38,824 research outputs found

    Developing Interaction 3D Models for E-Learning Applications

    Get PDF
    Some issues concerning the development of interactive 3D models for e-learning applications are considered. Given that 3D data sets are normally large and interactive display demands high performance computation, a natural solution would be placing the computational burden on the client machine rather than on the server. Mozilla and Google opted for a combination of client-side languages, JavaScript and OpenGL, to handle 3D graphics in a web browser (Mozilla 3D and O3D respectively). Based on the O3D model, core web technologies are considered and an example of the full process involving the generation of a 3D model and their interactive visualization in a web browser is described. The challenging issue of creating realistic 3D models of objects in the real world is discussed and a method based on line projection for fast 3D reconstruction is presented. The generated model is then visualized in a web browser. The experiments demonstrate that visualization of 3D data in a web browser can provide quality user experience. Moreover, the development of web applications are facilitated by O3D JavaScript extension allowing web designers to focus on 3D contents generation

    An approach to build JSON-based Domain Specific Languages solutions for web applications

    Full text link
    Because of their level of abstraction, Domain-Specific Languages (DSLs) enable building applications that ease software implementation. In the context of web applications, we can find a lot of technologies and programming languages for server-side applications that provide fast, robust, and flexible solutions, whereas those for client-side applications are limited, and mostly restricted to directly use JavaScript, HTML5, CSS3, JSON and XML. This article presents a novel approach to creating DSL-based web applications using JSON grammar (JSON-DSL) for both, the server and client side. The approach includes an evaluation engine, a programming model and an integrated web development environment that support it. The evaluation engine allows the execution of the elements created with the programming model. For its part, the programming model allows the definition and specification of JSON-DSLs, the implementation of JavaScript components, the use of JavaScript templates provided by the engine, the use of link connectors to heterogeneous information sources, and the integration with other widgets, web components and JavaScript frameworks. To validate the strength and capacity of our approach, we have developed four case studies that use the integrated web development environment to apply the programming model and check the results within the evaluation engin

    Integrating the common variability language with multilanguage annotations for web engineering

    Get PDF
    Web applications development involves managing a high diversity of files and resources like code, pages or style sheets, implemented in different languages. To deal with the automatic generation of custom-made configurations of web applications, industry usually adopts annotation-based approaches even though the majority of studies encourage the use of composition-based approaches to implement Software Product Lines. Recent work tries to combine both approaches to get the complementary benefits. However, technological companies are reticent to adopt new development paradigms such as feature-oriented programming or aspect-oriented programming. Moreover, it is extremely difficult, or even impossible, to apply these programming models to web applications, mainly because of their multilingual nature, since their development involves multiple types of source code (Java, Groovy, JavaScript), templates (HTML, Markdown, XML), style sheet files (CSS and its variants, such as SCSS), and other files (JSON, YML, shell scripts). We propose to use the Common Variability Language as a composition-based approach and integrate annotations to manage fine grained variability of a Software Product Line for web applications. In this paper, we (i) show that existing composition and annotation-based approaches, including some well-known combinations, are not appropriate to model and implement the variability of web applications; and (ii) present a combined approach that effectively integrates annotations into a composition-based approach for web applications. We implement our approach and show its applicability with an industrial real-world system.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Developing 3D contents for e-learning applications

    Get PDF
    Some issues concerning the development of interactive 3D models for e-learning applications are considered. Given that 3D data sets are normally large and interactive display demands high performance computation, a natural solution would be placing the computational burden on the client machine rather than on the server. Mozilla and Google opted for a combination of client-side languages, JavaScript and OpenGL, to handle 3D graphics in a web browser (Mozilla 3D and O3D respectively). Based on the O3D model, core web technologies are considered and an example of the full process involving the generation of a 3D model and their interactive visualization in a web browser is described. The challenging issue of creating realistic 3D models of objects in the real world is discussed and a method based on line projection for fast 3D reconstruction is presented. The generated model is then visualized in a web browser. The experiments demonstrate that visualization of 3D data in a web browser can provide quality user experience. Moreover, the development of web applications are facilitated by O3D JavaScript extension allowing web designers to focus on 3D contents generation

    Assessing the benefits of Ajax in mobile learning systems design : a thesis submitted in partial fulfillment of the requirements for a Master of Information Studies at Massey University

    Get PDF
    Today, mobile technology is rapidly changing our life with increasing numbers of services supported by mobile phones, including mobile Internet access and Web-based mobile learning. The growth of the wireless Internet technology opens new path for people to study in anytime and any location. Using Web-based mobile application to present learning resources for mobile learners is a challenge for developers, because the mobile Internet access performance over GPRS networks is often unacceptably slow. A new Web development model, Ajax, may help to address this problem. Ajax (Asynchronous JavaScript and XML), is a new desktop approach to Web application development that uses client-side scripting to provide a seamless user application experience and reduce traffic between client and server. In this paper, we address the question of whether mobile Ajax provides measurable performance advantages over non-Ajax mobile learning applications. A real-life Web-based mobile learning application performance over a GPRS network study was done based on comparing an Ajax application and an Active Server Pages (ASP) application with identical functionality. Our results suggest that mobile Ajax can reduce the bandwidth requirement by 71%, and cut the server's response time in half. In addition, these performance improvements were noticed by users in our small group usability test

    A trusted infrastructure for symbolic analysis of event-based web APIs

    Get PDF
    JavaScript has been widely adopted for the development of Web applications, being used for both client and server-side code. Client-side JavaScript programs commonly interact with Web APIs, for instance, to capture the user interaction with the Web page via events. The use of such APIs increases the complexity of JavaScript programs. In fact, most errors in these programs are caused by the misuse of Web APIs. There are several approaches for detecting errors in client-side JavaScript programs, but they either assume the use of a single API or do not model APIs faithfully, giving rise to inconsistent behaviour and lack of trust. We address the problem by developing a trustworthy infrastructure for the static analysis of Web APIs. We focus on two aspects of JavaScript programs: event-driven and message-passing programming, as these paradigms are common sources of confusion among developers. We choose to target the DOM event model and the JavaScript Promises and JavaScript async/await, which facilitate event-driven programming. Additionally, we target the message-passing model of the WebMessaging and WebWorkers APIs. We design formal semantics for events and message-passing to capture fundamental operations required by those APIs, and API reference implementations which are trustworthy in that they follow the respective standards and have been thoroughly tested against their official test suites. Using our formal semantics and reference implementations, we develop JaVerT.Click, the first static symbolic execution tool for JavaScript supporting both event-based and message-passing APIs. We evaluated both the reference implementations and the symbolic execution engine of JaVerT.Click. By testing the reference implementations against their official test suites, we found coverage gaps and issues in the test suites, most of which have been since fixed. By testing the symbolic execution engine against three open-source libraries, we established the bounded correctness of functional properties and found real bugs.Open Acces

    A Comparative Study of Project Management System Web Applications Built on ASP.Net Core and Laravel MVC Frameworks

    Get PDF
    With rapid advancement in the field of computer science, the ways we use and interact with web applications have changed immensely. Developers must create web applications for browsers, cell phones, and search engines that are accessible and easy to use in various devices. Therefore, the efficiency of software development is critical. Software Design Patterns are an essential part of software development which is intended to solve real-world problems by creating templates of best practices. Design patterns bring clarity, cost-effectiveness, and better communication in the software development cycle. They also improve the development speed, support features, and usage, and they reduce expenses. Documentation and maintenance of established web applications frameworks are major advantages of software design patterns. The study Is of Model-View-Controller (MVC) software design patterns. It analyzes and compares ASP.Net Core and Laravel PHP web application development frameworks. MVC facilitates reuse of code and separation of application layers. It explains the development experience of Project Management Web application on ASP.Net Core and Laravel. For example, web applications include a document library, a note page, and a discussion forum. Web applications use compatible programming languages such as HTML, JavaScript, and CSS. Comparative analysis has been done based on the developer’s experience and performance monitoring tools. The study concludes that the Project Management System (PMS) web application built using ASP.Net Core on Windows is better when compared to PMS built with Laravel on Ubuntu and Windows operating systems. The developer’s conclusion is based on the use of the MVC design pattern, learning curve, framework features, documentation, and application performance

    Technical development of PubMed Interact: an improved interface for MEDLINE/PubMed searches

    Get PDF
    BACKGROUND: The project aims to create an alternative search interface for MEDLINE/PubMed that may provide assistance to the novice user and added convenience to the advanced user. An earlier version of the project was the 'Slider Interface for MEDLINE/PubMed searches' (SLIM) which provided JavaScript slider bars to control search parameters. In this new version, recent developments in Web-based technologies were implemented. These changes may prove to be even more valuable in enhancing user interactivity through client-side manipulation and management of results. RESULTS: PubMed Interact is a Web-based MEDLINE/PubMed search application built with HTML, JavaScript and PHP. It is implemented on a Windows Server 2003 with Apache 2.0.52, PHP 4.4.1 and MySQL 4.1.18. PHP scripts provide the backend engine that connects with E-Utilities and parses XML files. JavaScript manages client-side functionalities and converts Web pages into interactive platforms using dynamic HTML (DHTML), Document Object Model (DOM) tree manipulation and Ajax methods. With PubMed Interact, users can limit searches with JavaScript slider bars, preview result counts, delete citations from the list, display and add related articles and create relevance lists. Many interactive features occur at client-side, which allow instant feedback without reloading or refreshing the page resulting in a more efficient user experience. CONCLUSION: PubMed Interact is a highly interactive Web-based search application for MEDLINE/PubMed that explores recent trends in Web technologies like DOM tree manipulation and Ajax. It may become a valuable technical development for online medical search applications
    • …
    corecore