2,352 research outputs found

    Nonlinear Model Predictive Control for Constrained Output Path Following

    Full text link
    We consider the tracking of geometric paths in output spaces of nonlinear systems subject to input and state constraints without pre-specified timing requirements. Such problems are commonly referred to as constrained output path-following problems. Specifically, we propose a predictive control approach to constrained path-following problems with and without velocity assignments and provide sufficient convergence conditions based on terminal regions and end penalties. Furthermore, we analyze the geometric nature of constrained output path-following problems and thereby provide insight into the computation of suitable terminal control laws and terminal regions. We draw upon an example from robotics to illustrate our findings.Comment: 12 pages, 4 figure

    A Polyhedral Off-Line Robust MPC Strategy for Uncertain Polytopic Discrete-Time Systems

    Get PDF
    In this paper, an off-line synthesis approach to robust constrained model predictive control for uncertain polytopic discrete-time systems is presented. Most of the computational burdens are moved off-line by pre-computing a sequence of state feedback control laws that corresponds to a sequence of polyhedral invariant sets. The state feedback control laws computed are derived by minimizing the nominal performance cost in order to improve control performance. At each sampling instant, the smallest polyhedral invariant set containing the currently measured state is determined. The corresponding state feedback control law is then implemented to the process. The controller design is illustrated with two examples in chemical processes. The proposed algorithm is compared with an ellipsoidal off-line robust model predictive control algorithm derived by minimizing the worst-case performance cost and an ellipsoidal off-line robust model predictive control algorithm derived by minimizing the nominal performance cost. The results show that the proposed algorithm can achieve better control performance. Moreover, a significantly larger stabilizable region is obtained

    Interpolation-based Off-line Robust MPC for Uncertain Polytopic Discrete-time Systems

    Get PDF
    In this paper, interpolation-based off-line robust MPC for uncertain polytopic discrete-time systems is presented. Instead of solving an on-line optimization problem at each sampling time to find a state feedback gain, a sequence of state feedback gains is pre-computed off-line in order to reduce the on-line computational time. At each sampling time, the real-time state feedback gain is calculated by linear interpolation between the pre-computed state feedback gains. Three interpolation techniques are proposed. In the first technique, the smallest ellipsoids containing the measured state are approximated and the corresponding real-time state feedback gain is calculated. In the second technique, the pre-computed state feedback gains are interpolated in order to get the largest possible real-time state feedback gain while robust stability is still guaranteed. In the last technique, the real-time state feedback gain is calculated by minimizing the violation of the constraints of the adjacent inner ellipsoids so the real-time state feedback gain calculated has to regulate the state from the current ellipsoids to the adjacent inner ellipsoids as fast as possible. As compared to on-line robust MPC, the proposed techniques can significantly reduce on-line computational time while the same level of control performance is still ensured

    Polyhedral Predictive Regions For Power System Applications

    Get PDF
    Despite substantial improvement in the development of forecasting approaches, conditional and dynamic uncertainty estimates ought to be accommodated in decision-making in power system operation and market, in order to yield either cost-optimal decisions in expectation, or decision with probabilistic guarantees. The representation of uncertainty serves as an interface between forecasting and decision-making problems, with different approaches handling various objects and their parameterization as input. Following substantial developments based on scenario-based stochastic methods, robust and chance-constrained optimization approaches have gained increasing attention. These often rely on polyhedra as a representation of the convex envelope of uncertainty. In the work, we aim to bridge the gap between the probabilistic forecasting literature and such optimization approaches by generating forecasts in the form of polyhedra with probabilistic guarantees. For that, we see polyhedra as parameterized objects under alternative definitions (under L1L_1 and L∞L_\infty norms), the parameters of which may be modelled and predicted. We additionally discuss assessing the predictive skill of such multivariate probabilistic forecasts. An application and related empirical investigation results allow us to verify probabilistic calibration and predictive skills of our polyhedra.Comment: 8 page

    Chance-Constrained Trajectory Optimization for Safe Exploration and Learning of Nonlinear Systems

    Get PDF
    Learning-based control algorithms require data collection with abundant supervision for training. Safe exploration algorithms ensure the safety of this data collection process even when only partial knowledge is available. We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained stochastic optimal control with dynamics learning and feedback control. We derive an iterative convex optimization algorithm that solves an \underline{Info}rmation-cost \underline{S}tochastic \underline{N}onlinear \underline{O}ptimal \underline{C}ontrol problem (Info-SNOC). The optimization objective encodes both optimal performance and exploration for learning, and the safety is incorporated as distributionally robust chance constraints. The dynamics are predicted from a robust regression model that is learned from data. The Info-SNOC algorithm is used to compute a sub-optimal pool of safe motion plans that aid in exploration for learning unknown residual dynamics under safety constraints. A stable feedback controller is used to execute the motion plan and collect data for model learning. We prove the safety of rollout from our exploration method and reduction in uncertainty over epochs, thereby guaranteeing the consistency of our learning method. We validate the effectiveness of Info-SNOC by designing and implementing a pool of safe trajectories for a planar robot. We demonstrate that our approach has higher success rate in ensuring safety when compared to a deterministic trajectory optimization approach.Comment: Submitted to RA-L 2020, review-

    An Offline Formulation of MPC for LPV Systems Using Linear Matrix Inequalities

    Get PDF
    An offline model predictive control (MPC) algorithm for linear parameter varying (LPV) systems is presented. The main contribution is to develop an offline MPC algorithm for LPV systems that can deal with both time-varying scheduling parameter and persistent disturbance. The norm-bounding technique is used to derive an offline MPC algorithm based on the parameter-dependent state feedback control law and the parameter-dependent Lyapunov functions. The online computational time is reduced by solving offline the linear matrix inequality (LMI) optimization problems to find the sequences of explicit state feedback control laws. At each sampling instant, a parameter-dependent state feedback control law is computed by linear interpolation between the precomputed state feedback control laws. The algorithm is illustrated with two examples. The results show that robust stability can be ensured in the presence of both time-varying scheduling parameter and persistent disturbance

    Scalable tube model predictive control of uncertain linear systems using ellipsoidal sets

    Full text link
    This work proposes a novel robust model predictive control (MPC) algorithm for linear systems affected by dynamic model uncertainty and exogenous disturbances. The uncertainty is modeled using a linear fractional perturbation structure with a time-varying perturbation matrix, enabling the algorithm to be applied to a large model class. The MPC controller constructs a state tube as a sequence of parameterized ellipsoidal sets to bound the state trajectories of the system. The proposed approach results in a semidefinite program to be solved online, whose size scales linearly with the order of the system. The design of the state tube is formulated as an offline optimization problem, which offers flexibility to impose desirable features such as robust invariance on the terminal set. This contrasts with most existing tube MPC strategies using polytopic sets in the state tube, which are difficult to design and whose complexity grows combinatorially with the system order. The algorithm guarantees constraint satisfaction, recursive feasibility, and stability of the closed loop. The advantages of the algorithm are demonstrated using two simulation studies.Comment: Submitted to International Journal of Robust and Nonlinear Contro
    • …
    corecore