B Code Listing ...ccouieiiiiieiiiiinn e ee e eeaaanann B-1

ABSTRACT

Troubleshooting measurement equipment can be a complex and time consuming
task. We developed a system that incorporates model-based diagnosis to
troubleshoot measurement instrumentation systems. It consists of a knowledge
representation scheme for modeling the structure and behavior of measurement
systems and the ability to reason from first principles about these models. It accepts
observed values from the user and returns a list of components that are suspected of
failing. The current system was developed using the object criented approach and
was designed to be reusable for & variety of measurement systems. We discuss our
expansion of Randy Davis' approach to model-based diagnosis to include
instrumentation systems.

1. INTRODUCTION

Measurement systems in industry, whether electrical or physical, are increasing
in complexity as greater accuracy and new measurement parameters are
required. Computer controlled testing is common, although manually operated
systems are still dominant in many laboratories. One trait shared by all
measurement systems is that the individual components of these systems are
subject to failure. A characteristic of complex systems is that component failures
are often difficult to diagnose.

Currently, troubleshooting of measurement systems is done by engineers and
technicians. The experience of the individual plays a crucial role in diagnosing a
failed system; thorough knowledge of the measurement system and component
functions is required. Capturing the experts special knowledge in an expert
system means that the measurement laboratory will have the capability to
perform equipment diagnosis even if a knowledgeable individual is not available.
In addition, engineers and technicians will have a tool to aid them in performing
their tasks.

We have developed a system that utilizes model-based diagnosis to troubleshoot
measurement instrumentation systems. Our diagnosis system consists of a
knowledge representation scheme to model the structure and behavior of
measurement systems and is able to reason about this knowledge from first
principles. Our system has the following features:

. Models the structure and behavior of both physical and electrical
measurement systems

. Accepts observed behavior from the user

. Applies the process of hypothesis generation and testing to determine

which measurement system component(s) might be misbehaving

. Provides a graphical interface for the user to enter information and to view
the structure of a measurement system

This project has concentrated on troubleshooting systems composed of devices
such as instruments (e.g. voltmeters, frequency counters, digital pressure gages),
transducers (e.g. load cells, accelerometers), and the connecting wiring,
plumbing, valves, etc. The detailed internal structure of each system component
is not normally modeled, although this is not strictly the case; some instruments
can be described best in terms of their internal structures. The task of the
diagnosis system is to determine what part of the measurement system deviates
from correct operation given the observed symptoms.

Similar work has been done in the domain of digital electronics (Davis, 1984) and
for more general domains (Genesereth, 1984). This project is distinctive because
we have modeled and diagnosed systems composed of not only digital devices, but
also analog devices.

2. BACKGROUND AND SIGNIFICANCE

Work with diagnosis has been done in a variety of domains for many years.
MYCIN is a rule-based system developed in the mid-70s to perform medical
diagnosis (Shortliffe, 1976). Other types of diagnosis systems include decision
trees, diagnostics, and fault dictionaries. These four approaches all have
drawbacks which make thera less useful than model-based diagnosis, as
discussed by Davis and Hamscher (Davis and Hamscher, 1988). Briefly, rule-
based systems are very device specific and depend on having an expert; model-
based systems can troubleshoot any system for which a model can be built,
Decision trees simply guide the diagnosis of a system through a predefined tree of
conditions leading to a conclusion. Decision trees suffer from the same basic
drawbacks as rule-based systems. Diagnostics systems actually do verification
rather than troubleshooting; they make sure a device performs according to
specifications rather than reasoning from observed misbehavior to find the bad
component. Fault dictionary systems access a predetermined set of faults to see if
the observed symptoms can be explained by a listed fault; model-based systems
reason from first principles and may discover a fault not previously encountered.

This project is most closely related to the work done by Davis (Davis, 1984 and
Davis and Hamscher, 1988) and Genesereth (Genesereth, 1984). The following
paragraphs summarize the topics in their work that we found most relevant to
our own.

Davis did much to develop the theory of reasoning about knowledge of structure
and behavior (Davis, 1983). In his work he reported the development of languages
to describe structure and behavior separately. Davis and Hamscher discussed the
common themes in representing structure and behavior, as follows (Davis and
Hamscher, 1988):

. Structure representation should be hierarchical.

. Structure representation should be object centered and isomorphic to the
organization of the device.

. Behavior can be represented by a set of expressions that capture the
interrelationships among the values on the terminals of the device.

Davis developed the process of hypothesis generation, testing, and discrimination
(Davis, 1984 and Davis and Hamscher, 1988). He described these three steps as

follows:

. Hypothesis generation: Given one discrepancy, which of the components in
the device might have produced it?

. Hypothesis testing: Given a collection of components implicated during
hypothesis generation, which of them could have failed so as to account for
all available observations of behavior?

. Hypothesis discrimination: When, as is almost inevitable, more than one
hypothesis survives the testing phase, what additional information should
be gathered to discriminate among them?

In both Davis'(Davis, 1984) and Genesereth's (Genesereth, 1984) works,
hypothesis generation and testing are combined. Davis came up with a clever
way of testing hypotheses called constraint suspension. Constraint suspension is
a way of testing suspects to determine whether a failure in the suspect is
consistent with the observed behavior of the system (i.e. the inputs and outputs).

Hypothesis discrimination involves gathering additional information, as
mentioned above. Additional information can be in the form of probing places in
the structure not already tested, or by testing, which means to change the inputs
and observe the behavior of the system again. Various methods of determining
where to probe and what tests to perform are discussed in (Davis and Hamscher,

1988).

Davis develops the concept of a layered set of categories of failure. This concept is
significant in that it facilitates progressive broadening of the categories of failure
that can be explored by the system, thus limiting the search space at each level.
The most limited category of failure is localized failure of function G.e.
misbehaving system component). For this category, a solder bridge between two
pins of a chip would not be correctly diagnosed since a bridge changes the real
structure from that of the model. Davis produced the following list of categories:

1) Localized failure of function

2) Bridges

3) Unexpected direction (for component ports with only one direction of
communication)

4) Multiple point of failure

5) Intermittent error

6) Assembly error

7) Design error

Genesereth developed a diagnostic program called DART that models structure
and behavior with predicate logic axioms (Genesereth,1984). Davis and
Hamscher summarize the system as follows: "DART views diagnosis as a form
of constrained theory formation. Starting with a set of observations of device
misbehavior, the goal is to produce a description of its (faulty) structure. . . [To
arrive at deductions] the system uses a technique called resolution residue, a
variation on resolution that works as a direct proof procedure (rather than a
refutation method), guided by a number of strategies like unit preference for
reducing the number of useless deductions.” (Davis and Hamscher, 1988)

Finally, one other system of interest is the GDE system developed by de Kleer and
Williams (de Kleer and Williams, 1987). Their system can generate both single
and multiple fault hypothesis using an assumption-based truth maintenance
system (ATMS). This has shown to be an efficient method of hypothesis
generation.

3. APPROACH

Using constraint based reasoning for hypothesis generation and testing, we
designed and built an object oriented diagnosis system. The decision to use a
hierarchical object oriented representation allowed us to represent devices
realistically and to implement simulation efficiently. Class inheritance enabled
sharing of attributes and procedures among our components and ports. Object
oriented programming also allowed us to represent device behavior through
expressions, which capture the interrelationships among the values on the
terminals of the device. The components and ports in our model communicate
with each other through their methods.

Hypothesis testing was implemented using constraint suspension. The values
associated with the ports of a device are related to one another via the constraints
of the device. For example, a properly working wire with a known voltage at one
end will constrain the value of the other end to the same voltage. When the
constraints of a component are suspended, the values of its ports are not
propagated by that component during simulation. When a component is
suspended and all the system's predicted values are the same as (consistent with)
the observed values, then the suspended component becomes a suspect.

Gathering suspects is called hypothesis generation and hypothesis testing.
During the diagnosis process, each of the suspected components are collected and
each one is considered a hypsthesis. These hypotheses must be evaluated to
determine which is the faulty component.

The system was implemented incrementally. Initially, a simple one-level model
was developed to test the simulation methods. This was followed by a multiple-
level model for the prototype. Then the diagnosis process was implemented and
finally, the user interface was constructed. In general, we developed iteratively
throughout the process, constantly revising and rewriting. Using this
methodology, the model was refined and generalized resulting in a more efficient
program.

Modeling multiple layers of components was difficult. For example, one
component may be comprised of several subcomponents. This means that a
component and a subcomponent usually share one or more ports. We had to solve
the complex problem of simulating and diagnosing multiple layer systems. Our
decision was to simulate at all levels. During simulation the ports and
components communicate to each other all the way down to the lowest level.
However, during diagnosis components are suspended at the top level. When a
suspect is encountered, diagnosis continues at the next level down within that
component, and so forth.

Due to the short duration of this project, we decided to reduce the scope of our
efforts. Our main goal was diagnosis through hypothesis testing. We determined
that hypothesis discrimination would be too time consuming, therefore it was
eliminated. We also decided to assume a single localized failure of function. We
believe that most failures fall into this category.

4. TOOL SELECTION

After researching other model-based reasoning applications, it was evident that
an object oriented tool would be ideal for simulation and diagnosis. Reasoning
about a model can be achieved at a high level of abstraction. Qur main candidates
included C++, Smalltalk/V, and PCL (Portable Common LOOPS). C++ was
eliminated because it would require a lot of time to learn and use. After
investigating Smalltalk/V and PCL, we determined that both tools appeared to be
adequate. We chose Smalltalk/V because of its rapid prototyping capabilities and
our curiosity about the language.

5. IMPLEMENTATION

The following sections describe the details of MoBaD's implementation as they
pertain to the structure, behavior, diagnosis, and user interface, respectively.

5.1 STRUCTURE

The structure of a system being modeled in MoBaD is represented in the way that
the various objects are interconnected. These objects represent the individual
devices or components of the system and the connections between these
components. Each connection between two components is represented by a port
object, which contains all of the values necessary for that connection. For
example, a port that corresponds to an electrical connection might contain values
for the voltage, frequency and phase of the signal at that point.

Each component object contains either a method that describes its behavior or a
list of its subcomponents. The method that determines a device's behavior uses
the known values of its ports to compute the values associated with its other ports,
if possible. When a list of subcomponents is included in the component, they must
also contain either subcomponents or descriptions of their behavior. Therefore,

the behavior of each component must be described either directly or in terms of its
subcomponents.

Each component also contains a list of its ports and each port contains a list of the
components that share it. In this way, the interconnection of the objects
corresponds to the actual structure of the system being tested (Figure 5.1-1). The
structure of this model also corresponds closely to the mental models used by
human engineers in such applications. They tend to have a hierarchical model of
devices that are described in terms of their behavior and interconnections that
have values or sets of values associated with them.

Diagram of a Physical System

Qutput

Input Generator Tube Gauge

Diagram of the Same System's Representation in MoBaD

Generator Tube Gauge
O Ports Components

Figure 5.1-1 Diagram of System Representation

5.2 BEHAVIOR

The behavior of the simulation in MoBaD closely follows the behavior of the actual
devices. When no constraints are suspended (normal simulation) the values of
the ports are propagated from the inputs of the system towards the outputs. A
value moves from an input port into a component, where its effect is calculated for
the other ports of that component. As these other ports are updated, their values
are propagated to other comvonents which in turn update their other ports, and
so on. This movement of values from inputs towards outputs and from

component to component closely matches the behavior of the devices being
modeled. When a component's constraints are suspended, the simulation
process may work backwards from known output values towards the inputs. This
is similar to the way a person infers that 5 volts exists at the inputs of a voltmeter,
because its display reads 5 volts.

5.3 DIAGNOSIS

As previously described, the diagnosis consists of three steps: hypothesis
generation, hypothesis testing, and hypothesis discrimination. MoBaD uses an
exhaustive method of hypothesis generation, which means that all components
(at a particular level) are considered as possible failures. Hypothesis testing is
accomplished by using constraint suspension. We have not automated hypothesis
discrimination.

Constraint suspension takes a list of candidates, which are possibly failed
components, and tests each to see whether its failure would be consistent with the
observed results. This is accomplished by suspending the candidate's constraints
(setting its suspended slot to "true") and then simulating until either an
inconsistency is encountered or the simulation is complete. An inconsistency
exists when any port's predicted value significantly varies from its observed
value. If an inconsistency is encountered, then the candidate is no longer
suspected of failing since its failure does not explain the inconsistency. If the
simulation is consistent, then that candidate becomes a suspect. Suspects with
subcomponents can be tested individually to further refine the suspect list.

Tube A
Pressure Pressure
Generator Gage
(15psi) (Opsi)
i
Tube B

Figure 5.3-1 Example of a Failed Conduetor

During the development of MoBaD, it became apparent that some types of
components need to treat their constraint suspension differently. These
components, which include pressure tubes and electrical wires, were placed into
a subclass of components called conductors. When a conductor has its
constraints suspended all conductors directly connected to it are also suspended.
This corresponds to the situation in Figure 5.3-1, where if Tube A has a leak in it,
it causes Tube B to cease functioning as well. If only Tube A's constraints were
suspended, Tube B would cause a predicted value of 15 psi at the pressure gage.
This inconsistency would cause the program to not list Tube A as a suspect. If

Tubes A and B are suspended together then the system correctly diagnoses both
tubes as possible failures.

5.4 USER INTERFACE

The user interface of MoBaD is menu driven with a main window that displays
the top level structure of the system being tested. The user can click the mouse on
any port and set an observed value for that port. Components that contain
subcomponents will display their internal structure when clicked on. The
diagnostic process will pop up a text window where its results are displayed and
the user can optionally monitor the values of all ports as MoBaD tests the system
and its components. For further information on the details and use of the MoBaD
user interface see Appendix A.

6. EXAMPLE

Figure 6-1 shows an example of a real-world measurement system one might
wish to troubleshoot. The system would be used to calibrate the pressure
transducer using the pressure standard as a reference. The transducer can
measure 0 to 50 pounds per square inch and provides a linear 0 to 10 volt output.
The standard provides a stimulus (a known pressure) and the voltmeter
measures the response of the transducer. Two other components of this system
go almost unnoticed: the pressure tube and the coazial cable. These are
conductors, since they are intended to cause some value to be conducted from one
end to the other,

The pressure standard can be broken down into subcomponents: an input keypad
and associated display, a pressure controller to generate a pressure entered at the
keypad, a pressure gage to measure and display the pressure generated, and a
pressure tube connecting the pressure controller, pressure gage, and pressure
out port.

Pressure Standard
Set Pressure Actual essur
Input Tube 50 psi Pressure
o m Transducer
B BB Pressure Qu
m@|m
0ome ' :

Voltage

\Voltmeter

Figure 6-1. Areal world measurement system.

This measurement system is represented in MoBaD as a subclass of Component
named XducerCalSystem. The subcomponents of XducerCalSystem are also
subclasses of Component: a PressureStandard, a Tube, a PressureXducer, a
Coax, and a Voltmeter. Two of these components are actually subclasses of
Conductor, which is itself a subclass of Component: the Tube and the Coax.
PressureStandard also has subcomponents: a PressureController, a
PressureGage, and a ThreePortTube. These components are all connected via
ports, as shown in Figures 6-2 and 6-3. These figures are actual screen snapshots
of the MoBaD user interface.

"~ & File MoBaD Window 384PM)

Pressure 1=nil

Pressure2=nil

Yeltege 1=nil

Voliage2=nil

Cantralier

PressureI=nil Pressure2=nil

Pressure1=nil

Figure 6-3. Internal structure of pressure standard.

16

The system is instantiated with the following Smalltalk/V code:

System3 := XducerCalSystem new initialize: 'System3’'.
Inputl := InputPort new initialize: 'Inputl’.

Outputl := OutputPort new initialize: 'Outputl'.
Cutput2 := OutputPort new initialize: 'Qutput2’.

System3 connect: 'input' port: Inputl.
System3 connect: 'std output' port: Outputl.
System3 connect: 'test output' port: Output2.
DiagnoseSystem := System3.

System3 open.

System3, Inputl, Outputl, Output2 and DiagnoseSystem are Smalltalk/V global
variables. The first line instantiates the system. The next three lines instantiate
the ports which are external to the system. The next three lines establish a
mapping between the internal and external names of the ports. The internal
names are predefined in the classes.

DiagnoseSystem specifies the name of the system to troubleshoot when "Diagnose
System” is selected from the MoBaD menu. The "open" message to System3
causes the MoBaD user interface to be activated.

For this example, suppose the tube that is internal to the pressure standard is
leaking, which causes reduced system pressures. The observed values are as
shown in Figure 6-2. MoBaD returns the diagnosis in Figure 6-4. As expected,
MoBaD is unable to pinpoint the problem with the given information. Notice that
both tubes are implicated as suspects since a leak in either one would cause the
same symptoms. Another observation is needed for MoBaD to decide if the
pressure controller or one of the pressure tubes is at fault. An observed value of
26.3 1s assigned to the pressure port between the controller and the pressure
standard tube. In Figure 6-5, a second diagnosis with this new information
shows that the fault must lie in one of the two pressure tubes.

11

~ & File £dit Smalltalk Window 3B5PM R)

R O e s 0 R A S TR i e o

% £ MoBal Diagnasis

. Oiagnosing System3: Fault discovered,
_ Testing System3,Coax: Hot a suspect.

| (:Enput1_2653 Testing System3,Standard: R suspect,

Testing System3, Nducer: Hot a suspect.

Testing System3.Uoltmeter: Hot a suspect.
Testing System3.Tube: A suspect.

]2

Diagnesing System3,Standard: Fault discovered.
Teating Systemd.Standard.Tube: R suspect,
Teating System3d.Standard.Gage: Hot e suspect.
Testing Systemd.Standard.Contrafler: A suspect.

ol

MoBaDd Diagnosis
Diagnosing System3: Fouft discovered.
TestIng System3.Coax: Mot a suspect.
Testing System3,Standard: A suspect.
Testing System3.Kducer: HNol a suspect.
Testing Systend.Uoltmeter: Hot a suspect,
Testing System3,Tube: A suspect.

Magnosing System3.Standard: Fault discovered,
Testing System3.Standard.Tube: A suspect.

Testing System3,Standard.Gage: Hot a suspebtt,
Testing System3d.Standard.Controller: HNot g suspect.

Controlle

Pressurel=nil

Figure 6-5. Diagnosis of system with additional information.

12

7. LESSONS LEARNED

Object oriented programming calls for thorough advanced planning. Many hours
were spent in designing our objects and methods before the coding started. The
initial task was to design the object hierarchy. Several brainstorming sessions
resulted in a class hierarchy that was built using a bottom up methodology. We
enumerated all the different types of objects in our model and abstracted their
properties into two common classes: components and ports. For example, a tube
and a voltmeter both contain ports and transfer data; therefore, both should be
members of the component class. In the end, we hierarchically organized
various types of ports and components in our system as seen in Figure 7-1.

COMPONENT PORT
PRESSURE XDUCER
CONTROLLER CAL SYSTEM
PRESSURE SINGLE
GAGE VOLTMETER VALUE PORT
PRESSURE PRESSURE
STANDARD XDUCER
CONDUCTORS
THREE
COAXI [pomtT | |TYBE
TUBE

INPUT | { QUTPUT | {PRESSURE || VOLTAGE
PORT PORT PORT PORT

Figure 7-1 Class Hierarchy

Later into the development stage, the object model was further refined to be more
hierarchical and self-contained for each component. For example, when a
pressure standard object is created it instantiates a pressure generator, a
pressure tube, and a pressure gage along with the proper ports and connections.
The user is thereby freed from specifying all the details of internal components,
ports and connections within a known module. This also simplifies the building
of new models.

During the course of development, we experienced the unique features of object
oriented programming. The tool we selected, Smalltalk/V, is relatively easy to use
and offers an excellent programmer interface. The tools for inspecting objects
and debugging methods proved to be very useful. However, the effects of the
polymorphism of the language was, at times, confusing. Polymorphism, as
explained in the Smalltalk/V manual, "is having different objects responding
uniquely to the same message” (Smalltalk/V Tutorial and Programming
Handbook, 1988). This offers a great convenience for the programmers to use the
same method name for different objects to perform similar tasks. However, the
hidden danger behind this is that the user assumes certain behavior for a method
name and fails to check how the object really behaves upon receiving the message
call. For example, we ran into problem with the "==" sign in our programming
practice. The "==" sign checks if the entities on both side are equal for many data
types. However, there is no method available for STRING type in Smalltalk/V to
use the "==" sign. When "==" was used for string comparison, Smalltalk/V did
not return predictable results.

We had heard that Smalltalk/V was a good prototyping tool as well as an excellent
way to learn object oriented programming techniques and we found both to be
true. Although at times Smalltalk/V seems to be limited, it is also powerful. One
is given access to all of the internal code of Smalltalk/V. This library of objects is
available to use or to redefine - if one dares. The greatest drawback of Smalltalk/V
is the poorly designed manual. Syntax and commands are often difficult; to find.
During implementation of the user interface, these problems were especially
frustrating. Another irritation was the flawed implementation of the Macintosh
user interface. However, overall Smalltalk/V has proven to be a good tool for our
project.

We have learned some lessons working together as a team. First of all, having
the project well defined before development started played a crucial role in our
success. Having a consensus of the system design minimized the integration
efforts and helped to preclude the possible problems further into the development
cycle. We took a special approach in our coding process. When we implemented
the model and simulation modules of our prototype, all the team members were
able to participate by using a Macintosh which was connected to a large screen
projector. Coding standards, design issues, and object interactions were
discussed and refined in this process. The result was tremendous; the whole
team went through the development process together for the model, which is most
important module in our prototype. This practice not only enabled us to learn the
tool together but also ensured that each team member had a thorough
understanding of the model, how it was implemented and the interaction among
the objects. Next, we broke the prototype into logical modules and started to
develop the program in parallel. Modular programming allowed us to move at a
faster pace and enabled us to easily modify code once the validation and
verification process began. We feel that our approach greatly enhanced team
communication and minimi7ed the integration problems.

14

One interesting problem encountered involved diagnosing the lower levels of
multiple level systems. Initially, our model was designed in a way that all the
predicted and observed values were reset before the diagnosis and then values
would propagate through the model during diagnosis. However, when we
designed this, we only considered the top level of our model for value propagation.
When the model started diagnosing at a lower level, all the values were still reset
first. This way, our model lost the input values to this lower level component and
was unable to produce the proper results. The design of the model was modified
so as to retain the input values of the lower level components when the diagnosis
proceeded into deeper levels of our model. After this modification, the system
behaved correctly during diagnosis of multiple layer models.

Our prototype demonstrates the benefits of model-based reasoning. We learned
that designing a sound model was the most critical part of a model-based
reasoning approach. A good model serves as a foundation for reasoning and
makes the rest of the development process smooth. Once we finished modeling
the component and port behaviors, we were able to diagnose systems with any
combination of the implemented components and ports. If we had taken the rule-
based approach, we would have had to implement individual diagnosis software
for each system. However, the model-based reasoning approach enabled us to
implement a knowledge-based system that can be applied to various
measurement instruments with relatively little effort.

8. FUTURE DEVELOPMENT ISSUES

The most important feature lacking in MoBaD is the ability to perform hypothesis
discrimination as described in the background section. The ability to suggest
additional measurements in order to pinpoint the problem would make the
program a valuable tool in the absence of an experienced engineer or technician.

Two features that would be relatively easy to implement in MoBaD include:

. Add a slot to the port class to specify the tolerance of the value of the port.
This would permit a greater degree of inexactness in the system, which
would make it more closely model the real-world.

. Give the user the ability to access more of the system from the graphical
user interface. For example, add the ability to specify the positions the
components and ports on the screen. Currently, these positions are hard
coded in the class definitions.

The usefulness of this system would be improved by implementing an automatic
probing and testing feature. This would provide the diagnosis system with the
ability to probe a measurement system without the aid of an human.

MoBaD does not have a way of handling the rules-of-thumb often necessary to
diagnose a measurement system. Perhaps MoBaD could be modified to call small
rule-based expert systems to handle these special cases.

Currently, hypothesis generation is exhaustive (i.e. all components at the current
level of diagnosis are tested). The program's efficiency would be improved if it
only tested those components which can influence the port where an
inconsistency is detected. This would preclude following irrelevant data paths
through the structure. Also, if multiple discrepancies are detected, this
information could be used to limit hypothesis generation.

MoBaD considers only the first of the layered category of failures listed in the
background section: localized failure of function. A significant improvement
would be realized if one or more of the other categories of failure were detectable
during diagnosis.

Modeling of dynamic behavior has not been addressed by this project. Since
certain measurement systen:s.operate dynamically, and since some static
systems exhibit dynamic bel.avior when malfunctioning, the ability to model and
diagnose a dynamic system would be advantageous. This might require the
application of qualitative physics theory, which is the modeling of physical
processes without the use of physics equations (de Kleer and Brown, 1984).

9. CONCLUSIONS

The final product of our project is a prototype tool that uses model based diagnosis
concepts to diagnose measurement systems. Our approach followed closely with
the research that was done by Randy Davis. In addition, we implemented our
prototype to be general enough to allow a variety of systems to be built using the
model. Although most of the model based reasoning concepts were implemented
in our prototype, further development is still needed to explore many related
issues as discussed in the above section. When fully refined, this tool will
significantly improve the equipment troubleshooting process without the
extensive development time associated with building rule-based expert systems.
In conclusion, we have proven the usefulness of model-based reasoning in
diagnosis applications for measurement instrumentation.

16

REFERENCES

Dayvis, R., Reasoning from first principles in electronic troubleshooting. Internat.
J. Man-Mach. Stud. 19 (1983) 403-423.

Davis, R., Diagnostic reasoning based on structure and behavior, Artificial
Intelligence 24 (1984) 347-410.

Davis, R. and Hamscher, W. C., Model-based reasoning: Troubleshooting, Memo
1059, MIT Artificial Intelligence Laboratory, March 1988.

De Kleer, J. and Brown, J. S., A qualitative physics based on confluences,
Artificial Intelligence 24 (1984) 7-83.

De Kleer, J. and Williams, B. C., Diagnosing multiple faults, Artificial
Intelligence 32 (1987) 97-130.

Genesereth, M. R., The use of design descriptions in automated diagnosis,
Artificial Intelligence 24 (1984) 411-436.

Shortliffe, E., mycin: Computer-Based Medical Consultation (American Elsevier,
New York, 1976).

Smalltallk |V Mac Tutoriel and Programming Handbook, Digitalk Inc., 1988.

17

PPENDIX A ER' AL

A-1 STARTUP

Load all three of the MoBaD disks that were supplied to you by your friendly
neighborhood MoBaD dealer. Put everything contained on these disks in a
separate folder on your hard drive. Click on the V.Image file that you wish to
run. The examples below are all based on the Pressure System image file. Upon
entering Smalltalk/V, the system will be displayed as shown in Figure A-1.

3:B3ZPM Ry

Figure A-1 Top Level System Display

The top level of the system is displayed. Each component is represented with a
rectangle and each port is displayed as an ellipse. Any component with a darker
outline is also represented at a lower level, since the system is represented
hierarchically. To display the contents of any such component simply click on it.
These lower level windows can be closed to return to the top level window. If the
main window is closed then the system can be restarted by performing the 'File
In' command (under the File menu) on the appropriate source file
(PressureSystem or FullAdder).

A-1

A-2 INPUT VALUES

Before diagnosis the user must enter observed values. Usually, all input and
output values are initially entered. To enter an observed value, click on a port. A
message box prompting the user to input the observed value appears. After
entering an observed value, click the "Accept” button as shown in Figure A-2.
You will see that the value is changed in the system diagram.

"~ & File MoBad Window 3:34PM Ry

Enter observed value of System3.Standard.Pressurel:
[Checent |20
Cancel ;

Centrotier

Pressure2=nil

Pressure1=nil

Figure A-2 Input Window for Obsexved Values

At any time all the values can be reset to nil by choosing "Reset Values" under the
"MoBaD" menu. It is important to know that this will not only reset all observed
values but also all the system's predicted values.

A-3 DIAGNOSIS

When you have entered the observed values you are ready for diagnosis. Under
the "MoBaD" menu select "Diagnose System." The "MoBaD Diagnosis" window
will pop up as seen in figure A-3. MoBaD initially diagnoses at the top level. The
window will indicate if a fault is discovered and which components are suspects.
If any component that is represented at a lower level is suspected, MoBaD will

A-2

continue diagnosis within that component. The data on that component will also
be displayed.

'~ & File Edit Smalltalk IWindow 3:37PM %y

J=0 MoBab Diagnosis ==—e=x——p=|

Diagnosing System3: Fault discovered.
TestIng Systen3.Coax: Hot a suspect,
Testing System3.Standard: A suspect.
Testing System3.Kducer: Hot o suspect.
Testing System3.Uolimeter: Hot a suspect.
Testing System3,Tube: A suspect.

@ Dlognosing Syatend.Stonderd: Fault discouered,

Testing System3d.Stondord.Tube: A suspect.k
Testing System3.Standard.Gage: Hot a suspe:t.
Testing System3.Standard.Controller: HNot o suspect. il

Controlle

Tube

Pressure1=nil

Trash

Figure A-3 Diagnosis Results

If you wish to monitor the port values, select "Port Monitor" under the MoBaD
menu prior to beginning a diagnosis. Now when you diagnose, the window
entitled "Port Monitor" will appear with the "MoBaD Diagnosis" window. The
port monitor window will display the observed and predicted values for each port.

A-4 PRESSURE SYSTEM

The pressure system that is modeled has one input and two outputs. The output
of the PressureStandard should be the same as the input value when the system is
working properly. The output of the Voltmeter should be exactly one-fifth of the
input value.

A-5 DIGITAL SYSTEM
The digital system modelled is a full adder. It has two data inputs, a carry input,

a data bit output, and a carry bit output. All observed voltages entered should be
either 5.0 volts or 0.0 volts.

A-3

APPENDIX B CODE LISTING

The code listing is available on request by contacting Mark Maxwell at (314) 232-
5660 (daytime) or (314) 731-7028 (evenings). Or you may write to;

McDonnell Douglas Corp.

Attn. Mark Maxwell, MC 1022192

P.0.Box 516

St. Louis, MO 63166

B-1

	MOBAD Model-Based Diagnosis
	Recommended Citation
	MOBAD Model-Based Diagnosis

	tmp.1456444019.pdf.moT2o

