70 research outputs found

    Robust Motion Planning employing Signal Temporal Logic

    Full text link
    Motion planning classically concerns the problem of accomplishing a goal configuration while avoiding obstacles. However, the need for more sophisticated motion planning methodologies, taking temporal aspects into account, has emerged. To address this issue, temporal logics have recently been used to formulate such advanced specifications. This paper will consider Signal Temporal Logic in combination with Model Predictive Control. A robustness metric, called Discrete Average Space Robustness, is introduced and used to maximize the satisfaction of specifications which results in a natural robustness against noise. The comprised optimization problem is convex and formulated as a Linear Program.Comment: 6 page

    Control with Probabilistic Signal Temporal Logic

    Full text link
    Autonomous agents often operate in uncertain environments where their decisions are made based on beliefs over states of targets. We are interested in controller synthesis for complex tasks defined over belief spaces. Designing such controllers is challenging due to computational complexity and the lack of expressivity of existing specification languages. In this paper, we propose a probabilistic extension to signal temporal logic (STL) that expresses tasks over continuous belief spaces. We present an efficient synthesis algorithm to find a control input that maximises the probability of satisfying a given task. We validate our algorithm through simulations of an unmanned aerial vehicle deployed for surveillance and search missions.Comment: 7 pages, submitted to the 2016 American Control Conference (ACC 2016) on September, 30, 2015 (under review

    Control with probabilistic signal temporal logic

    Full text link
    Autonomous agents often operate in uncertain environments where their decisions are made based on beliefs over states of targets. We are interested in controller synthesis for complex tasks defined over belief spaces. Designing such controllers is challenging due to computational complexity and the lack of expressivity of existing specification languages. In this paper, we propose a probabilistic extension to signal temporal logic (STL) that expresses tasks over continuous belief spaces. We present an efficient synthesis algorithm to find a control input that maximises the probability of satisfying a given task. We validate our algorithm through simulations of an unmanned aerial vehicle deployed for surveillance and search missions
    • …
    corecore