17,378 research outputs found

    Parameterized Model Checking of Token-Passing Systems

    Full text link
    We revisit the parameterized model checking problem for token-passing systems and specifications in indexed CTL\X\textsf{CTL}^\ast \backslash \textsf{X}. Emerson and Namjoshi (1995, 2003) have shown that parameterized model checking of indexed CTL\X\textsf{CTL}^\ast \backslash \textsf{X} in uni-directional token rings can be reduced to checking rings up to some \emph{cutoff} size. Clarke et al. (2004) have shown a similar result for general topologies and indexed LTL\X\textsf{LTL} \backslash \textsf{X}, provided processes cannot choose the directions for sending or receiving the token. We unify and substantially extend these results by systematically exploring fragments of indexed CTL\X\textsf{CTL}^\ast \backslash \textsf{X} with respect to general topologies. For each fragment we establish whether a cutoff exists, and for some concrete topologies, such as rings, cliques and stars, we infer small cutoffs. Finally, we show that the problem becomes undecidable, and thus no cutoffs exist, if processes are allowed to choose the directions in which they send or from which they receive the token.Comment: We had to remove an appendix until the proofs and notations there is cleare

    Unsupervised Generative Modeling Using Matrix Product States

    Full text link
    Generative modeling, which learns joint probability distribution from data and generates samples according to it, is an important task in machine learning and artificial intelligence. Inspired by probabilistic interpretation of quantum physics, we propose a generative model using matrix product states, which is a tensor network originally proposed for describing (particularly one-dimensional) entangled quantum states. Our model enjoys efficient learning analogous to the density matrix renormalization group method, which allows dynamically adjusting dimensions of the tensors and offers an efficient direct sampling approach for generative tasks. We apply our method to generative modeling of several standard datasets including the Bars and Stripes, random binary patterns and the MNIST handwritten digits to illustrate the abilities, features and drawbacks of our model over popular generative models such as Hopfield model, Boltzmann machines and generative adversarial networks. Our work sheds light on many interesting directions of future exploration on the development of quantum-inspired algorithms for unsupervised machine learning, which are promisingly possible to be realized on quantum devices.Comment: 11 pages, 12 figures (not including the TNs) GitHub Page: https://congzlwag.github.io/UnsupGenModbyMPS

    Against the Virtual: Kleinherenbrink’s Externality Thesis and Deleuze’s Machine Ontology

    Get PDF
    Drawing from Arjen Kleinherenbrink's recent book, Against Continuity: Gilles Deleuze's Speculative Realism (2019), this paper undertakes a detailed review of Kleinherenbrink's fourfold "externality thesis" vis-à-vis Deleuze's machine ontology. Reading Deleuze as a philosopher of the actual, this paper renders Deleuzean syntheses as passive contemplations, pulling other (passive) entities into an (active) experience and designating relations as expressed through contraction. In addition to reviewing Kleinherenbrink's book (which argues that the machine ontology is a guiding current that emerges in Deleuze's work after Difference and Repetition) alongside much of Deleuze's oeuvre, we relate and juxtapose Deleuze's machine ontology to positions concerning externality held by a host of speculative realists. Arguing that the machine ontology has its own account of interaction, change, and novelty, we ultimately set to prove that positing an ontological "cut" on behalf of the virtual realm is unwarranted because, unlike the realm of actualities, it is extraneous to the structure of becoming-that is, because it cannot be homogenous, any theory of change vis-à-vis the virtual makes it impossible to explain how and why qualitatively different actualities are produced

    An Invariant Cost Model for the Lambda Calculus

    Full text link
    We define a new cost model for the call-by-value lambda-calculus satisfying the invariance thesis. That is, under the proposed cost model, Turing machines and the call-by-value lambda-calculus can simulate each other within a polynomial time overhead. The model only relies on combinatorial properties of usual beta-reduction, without any reference to a specific machine or evaluator. In particular, the cost of a single beta reduction is proportional to the difference between the size of the redex and the size of the reduct. In this way, the total cost of normalizing a lambda term will take into account the size of all intermediate results (as well as the number of steps to normal form).Comment: 19 page

    Wave-Style Token Machines and Quantum Lambda Calculi

    Full text link
    Particle-style token machines are a way to interpret proofs and programs, when the latter are written following the principles of linear logic. In this paper, we show that token machines also make sense when the programs at hand are those of a simple quantum lambda-calculus with implicit qubits. This, however, requires generalising the concept of a token machine to one in which more than one particle travel around the term at the same time. The presence of multiple tokens is intimately related to entanglement and allows us to give a simple operational semantics to the calculus, coherently with the principles of quantum computation.Comment: In Proceedings LINEARITY 2014, arXiv:1502.0441

    G\"odel Incompleteness and the Black Hole Information Paradox

    Full text link
    Semiclassical reasoning suggests that the process by which an object collapses into a black hole and then evaporates by emitting Hawking radiation may destroy information, a problem often referred to as the black hole information paradox. Further, there seems to be no unique prediction of where the information about the collapsing body is localized. We propose that the latter aspect of the paradox may be a manifestation of an inconsistent self-reference in the semiclassical theory of black hole evolution. This suggests the inadequacy of the semiclassical approach or, at worst, that standard quantum mechanics and general relavity are fundamentally incompatible. One option for the resolution for the paradox in the localization is to identify the G\"odel-like incompleteness that corresponds to an imposition of consistency, and introduce possibly new physics that supplies this incompleteness. Another option is to modify the theory in such a way as to prohibit self-reference. We discuss various possible scenarios to implement these options, including eternally collapsing objects, black hole remnants, black hole final states, and simple variants of semiclassical quantum gravity.Comment: 14 pages, 2 figures; revised according to journal requirement
    corecore