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ABSTRACT 

The selection of predictors plays a crucial role in building a multiple regression model. Indeed, the choice of a suitable 
subset of predictors can help to improve prediction accuracy and interpretation. In this paper, we propose a flexible 
Bayesian Lasso and adaptive Lasso quantile regression by introducing a hierarchical model framework approach to en- 
able exact inference and shrinkage of an unimportant coefficient to zero. The error distribution is assumed to be an infi- 
nite mixture of Gaussian densities. We have theoretically investigated and numerically compared our proposed methods 
with Flexible Bayesian quantile regression (FBQR), Lasso quantile regression (LQR) and quantile regression (QR) 
methods. Simulations and real data studies are conducted under different settings to assess the performance of the pro- 
posed methods. The proposed methods perform well in comparison to the other methods in terms of median mean 
squared error, mean and variance of the absolute correlation criterions. We believe that the proposed methods are useful 
practically. 
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1. Introduction 

Quantile regression has become a widely used technique 
to describe the distribution of a response variable given a 
set of explanatory variables. It provides a more complete 
statistical analysis of the stochastic relationships among 
random variables. It has been applied in many different 
areas such as finance, microarrays, medical and agricul-
tural studies—see Koenker [1] and Yu et al. [2] for more 
details. 

Let i  be a response variable and y ix  a 1k   vec- 
tor of covariates for the ith obsevation, ix  is the ith row 
in the X matrix,  is the inverse cumulative dis- 
tribution function of i  given i

 iq x
y x . Then, the relation- 

ship between  and i iq x x  can be modelled as 

i q x xi  , where   is a vector of  unknown 
parameters of interest and 

k
  determines the quantile 

level. 
Koenker and Bassett [3] demonstrated that the regres-

sion coefficients   can be estimated by 


1

min .
n

i i
i

y x



 



          (1) 

where     is the check function defined by 
           ,00, 1u uI u uI u      .    (2) 

As a parametric possible link with minimizing the 

check function (1), Koenker and Machado [4] showed 
that maximum likelihood solution of the asymmetric 
Laplace (ASL) distribution is equivalent to the minimi- 
zation of an objective function in (1). The idea of Koen- 
ker and Machado [4] was exploited by Yu and Moyeed 
[5] to propose Bayesian quantile regression. Yu and 
Moyeed [5] considered Markov Chain Monte Carlo 
(MCMC) methods for posterior inference. Recently, 
Bayesian approach for quantile regression has attracted 
much interest in literature. For example, Tsionas [6] de- 
veloped Gibbs sampling algorithm for the quantile re- 
gression model, while Yu and Standard [7] proposed 
Bayesian Tobit quantile regression. Additionally, Geraci 
and Bottai [8] considered Bayesian quantile regression 
for longitudinal data using asymmetric Laplace distribu- 
tion. Likewise, Kozumi and Kobayashi [9] and Reed and 
Yu [10] developed Gibbs sampling algorithms based on a 
location-scale mixture representation of the (ASL) dis- 
tribution while Benoit and Poel [11] proposed Bayesian 
binary quantile regression. 

Some researchers suggested nonparametric approaches 
to avoid the restrictive assumptions of the parametric 
approaches. See for example Walker and Mallick [12], 
Kottas and Gelfand [13], Hanson and Johnson [14], Hjort 
[15], Hjort and Petrone [16], Taddy and Kottas [17] and 
Kottas and Krnjajic [18]. Recently, Reich et al. [19] pro-  *Corresponding author. 
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posed a flexible Bayesian quantile regression model for 
independent and clustered data. The authors assumed that 
the error distribution is an infinite mixture of Gaussian 
densities. They called their method “flexible” because it 
does not impose a parametric assumptions (e.g., asym- 
metric Laplace) or shape restrictions on the residual dis- 
tribution (e.g., mode at the quantile of interest) as with 
other approaches (personal communication with Reich). 

The selection of predictors plays a crucial role in 
building a multiple regression model. The choice of a 
suitable subset of predictors can help to improve predic- 
tion accuracy. Also, in practice, the interpretation of a 
smaller subset of predictors is easier than a large set of 
predictors (Li et al. [20]). Variable selection by penaliz- 
ing the classical least squares has attracted much research 
interest. See for example least absolute shrinkage and 
selection operator (Lasso) (Tibshirani [21]), smoothly 
clipped absolute deviation (SCAD) (Fan and Li [22]), 
Adaptive Lasso (Zou [23]) and the Bayesian approach of 
Park and Casella [24]. Although the classical least 
squares is popular for its mathematical beauty, it is not 
robust to outliers (Bradic et al. [25]; Koenker and Bassett 
[3]). For this reason, robust variable selection can be 
achieved using a rigorous method such as quantile re- 
gression. 

The first use of regularization in quantile regression is 
made by Koenker [26]. The author put the Lasso penalty 
on the random effects in a mixed-effect quantile regres- 
sion model to shrink individual effects towards a com- 
mon value. Yuan and Yin [27] proposed Bayesian ap- 
proach to shrink the random effects towards a common 
value by introducing 2  penalty in the usual quantile 
regression check function. In addition, Wang et al. [28] 
proposed the LAD Lasso method which combines the 
idea of least absolute deviance (LAD) and Lasso for ro- 
bust regression shrinkage and selection. Li and Zhu [29] 
developed the piecewise linear solution path of the 1  
penalized quantile regression. Moreover, Wu and Liu [30] 
considered penalized quantile regression with the SCAD 
and Adaptive Lasso penalties. Li et al. [20] suggested 
Bayesian regularized quantile regression. The authors 
proposed different penalties including Lasso, group 
Lasso and elastic net penalties. Alhamzawi et al. [31] 
extended the Bayesian Lasso quantile regression reported 
in Li et al. [20] by allowing different penalization pa- 
rameters for different regression coefficients. 

l

l

In this paper, we develop a flexible Bayesian frame- 
work for regularization in quantile regression model. 
Similar to Reich et al. [19], we assume the error distribu- 
tion to be an infinite mixture of Gaussian densities. This 
work is quite different from Bayesian Lasso quantile 
regression employing asymmetric Laplace error distribu-  
tion. In fact, the use of the asymmetric Laplace distribu- 
tion is unattractive due to the lack of coherence (Kottas 

and Krnjajić [18]). For example, for different   we 
have different distribution for the i ’s and it is difficult 
to reconcile these differences. Our motivating example is 
an analysis of body fat data which is previously analyzed 
by Johnson [32] and available in the package “mfp”. This 
study had a total body measurements of 252 men. The 
objective of this study is to investigate the relationship 
between the percentage body fat and 13 simple body 
measurements. In this paper we are interested in selecting 
the most significant simple body measurements for the 
quantile regression model, relating to the percentage 
body fat. Certain correlation is present between the pre- 
dictors in the body fat data. For example, the correlation 
coefficient is 0.943 between the weight and the hip cir- 
cumference, 0.916 between the chest circumference and 
the abdomen circumference, 0.894 between the hip cir- 
cumference and the thigh circumference, 0.894 between 
the weight and the chest circumference, 0.887 between 
the weight and the abdomen circumference, 0.874 be- 
tween the abdomen circumference and the hip circum- 
ference, and so on. The selection of variables is impor- 
tant in this application, in order to know which predictors 
have coefficients that vary among subjects. The high 
correlation between the predictors is an argument to use 
the Adaptive Lasso because the procedure deals with 
correlated predictors by using adaptive weights for the 
different predictors. 

y

The remainder of this paper is organized as follows. A 
brief review of the flexible Bayesian quantile regression 
model for independent data is given in Section 2. Penal- 
ized flexible Bayesian quantile regression with Lasso and 
adaptive Lasso are proposed in Section 3 and Section 4, 
respectively. The experimental results are reported in 
Section 5. Finally, the conclusions are summarized in 
Section 6. 

2. Flexible Bayesian Quantile Regression 
(FBQR) 

Following He [33], Reich et al. [19] considered the het-
eroskedastic linear regression model 

i i iy x x i    γ                (3) 

where 0ix γ  for all ix  and the residuals i  are in- 
dependent and identically distributed. The authors re- 
wrote the above model as quantile regression model: 

     i i i iy x x      γ           (4) 

where    ii q     has τth quantile equal to zero, 
 q   is the inverse cumulative distribution function of 

i . To analyze i ’s τth quantile,  iy x  , the authors 
considered only distributions for the residual term with 
τth quantile equal to zero. Also, they fixed the element of 

 γ   corresponding to the intercept at 1 to separate out 
the scale of the errors from  γ  . For simplicity of nota- 
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tion, we will omit the subscript   in the remainder of 
the paper. From a Bayesian approach view, Reich et al. 
[19] assumed that the error term i  has a normal distri- 
bution with mean 

i iH G  and variance 
i i

2
H G , where 

 1,2,iG    and  are latent variables in- 
troduced to indicate the mixture component from which 
the ith observation is drawn. Under these assumptions, 
the conditional distribution of  given 

 1,2iH 

iy
i iH G  and 

2

i iH G  is given by: 

   
 

 

1

,

i iH G



  

2,

2

i i i ii H G H G

i iy x

x

 



  
γ

~

2

exp i i

i

H G

i H

f y 





γ

2

x

i i

i

G

x 



 γ       (5) 

where 1 2,m m 
, ~ AL

uniform   and 1

1 2m m

0,c
 0, ,D 

mp

1

1m
m

p





, 1,mp m 

 



, where the parameters are the 
location, scale and the skewness. To specify a prior for 

, where the  are the mixture proportions with  mp

, Reich et al. [19] defined the proportions  

2,  through the latent variables m  which 
are independently identically distributed from beta

V
 1, D  

where  controls the strength of the prior for m . The 
first proportion is  and the others are given by  

D

1m m
d m

p V


 

p

j mp V
1 1

 where 1 1 .  
p V

m



 V  d m
d m
  

The priors for the regression coefficients and scale pa- 
rameters are 2~ 0,N c

1
j

0.1,0.
 for large c  and  2

. The prior for j~ Gamma γ  is vague normal 
prior subject to i  for all i0xγ x  and the first element 
of γ  corresponding to the intercept to be 1 to identify 
the scale of the residuals. As shown in Reich et al. [19], 
the performance of the above method is better than the 
frequentist method. 

3. Flexible Bayesian Quantile Regression 
with Lasso Penalty (FBLQR) 

Tibshirani [21] proposed the Lasso for simultaneous 
variable selection and parameter estimation. The Lasso, 
formulated in the penalized likelihood framework, mini-
mizes the residual sum of squares with a constraint on 
the 1  norm of l  . The author stated the Lasso estima-
tor can be interpreted as the posterior mode using normal 
likelihood and iid Laplace prior for  . As extension to 
Lasso Tibshirani [21], Li and Zhu [29] suggested Lasso 
quantile regression for simultaneous estimation and 
variable selection in quantile regression models, and it is 
given by: 

 
1

i iy x
1

min 
.

n k

i j
j   






       (6) 

where 0   is the tuning parameter controlling the 
amount of penalty. The second term in (6) is the so- 

called 1  penalty, which is essential for the success of 
the Lasso. In this paper we consider a fully Bayesian 
approach to enable exact inference and shrinkage of an 
unimportant coefficient to zero. We propose flexible 
Bayesian Lasso quantile regression which solves the fol- 
lowing: 

l

   1

1

min
k

i i
j

u x W u x
 j   



        (7) 

where 
i ii i H Gu y x   γ  and W is a diagonal matrix with  

the element  2

i ii H Gx γ  on the diagonal i . The second  

term of (7) can be represented as a mixture of normals 
(Andrews and Mallows [34]) 

 2 2
2

2 2

0

1
e e e d , 0

2 22π

z z s s s
s

   


   


  We further 

put gamma priors,      2
212 12 e

ccf


 
 , on the para-  

meter 2  (not  ). Then, we have the following hier-
archical model: 

  
 

       
 

 
 
 

   

2 2

2
21

22

2
22 2

0

2 12
1 2

1 2 1

1 2

2 2

1 1 2 2

, ~ ,

1
~ e e d

22π

e , ~ 0, ,

, ~ Uniform 0, ,

~ Categorical , , ,

~ Categorical ,1

i i i i i i i i

i i

i H G H G i i H G i H G

s s

cc
m m

m m

i

i G G

m m
m

m m m m

y N x x x

s
s

f A

c

G p p

H q q

Ф
q

Ф Ф

 



    

 

     

 

  
   


 



  





 


  





γ γ ,

,LD

 

 1 1, 1m m m
d m

p V p V V


    where  

 1 1d
d m d m

p
 

   mV  , the latent variables  which  mV

are independently identically distributed from beta 
 1, D . The details of the Gibbs sampler are given in the 
appendix. 

4. Flexible Bayesian Quantile Regression 
with Adaptive Lasso Penalty (FBALQR) 

Fan and Li [22] studied a class of penalization methods 
including the Lasso. The authors showed that the Lasso 
can perform automatic variable selection because the 1  
penalty is singular at the origin. On the other hand, the 
Lasso shrinkage produces biased estimates for the large 
coefficients, and thus it could be suboptimal in terms of 
estimation risk. Fan and Li [22] conjectured that the ora- 
cle properties do not hold for the Lasso. The Adaptive 
Lasso can be viewed as a generalization of the Lasso 
penalty. Basically the idea is to penalize the coefficients  

l
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of different covariates at a different level by using adap- 
tive weights. In the case of least squares regression, Zou 
[23] proposed the Adaptive Lasso in which adaptive 
weights are used to penalize different coefficients in the 

1  penalty. The author showed that the adaptive Lasso 
has the oracle properties that Lasso does not have. We 
propose Flexible Bayesian adaptive Lasso quantile re- 
gression which solves the following 

l

   1

1

min
k

i i
j

u x β W u x β j jβ




      (8) 

The second term of (8) can be represented as a mixture 
of normals (Andrews and Mallows [34]) 

 2 2
2

2 2

0

21
e e e d

2 22π
,j jj j j jz sz sj j

j j

j

s
s

  



   0  for  

each 1 ,, ,j j k  


, we assume gamma prior,  

   
2

212 12 e jcc
j jf


  


, on the parameter 2 . Then we  

have the following hierarchical model: 

  
 

       
 

 
 
 

 

2 2

2
21

22

2
2 22

0

12 2
1 2

1 2 1

1 2

2 2

1 1

, ~ ,

1
~ e e d

22π

e , ~ 0, ,

, ~ Uniform 0, ,

~ Categorical , , ,

~ Categorical ,1

i i i i i i i i

j j j

j

i i

i H G H G i i H G i H G

s sj
j j j

j

cc
j j m m

m m

i

i G G

m m
m

m m

y N x x x

s
s

f

c

G p p

H q q

Ф
q

Ф

 


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
 

     

 

  
 


 



  





 








γ γ ,

,ALD

 
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2 2

1 1, 1

m m

m m m
d m

Ф

p V p V V

 



 

  

 

where 1 1j
d m d m

mp V
 

    , the latent variables   mV

which are independently identically distributed from beta 
 1, D . 

5. The Experimental Results 

5.1. A Simulation Study 

A numerical study was conducted to assess the perform- 
ance of the proposed methods. We generated 200R   
data-sets with size  observations from 300n 

i i iy x x i    γ , where  are generated as independ-  ix
ently and identically distributed standard normals. We 
simulated the error i  from three possible error distri- 
butions: standard normal, a  distribution with three   3t

degrees of freedom and Chi-squared distribution with  

three degrees of freedom   2
3 . We use the following  

designs for the vector  : 

Design 1:  1; 1; 1;0;0;0;0;0;0;0;0;0;0;0;0     

Design 2:  3; 3; 3;0;0;0;0;0;0;0;0;0;0;0;0   

 1; 1; 1;0;0;0;0;0;0;0;0;0;1; 1; 1

 

Design 3:       

Design 4:  3; 3; 3;0;0;0;0;0;0;0;0;0;3; 3; 3      . 

where the first element in   corresponding to the in- 
tercept. 

Each simulated data set is analysis using five methods. 
We use our methods flexible Bayesian quantile regres-
sion with Lasso penalty (FBLQR) and flexible Bayesian 
quantile regression with Adaptive Lasso penalty (FBA- 
LQR) which are proposed in Sections 3 and 4 respec-
tively. We compare the proposed methods with Lasso 
quantile regression (LQR) and the standard frequentist 
quantile regression (QR) using the “quantreg” package in 
R. Also, the proposed methods are compared with flexi-
ble Bayesian quantile regression (FBQR) (Reich et al. 
[19]). 

The results of the simulation are presented in Tables 
1-4 and Figures 1-4. From Tables 1-4 and Figures 1-4, 
according to the absolute correlation value of ˆX  and 

 X r  and the median of the mean squared error 
(MMSE) for ˆX , it can be seen that the proposed me- 
thods (FBALQR and FBLQR) are better than the other 
three methods for all the distributions under considera- 
tion and for all the   values. This indicates that the pro- 
posed methods give precise estimates even when the er- 
ror distribution is an asymmetric. Most noticeably, when 

0.25   and 0.75   the FBALQR and FBLQR are 
more significantly efficient than the other methods. In 
addition, we can observe that the worst estimators for all 
the   values are QR. 

5.2. Body Fat Data 

Percentage of body fat is one important measure of 
health, which can be accurately estimated by underwater 
weighing techniques. These techniques often require spe- 
cial equipment and are sometimes not easily achieved, 
thus fitting percentage body fat to simple body mea-  
surements is a convenient way to predict body fat. John- 
son [32] introduced a data set in which percentage body 
fat and 13 simple body measurements (such as weight, 
height and abdomen circumference) are recorded for 252 
men. The data set is available at the package (“mfp”). 
The response variable Y is the percent boday fat (%). The 

13k   predictor variables x  are, respectively, the age 
(years) 1x , the weight (pounds) 2x , the height (inches) 

3x , the neck circumference (cm) 4x , the chest circum- 
ference (cm) 5x , the abdomen circumference (cm) 6x ,  
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l 
 
Table 1. Simulation results for FBALQR, FBLQR, FBQR, LQR and QR based on the linear mode i i i iy x β x γ , design 

1. 

r distribution   Erro

Standard normal  3
t   

2

3
    Method 

r  mean r SD MMSE r  mean r  SD MMSE r  mean r  SD MMSE 

FBALQR 0.99724 0.00131 0.00341 0.99494 0.00224 0.01182 0.99460 0.00172 0.01544 

FBLQR 

 

 

0.99684 0.00120 0.00363 0.99464 0.00241 0.01495 0.99210 0.00155 0.01673 

FBQR 0.99655 0.00142 0.00452 0.99352 0.00251 0.01910 0.99053 0.00141 0.02620 

LQR 0.99591 0.00141 0.00445 0.99361 0.00385 0.01852 0.99075 0.00143 0.02261 

0.25   

QR 0.99572 0.00143 0.00703 0.99322 0.00372 0.02010 0.98805 0.00196 0.03304 

FBALQR 

 

 

 

0.99714 0.00130 0.00331 0.99550 0.00113 0.00527 0.98537 0.00824 0.03151 

FBLQR 0.99703 0.00131 0.00344 0.99543 0.00111 0.00554 0.98461 0.00726 0.03264 

FBQR 0.99693 0.00144 0.00480 0.99514 0.00243 0.00535 0.97965 0.00733 0.05517 

LQR 0.99580 0.00176 0.00412 0.99532 0.00213 0.00531 0.98221 0.00601 0.03926 

0.5   

QR 0.99571 0.00182 0.00562 0.99492 0.00127 0.00560 0.97846 0.00657 0.05702 

FBALQR 

 

 

QR 0.99504 0.00139 0.00665 0.99302 0.00311 0.01895 0.93623 0.02290 0.08290 

0.99623 0.00103 0.00503 0.99337 0.00251 0.01572 0.94525 0.01794 0.05344 

FBLQR 0.99602 0.00101 0.00530 0.99331 0.00244 0.01632 0.94325 0.01664 0.05443 

FBQR 0.99575 0.00087 0.00653 0.99316 0.00315 0.01791 0.93853 0.01761 0.07512 

LQR 0.99521 0.00143 0.00549 0.99314 0.00337 0.01689 0.93979 0.01783 0.06122 

0.75   

 
Table 2. Simulation results for FBALQR, FBLQR, FBQR, LQR and QR based on the linear model i i i iy x β x γ , design 

2. 

Error distribution   

Standard normal  3
t   

2

3
    Method 

r  mean r  SD MMSE r  mean r  SD MMSE r  mean r  SD MMSE 

FBALQR 0.99964 0.00021 0.00415 0.99335 0.00264 0.02084 0.99949 0.00035 0.03962 

FBLQR 0.99963 0.00013 0.00473 0.99293 0.00271 0.02313 0.99926 0.00055 0.04691 

FBQR 0.99962 0.00022 0.00544 0.99190 0.00233 0.06672 0.99903 0.00036 0.06922 

LQR 0.99951 0.00021 0.00693 0.99241 0.00210 0.05682 0.99913 0.00043 0.06550 

0.25   

QR 0.99941 0.00023 0.00694 0.99134 0.00312 0.07380 0.99874 0.00043 0.07351 

FBALQR 0.99973 0.00013 0.00377 0.99952 0.00024 0.00254 0.99885 0.00061 0.01026 

FBLQR 0.99972 0.00014 0.00412 0.99951 0.00024 0.00272 0.99873 0.00062 0.01094 

FBQR 0.99971 0.00016 0.00503 0.99943 0.00025 0.00355 0.99790 0.00070 0.02183 

LQR 0.99962 0.00021 0.00605 0.99942 0.00030 0.00471 0.99861 0.00095 0.01263 

0.5   

QR 0.99961 0.00020 0.00675 0.99941 0.00050 0.00493 0.99781 0.00095 0.02541 

FBALQR 0.99972 0.00022 0.00342 0.99923 0.00033 0.01215 0.99589 0.00212 0.01207 

FBLQR 0.99961 0.00022 0.00391 0.99915 0.00033 0.01342 0.99574 0.00157 0.01765 

FBQR 0.99960 0.00024 0.00471 0.99882 0.00036 0.04641 0.99432 0.00243 0.05400 

LQR 0.99953 0.00022 0.00614 0.99911 0.00050 0.03240 0.99515 0.00291 0.05099 

0.75   

QR 0.99951 0.00023 0.00690 0.99878 0.00051 0.04671 0.99391 0.07122 0.00292 
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Table 3. Simulation results for FBALQR, FBLQR, FBQR, LQR and QR based on the linear model i i i iy x β x γ , design 

3. 

ror dis n  Er tributio  

Stan al dard norm  3
t   

2

3
    Method 

r  mean r  SD MMSE r  mean r  SD MMSE r  mean r  SD MMSE 

F  BALQR 0.99868 0.00042 0.00602 0.99755 0.00128 0.01001 0.99699 0.00066 0.01391 

F  

FBQR 

F  

F  

FBQR 

BLQR 0.99855 0.00044 0.00603 0.99744 0.00123 0.01043 0.99654 0.00091 0.01661 

0.99754 0.00060 0.00624 0.99713 0.00132 0.01180 0.99603 0.00163 0.02303 

LQR 0.99853 0.00051 0.00613 0.99731 0.00130 0.01122 0.99615 0.00100 0.02275 

0.25   

QR 0.99732 0.00063 0.00643 0.99701 0.00142 0.01263 0.99586 0.00157 0.02370 

BALQR 0.99875 0.00052 0.00435 0.99852 0.00072 0.00593 0.99541 0.00173 0.01253 

BLQR 0.99872 0.00054 0.00484 0.99824 0.00074 0.00664 0.99511 0.00180 0.01727 

0.99823 0.00056 0.00543 0.99811 0.00077 0.00690 0.99270 0.00196 0.02465 

LQR 0.99863 0.00055 0.00495 0.99815 0.00076 0.00685 0.99491 0.00190 0.01965 

0.5   

QR 0.99821 0.00059 0.00563 0.99802 0.00079 0.00688 0.99225 0.00201 0.03368 

F  

F  

FBQR 

LQR 0.99815 0.00058 0.00441 0.99755 0.00111 0.01652 0.98453 0.00521 0.04792 

BALQR 0.99835 0.00052 0.00434 0.99765 0.00080 0.01025 0.98729 0.00471 0.04346 

BLQR 0.99833 0.00055 0.00430 0.99757 0.00100 0.01044 0.98661 0.00505 0.04612 

0.99812 0.00060 0.00476 0.99752 0.00112 0.01699 0.98354 0.00547 0.05250 0.75   

QR 0.99803 0.00061 0.00478 0.99754 0.00115 0.01910 0.98255 0.05293 0.00574 

 
Table 4. Simulation results for FBALQR, FBLQR, FBQR, LQR and QR base  linear model i i i iy x β x γd on the , design 

4. 

r di tion  Erro stribu  

Standar al d norm  3
t   3

2    Method 

r  mean r  SD MMSE r  mean r  SD MMSE r  mean r  SD MMSE 

FBALQR 0.99994 0.00011 0.00435 0.99977 0.00010 0.02063 0.99978 0.00011 0.01440 

FBL

FBQR 0.

FBAL

FBL

FBQR 0.

FBAL

FBL

FBQR 0.

LQR 0.99983 0.00014 0.00460 0.99972 0.00015 0.02322 0.99821 0.00065 0.04754 

QR 0.99991 0.00014 0.00482 0.99975 0.00012 0.03141 0.99976 0.00013 0.01622 

99983 0.00018 0.00510 0.99973 0.00017 0.03340 0.99973 0.00022 0.01678 

LQR 0.99985 0.00015 0.00495 0.99974 0.00014 0.03272 0.99974 0.00021 0.01673 

0.25   

QR 0.99982 0.00022 0.00530 0.99969 0.00019 0.04525 0.99963 0.00023 0.01701 

QR 0.99996 0.00011 0.00114 0.99989 0.00012 0.00844 0.99962 0.00024 0.02352 

QR 0.99993 0.00013 0.00122 0.99987 0.00014 0.00864 0.99941 0.00031 0.02796 

99984 0.00022 0.00262 0.99982 0.00017 0.01826 0.99921 0.00036 0.03619 

LQR 0.99992 0.00017 0.00127 0.99985 0.00015 0.00958 0.99933 0.00034 0.02842 

0.5   

QR 0.99982 0.00023 0.00300 0.99980 0.00021 0.02028 0.99906 0.00037 0.03653 

QR 0.99987 0.00009 0.00286 0.99978 0.00012 0.02270 0.99876 0.00050 0.04221 

QR 0.99986 0.00011 0.00445 0.99976 0.00013 0.02281 0.99852 0.00062 0.04271 

99980 0.00020 0.00563 0.99970 0.00017 0.02403 0.99810 0.00073 0.04899 0.75   

QR 0.99977 0.00024 0.00670 0.99964 0.00020 0.02470 0.99791 0.00076 0.05685 
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Figure 1. The left column explains the plots for the absolute value of the correlation between ˆXβ  and Xβ , design 1, and 

the error distributions are normal, T and Chi-square respectively. The right column explains the plots for the MMSE of ˆXβ , 
design 1, and the error distributions are normal, T and Chi-square respectively. 
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Figure 2. The left column explains the plots for the absolute value of the correlation between ˆXβ  and β , model 2, and the 

error distributions are normal, T and Chi-square respectively. The right column explains the plots for the MMSE of ˆXβ , 
model 2, and the error distributions are normal, T and Chi-square respectively. 
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Figure 3. The left column explains the plots for the absolute value of the correlation between ˆXβ  and Xβ , model 3, and the 

error distributions are normal, T and Chi-square respectively. The right column explains the plots for the MMSE of ˆXβ , 
model 3, and the error distributions are normal, T and Chi-square respectively. 
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Figure 4. The left column explains the plots for the absolute value of the correlation between ˆXβ  and Xβ , model 4, and the 

error distributions are normal, T and Chi-square respectively. The right column explains the plots for the MMSE of ˆXβ , 
model 4, and the error distributions are normal, T and Chi-square respectively. 
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The hip circumference (cm) 7x , the thigh circumference 
(cm) 8x , the knee circumference (cm) 9x , the ankle 
circumference (cm) 10x , the extended biceps circumfer- 
ence 11x , the forearm circumference (cm) 12x  and the 
wrist circumference (cm) 

methods. It is clear that the proposed methods give pre-
cise estimates. Again, we can see that when 0.25   
and 0.75   the proposed methods are significantly 
more efficient than the other methods. The results of the 
simulation studies and real data example suggested that 
the proposed methods perform well. 

13x . 
Hoeting et al. [35] and Leng et al. [36] analyzed this 

data set. Previous diagnostic checking (Hoeting et al. 
[35]; Leng et al. [36]) showed that it is reasonable to 
assume a linear regression model. 

6. Conclusion 

In this study, we have proposed a flexible Bayesian 
Lasso and adaptive Lasso quantile regression by propos- 
ing a hierarchical model framework. We have theoreti- 
cally investigated and numerically compared our pro- 
posed methods with the FBQR, Lasso quantile regression 
(LQR) and quantile regression (QR) methods. In order to  

The results of the body fat data analysis are presented 
in Tables 5 and 6 and Figures 5 and 6. From Table 5 
and Figure 5, we have the following observations. Ac-
cording to the mean squared error criterion, it can be seen 
that the performance of the proposed methods (FBALQR 
and FBLQR) is better than the performance of other  
 
Table 5. MSE for β̂X  which is estimated by FBALQR, FBLQR, FBQR, LQR and QR based on body fat data for . 0 25 , 

. 0 5  and .0 75 . 

MSE 
The methods 

0.25   0.5   0.75   

FBALQR 0.1084258 1.133324e–05 0.1370678 

FBLQR 0.1241451 7.436673e–05 0.1423978 

FBQR 0.1377442 9.326444e–05 0.1477935 

LQR 0.1270168 0.001221321 0.1497241 

QR 0.1414865 0.0009612835 0.1639030 

 
Table 6. The estimated β̂  which is estimated by FBALQR, FBLQR, FBQR, LQR and QR based on body fat data for 

. 0 25  , . 0 5  and .0 75 . 

0.25   0.5   0.75   
 

FBALQR FBLQR FBQR LQR QR FBALQR FBLQR FBQR LQR QR FBALQR FBLQR FBQR LQR QR 

0̂  –0.329 –0.352 –0.371 –0.356 –0.376 –0.003 –0.009 –0.009 –0.035 –0.031 0.370 0.377 0.384 0.387 0.405

1̂  0.145 0.088 0.067 0.089 0.071 0.111 0.105 0.108 0.095 0.106 0.123 0.124 0.145 0.099 0.127

2̂  –0.001 –0.058 –0.047 –0.324 –0.018 –0.119 –0.099 –0.105 –0.001 0.127 –0.097 –0.163 –0.120 –0.307 –0.726

3̂  –0.060 –0.028 –0.027 –0.007 –0.028 –0.030 –0.039 –0.037 –0.039 –0.042 –0.056 –0.039 –0.043 0.010 0.091

4̂  –0.129 –0.202 –0.225 –0.199 –0.245 –0.160 –0.155 –0.171 –0.110 –0.147 –0.082 –0.095 –0.094 –0.018 –0.062

5̂  0.022 0.040 0.024 0.128 0.017 –0.037 –0.020 –0.046 –0.089 –0.110 –0.076 –0.104 –0.122 –0.112 0.034

6̂  1.010 1.085 1.149 1.169 1.162 1.163 1.122 1.167 1.190 1.181 1.089 1.175 1.168 1.180 1.353

7̂  –0.176 –0.237 –0.324 –0.236 –0.370 –0.211 –0.172 –0.235 –0.296 –0.348 –0.072 –0.101 –0.123 –0.039 –0.003

8̂  0.140 0.159 0.189 0.233 0.208 0.165 0.136 0.170 0.224 0.212 0.078 0.089 0.132 0.074 0.129

9̂  0.001 0.054 0.059 –0.008 0.072 –0.009 –0.004 0.004 –0.043 –0.057 –0.028 –0.045 –0.065 –0.066 –0.129

10̂  –0.001 –0.076 –0.08 –0.025 –0.090 –0.003 –0.011 –0.004 –0.011 –0.011 0.054 0.077 0.085 0.110 0.122

11̂  0.018 0.018 0.024 –0.001 0.019 0.052 0.051 0.062 0.016 0.034 0.082 0.106 0.101 0.043 0.141

12̂  0.132 0.084 0.079 0.207 0.091 0.081 0.064 0.075 0.105 0.105 0.047 0.049 0.054 0.074 0.078

13̂  –0.244 –0.137 –0.116 –0.183 –0.118 –0.174 –0.169 –0.172 –0.193 –0.210 –0.213 –0.215 –0.225 –0.216 –0.204
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Figure 5. plots explain MSE for β̂X  which is estimated by FBALQR, FBLQR, FBQR, LQR and QR based on body fat data 

for . 0 25  , . 0 5  and .0 75 . 
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Figure 6. Plots explain the estimated β̂  which is estimated by FBALQR, FBLQR, FBQR, LQR and QR based on body fat 

data for . 0 25 , . 0 5  and .0 75 . 
 
assess the numerical performance, we have conducted a 
simulation study based on the model i i i iy x β x    γ  as 
described in Section 5 with error i  from three possible  
error distributions: standard normal, a  distribution 

with three degrees of freedom and Chi-squared distribu- 
 3t

tion with three degrees of freedom   2
3  and five de- 

signs for the vector β. From the simulation study and real 
data, we can conclude that the proposed methods perform 
well in comparison to the other methods and thus we 
believe that the proposed methods are practically useful. 
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Appendix 

The details of Gibbs sampler for the penalized flexible 
Bayesian Lasso quantile regression are given as follows: 

1) The full conditional distribution of j  is multi- 
variate normal distribution  2ˆ,j j  , 

where , and   
1

22 2 1

1

ˆ
l l

n

j ij i H G j
i
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2) The full conditional distribution of js  is inverse  

Gaussian where  , , 1, ,j     k 2 2
j     and  

2
j   . 

3) The full conditional distribution of 2  is 

1 2
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Gamma , .
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j

k c s c
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, , , ,m m k mV

G N and , the 
parameters 1 2 1 2m

1, ,m  
   

G

 and the standard de- 
viation parameters can be updated using Gaussian distri- 
bution. The group indicators i  are also updated using 
Metropolis-Hasting sampling (see Reich et al. [19] for 
more details). The full conditional distribution for all 
parameters in the penalized flexible Bayesian Adaptive 
Lasso quantile regression is similar to the above descrip- 
tion except for the full conditional distributions for js  
and  which are given by 2 , 1, ,j k j

1) The full conditional distribution of js  is inverse 
Gaussian  , , 1, ,j     k  where 

2 2
j j     and 2

j   . 

2) The full conditional distribution of 2
j  is  

 1 2Gamma 1 , jc s c  . 
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