82 research outputs found

    Bayesian Tobit quantile regression using-prior distribution with ridge parameter

    Get PDF
    A Bayesian approach is proposed for coefficient estimation in the Tobit quantile regression model. The proposed approach is based on placing a g-prior distribution depends on the quantile level on the regression coefficients. The prior is generalized by introducing a ridge parameter to address important challenges that may arise with censored data, such as multicollinearity and overfitting problems. Then, a stochastic search variable selection approach is proposed for Tobit quantile regression model based on g-prior. An expression for the hyperparameter g is proposed to calibrate the modified g-prior with a ridge parameter to the corresponding g-prior. Some possible extensions of the proposed approach are discussed, including the continuous and binary responses in quantile regression. The methods are illustrated using several simulation studies and a microarray study. The simulation studies and the microarray study indicate that the proposed approach performs well

    Penalized flexible Bayesian quantile regression

    Get PDF
    Copyright © 2012 SciResThis article has been made available through the Brunel Open Access Publishing Fund.The selection of predictors plays a crucial role in building a multiple regression model. Indeed, the choice of a suitable subset of predictors can help to improve prediction accuracy and interpretation. In this paper, we propose a flexible Bayesian Lasso and adaptive Lasso quantile regression by introducing a hierarchical model framework approach to en- able exact inference and shrinkage of an unimportant coefficient to zero. The error distribution is assumed to be an infi- nite mixture of Gaussian densities. We have theoretically investigated and numerically compared our proposed methods with Flexible Bayesian quantile regression (FBQR), Lasso quantile regression (LQR) and quantile regression (QR) methods. Simulations and real data studies are conducted under different settings to assess the performance of the pro- posed methods. The proposed methods perform well in comparison to the other methods in terms of median mean squared error, mean and variance of the absolute correlation criterions. We believe that the proposed methods are useful practically

    Bayesian adaptive lasso quantile regression

    Get PDF
    Recently, variable selection by penalized likelihood has attracted much research interest. In this paper, we propose adaptive Lasso quantile regression (BALQR) from a Bayesian perspective. The method extends the Bayesian Lasso quantile regression by allowing different penalization parameters for different regression coefficients. Inverse gamma prior distributions are placed on the penalty parameters. We treat the hyperparameters of the inverse gamma prior as unknowns and estimate them along with the other parameters. A Gibbs sampler is developed to simulate the parameters from the posterior distributions. Through simulation studies and analysis of a prostate cancer dataset, we compare the performance of the BALQR method proposed with six existing Bayesian and non-Bayesian methods. The simulation studies and the prostate cancer data analysis indicate that the BALQR method performs well in comparison to the other approaches

    A partially collapsed Gibbs sampler for Bayesian quantile regression

    Get PDF
    We introduce a set of new Gibbs sampler for Bayesian analysis of quantile re-gression model. The new algorithm, which partially collapsing an ordinary Gibbs sampler, is called Partially Collapsed Gibbs (PCG) sampler. Although the Metropolis-Hastings algorithm has been employed in Bayesian quantile regression, including median regression, PCG has superior convergence properties to an ordinary Gibbs sampler. Moreover, Our PCG sampler algorithm, which is based on a theoretic derivation of an asymmetric Laplace as scale mixtures of normal distributions, requires less computation than the ordinary Gibbs sampler and can significantly reduce the computation involved in approximating the Bayes Factor and marginal likelihood. Like the ordinary Gibbs sampler, the PCG sample can also be used to calculate any associated marginal and predictive distributions. The quantile regression PCG sampler is illustrated by analysing simulated data and the data of length of stay in hospital. The latter provides new insight into hospital perfor-mance. C-code along with an R interface for our algorithms is publicly available on request from the first author. JEL classification: C11, C14, C21, C31, C52, C53

    Prior elicitation in Bayesian quantile regression for longitudinal data

    Get PDF
    © 2011 Alhamzawi R, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original auhor and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.In this paper, we introduce Bayesian quantile regression for longitudinal data in terms of informative priors and Gibbs sampling. We develop methods for eliciting prior distribution to incorporate historical data gathered from similar previous studies. The methods can be used either with no prior data or with complete prior data. The advantage of the methods is that the prior distribution is changing automatically when we change the quantile. We propose Gibbs sampling methods which are computationally efficient and easy to implement. The methods are illustrated with both simulation and real data.This article is made available through the Brunel Open Access Publishing Fund

    Type I Tobit Bayesian Additive Regression Trees for Censored Outcome Regression

    Full text link
    Censoring occurs when an outcome is unobserved beyond some threshold value. Methods that do not account for censoring produce biased predictions of the unobserved outcome. This paper introduces Type I Tobit Bayesian Additive Regression Tree (TOBART-1) models for censored outcomes. Simulation results and real data applications demonstrate that TOBART-1 produces accurate predictions of censored outcomes. TOBART-1 provides posterior intervals for the conditional expectation and other quantities of interest. The error term distribution can have a large impact on the expectation of the censored outcome. Therefore the error is flexibly modeled as a Dirichlet process mixture of normal distributions.Comment: 51 page
    corecore