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Abstract. In this paper, an off-line synthesis approach to robust constrained model 
predictive control for uncertain polytopic discrete-time systems is presented. Most of the 
computational burdens are moved off-line by pre-computing a sequence of state feedback 
control laws that corresponds to a sequence of polyhedral invariant sets. The state 
feedback control laws computed are derived by minimizing the nominal performance cost 
in order to improve control performance. At each sampling instant, the smallest 
polyhedral invariant set containing the currently measured state is determined. The 
corresponding state feedback control law is then implemented to the process. The 
controller design is illustrated with two examples in chemical processes. The proposed 
algorithm is compared with an ellipsoidal off-line robust model predictive control 
algorithm derived by minimizing the worst-case performance cost and an ellipsoidal off-
line robust model predictive control algorithm derived by minimizing the nominal 
performance cost. The results show that the proposed algorithm can achieve better 
control performance. Moreover, a significantly larger stabilizable region is obtained.  
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1. Introduction 
 
Model predictive control (MPC) is an effective control algorithm widely used in chemical process industry. 
At each sampling time, MPC uses an explicit process model to solve an open-loop optimization problem. 
Although an optimal control profile is calculated, only the first computed input is implemented to the 
process. Since model is only an approximation of the real process, one of the main drawbacks of MPC is 
the difficulty to deal with model uncertainty [1, 2]. For this reason, synthesis approaches for robust MPC 
have been widely investigated. 

In the work by Kothare et al. [2], robust MPC synthesis which allows an explicit incorporation of model 
uncertainty in the problem formulation was proposed.  The goal is to design the state feedback control law 
which minimizes the upper bound on the worst-case performance cost. The optimization problem at each 
time step is formulated as the convex optimization problem involving linear matrix inequalities (LMI). 
Since the algorithm is derived by using a single Lyapunov function, the algorithm turns out to be very 
conservative. Moreover, the algorithm requires high on-line computational time because the optimization 
problem is really solved on-line at each sampling instant.  

Robust MPC using multiple Lyapunov functions was proposed in [3]. As compared to the algorithm of 
Kothare et al. [2], the conservativeness is reduced by using multiple Lyapunov functions instead of a single 
Lyapunov function. Thus, there are more degrees of freedom in solving the optimization problem. 
However, the optimization problem needed to be solved on-line at each sampling instant contains many 
decision variables and constraints. 

Another idea to reduce the conservativeness is to increase the degrees of freedom in the optimization 

problem by using the perturbation of free control inputs .,...,1 , Nici  The resulting input sequence is 

1,...,1 ,  NicKxu ii
 and NiKxui   , . In the work by Brooms et al. [4], robust MPC for 

uncertain polytopic discrete-time systems with ellipsoidal target sets was presented. The future states are 
predicted by using a sequence of ellipsoidal sets. The terminal ellipsoidal set is restricted to lie in an 
ellipsoidal invariant set in order to guarantee robust stability. The perturbation on control input strategy is 
developed in the controller design in order to ensure feasibility and robust stability. Although robust 
stability is proved to be guaranteed, the algorithm requires high on-line computational time due to the fact 
that the number of decision variables and constraints grow significantly with respect to the perturbation 
horizon N.  

The perturbation on control input strategy based on parameter-dependent Lyapunov function was 
presented in [5]. The control law derived by parameter-dependent Lyapunov function is perturbed by a 
sequence of free control inputs over the perturbation horizon N in order to improve the control 
performance. At each sampling time k, the terminal invariant set containing the terminal state is 
constructed in order to guarantee robust stability. The algorithm can reduce the conservativeness because 
both the feedback gain and the free control inputs are derived from parameter-dependent Lyapunov 
function. However, the effect of plant uncertainty is still overestimated because both the control law and 
the free control inputs are derived by minimizing the worst-case performance cost. Moreover, the 
computational time grows significantly with the perturbation horizon N. 

The on-line robust MPC usually requires high computational time. Thus, its ability is limited to the 
relatively slow dynamic processes. In order to reduce on-line computational demand, a number of 
researchers have studied off-line robust MPC. In the work by Wan and Kothare [6], an off-line formulation 
of robust MPC using linear matrix inequalities was presented. A sequence of control laws corresponding to 
a sequence of invariant ellipsoids is computed off-line. At each sampling time, the smallest ellipsoid 
containing the measured state is determined and the corresponding control law is implemented to the 
process. Although the algorithm substantially reduces on-line computational time, the conservative result is 
obtained. This is due to the fact that the invariant ellipsoids constructed are only the approximations of the 
true polyhedral invariant sets. An ellipsoidal off-line robust MPC algorithm based on nominal performance 
cost was presented by Ding et al. [7]. The algorithm directly extends the algorithm of Wan and Kothare [6] 
by choosing the nominal performance cost to substitute the worst-case performance cost in order to 
improve control performance.  

In [8], an ellipsoidal off-line MPC scheme for uncertain polytopic discrete-time systems was developed. 
The ellipsoidal inner approximations of the exact controllable sets are computed off-line and a numerically 
low demanding optimization problem is solved on-line. Although most of the numerical burdens are 
moved off-line, the feasible region is significantly smaller than the polyhedral counterpart. This is due to the 
fact that the controllable ellipsoidal sets constructed are only the approximations of the true controllable 
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polyhedral sets. Moreover, the algorithm requires a large number of controllable ellipsoidal sets in order to 
ensure feasibility. 

In [9], an ellipsoidal off-line MPC algorithm for LPV systems was proposed. The sequences of state 
feedback gains corresponding to the sequences of nested ellipsoids are computed off-line. At each sampling 
instant, the smallest ellipsoid containing the currently measured state is determined in each sequence of 
ellipsoids and the scheduling parameter is measured. The real-time state feedback gain is then calculated by 
linear interpolation between the corresponding state feedback gains. 

From the preceding review, we can see that the on-line robust MPC algorithms usually require high 
computational time. Thus, they are computationally prohibitive in practical situations. For the off-line 
robust MPC algorithms, the ellipsoidal approximations of the exact polyhedral invariant sets are usually 
used. Thus, the algorithms turn out to be very conservative. Moreover, the stabilizable region is apparently 
smaller than the polyhedral counterpart. In this paper, we present an off-line synthesis approach to robust 
MPC using polyhedral invariant sets. A sequence of state feedback control laws that corresponds to a 
sequence of polyhedral invariant sets is computed off-line. Then the smallest polyhedral invariant set 
containing the currently measured state is determined on-line and the corresponding state feedback control 
law is implemented to the process. 

The paper is organized as follows. In section 2, the problem description is presented. In section 3, the 
polyhedral off-line robust MPC algorithm is presented. In section 4, we present two examples in chemical 
processes to illustrate our algorithm. Finally, in section 5, we conclude the paper. 

Notation: For a matrix A , TA denotes its transpose, 
1A denotes its inverse. I denotes the identity 

matrix. For a vector x , )/( kkx  denotes the state measured at real time k , )/( kikx   denotes the state at 

prediction time ik   predicted at real time k . )/(
^

kikx   denotes the nominal state at prediction time 

ik   predicted at real time k . ],[
^^

BA  denotes the model that is more likely to be the actual plant. The 

symbol   denotes the corresponding transpose of the lower block part of symmetric matrices. The matrix 

inequality BA )( BA  means that A  and B  are square symmetric and BA  is positive (semi-) 

definite. The Lyapunov function ),( kiV  is defined as )/(),()/(),( kikxkiPkikxkiV T   where 

,0 ,  ik .0),( kiP  

 

2. Problem Description 
 
The model considered here is the following linear time varying (LTV) system with polytopic uncertainty 
 

                                                        )()(

)()()()()1(

kCxky

kukBkxkAkx




                                                        (2.1) 

 

where )(kx is the state of the plant, )(ku  is the control input and )(ky  is the plant output. Moreover, we 

assume that 

                                    
]},[],..,[],,{[  ,)](),([ 2211 , LL BABABACoΩΩkBkA                                      (2.2) 

 

where Ω  is the polytope, Co denotes convex hull,  ],[
jj

BA  are vertices of the convex hull. Any 

)](),([ kBkA  within the polytope Ω  is a linear combination of the vertices such that 
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where ],...,,[ 21 L   is the uncertain parameter vector. The aim of this research is to find the state 

feedback control law 
 

                                                         )/()/( kikKxkiku                                                                (2.4) 

 



DOI:10.4186/ej.2012.16.4.73 

76                                                       ENGINEERING JOURNAL Volume 16 Issue 4, ISSN 0125-8281(http://www.engj.org/)  

which stabilizes the system (2.1) and achieves the following nominal performance cost 
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where 0  and 0R  are symmetric weighting matrices subject to input and output constraints 

 

                                                       max,)/( hh ukiku  ,
unh ,...,3,2,1                                               (2.6) 

 

                                                            
max,)/( rr ykiky   , 

ynr ,...,3,2,1                                                (2.7) 

 
3. The Polyhedral Off-Line Robust MPC Algorithm 
 
An off-line formulation of robust MPC using linear matrix inequalities (LMI) was first developed by Wan 
and Kothare [6]. The on-line computational time is reduced by computing off-line a sequence of control 
laws corresponding to a sequence of ellipsoidal invariant sets. At each sampling time, the smallest ellipsoid 
containing the measured state is determined and the corresponding control law is implemented to the 
process. Although the algorithm substantially reduces on-line computational time, the conservative result is 
obtained due to the fact that the invariant ellipsoids constructed are only the approximations of the true 
polyhedral invariant sets. Moreover, the state feedback gain is derived by minimizing the worst-case 
performance cost. Thus, the effect of model uncertainty is overestimated. 
 
In this section, an off-line synthesis approach to robust MPC using polyhedral invariant sets is presented. 
The on-line computational time is reduced by pre-computing off-line a sequence of state feedback control 
laws corresponding to a sequence of polyhedral invariant sets. The state feedback gains computed are 
derived by minimizing the nominal performance cost [7] in order to improve control performance. The 
approach to construct the polyhedral invariant set developed by Pluymers et al. [10] is adopted here to 
construct a sequence of polyhedral invariant sets.  At each sampling time, the smallest polyhedral invariant 
set containing the currently measured state is determined and the corresponding state feedback control law 
is then implemented to the process. 
 
The definition of polyhedral invariant set is given as follows: 
 

Definition 3.1: The set  dMxxS  /  is said to be the polyhedral invariant set if it has the property 

that whenever Skx )( , then Sikx  )( ,  ,...,2,1i . 

 
We can now formulate an off-line robust MPC algorithm using polyhedral invariant sets. Our algorithm 

consists of two steps. In the first step, a sequence of state feedback gains corresponding to a sequence of 
ellipsoidal invariant sets is calculated by minimizing the nominal performance cost. A sequence of 
polyhedral invariant sets is then constructed in the second step. A sequence of ellipsoidal invariant sets 
obtained in the first step is identical to that of Ding et al. [7]. Instead of directly using a sequence of 
ellipsoidal invariant sets, in our algorithm, we further improved the control performance of the off-line 
MPC by generating a sequence of polyhedral invariant sets in the second step. 
 
Algorithm 3.1: 
 
Off-line: 
 

Step 1: Choose a sequence of states  ,...,N,ixi 21 ,  . For each ix , solve the following problem to obtain 

the corresponding state feedback gain 
1 iii QYK  where iY  and iQ  are the matrix variables, inγ , is the 
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upper bound on the nominal performance cost . The states
 ix  should be chosen such that the distance 

between 1ix  and the origin is less than the distance between ix  and the origin. 

 

                                               γ in,QY ii , min    
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Step 2: Given a sequence of state feedback gains NiQYK iii ,...,2,1 ,1    from step 1. For each i
K , the 

corresponding polyhedral invariant set  
iii

dxMxS  /  is constructed by following these steps: 
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and 1m .

 
 

2.2) Select row m  from ),( ii dM and check j  whether 
miijjmi dxKBAM ,, )(   is redundant with respect 

to the constraints defined by ),( ii dM  by solving the following problem:  
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If 0,, jmiW , the constraint 
miijjmi dxKBAM ,, )(   is non-redundant with respect to ),( ii dM . Then, add 

non-redundant constraints to ),( ii dM  by assigning 
 
 

                                                    
TT

ijjmi

T

ii KBAMMM ]))((,[ ,   and TT

mi

T

ii ddd ],[ ,                        (3.7) 

 

2.3) Let 1 mm  and return to step 2.2. If m  is strictly larger than the number of rows in ),( ii dM  then 

terminate. 
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On-line: At each sampling time, determine the smallest polyhedral invariant set  
iii

dxMxS  /  

containing the measured state and implement the corresponding state feedback control law 

)/()/( kkxKkku
i

  to the process. 

 
Remark: In an off-line step 1, a sequence of feedback gains corresponding to a sequence of ellipsoidal 
invariant sets  is calculated. Although each feedback gain calculated guarantees robust stability within the 
corresponding ellipsoidal invariant set, this ellipsoidal invariant set is only an approximation of the true 
polyhedral invariant set. By using only an off-line step 1, the conservative result is obtained because the 
stabilizable region of the ellipsoidal invariant set is significantly smaller than the polyhedral counterpart. 
This problem is especially severe in the case of tight constraints. Thus, for a given sequence of feedback 
gains calculated from an off-line step 1, a sequence of true polyhedral invariant sets is calculated in an off-
line step 2. By using an off-line step 2, the conservativeness is reduced because the stabilizable region of 
each feedback gain is substantially expanded. 
 
An overall algorithm is proved to guarantee robust stability in Theorem 3.1. 
 

Theorem 3.1 Given the initial measured state 1)( Skx  , the control law provided by algorithm 3.1 assures robust stability 

to the closed-loop system. 
 

Proof. The satisfaction of (3.3) for the state feedback gain 1 iii QYK  ensures that 

 

  0)/(),(])()()[,1(])()([)/(  kikxkiPKikBikAkiPKikBikAkikx i
T

i
T  

 

Thus, )/(),()/(),( kikxkiPkikxkiV T   is a strictly decreasing Lyapunov function and the closed-

loop system is robustly stabilized by the state feedback gain iK . 

By solving (3.6) and iteratively adding non-redundant constraints 
miijjmi dxKBAM ,, )(   to ),( ii dM  

by assigning TT

ijjmi

T

ii KBAMMM ]))((,[ ,   and TT

mi

T

ii ddd ],[ , , we can find the set of initial states x  

defined by  
iii

dxMxS  /  such that all future states are guaranteed to stay within this set without input 

and output constraints violation. Any initial states outside iS  lead to the future states that violate input and 

output constraints for at least one realization of the uncertainty. 

Thus, the set iS  is polyhedral invariant set and the corresponding state feedback control law 

)/()/( kikxKkiku i   assures robust stability to the closed-loop system.    

 

4. Examples 
 
In this section, we present two examples that illustrate the implementation of the proposed MPC algorithm. 
For both examples, the numerical simulations have been performed in Intel Core i-5 (2.4 GHz), 2 GB 
RAM, using SeDuMi [11] and YALMIP [12] within Matlab R2008a environment. 

 
Example 4.1:  
 
In the first example, we will consider the application of our approach to an uncertain non-isothermal CSTR 

where the exothermic reaction BA   takes place. The reaction is irreversible and the rate of reaction is 

first order with respect to component A . A cooling coil is used to remove heat that is released in the 

exothermic reaction. The reaction rate constant 
 ok  and the heat of reaction 

rxnH  are considered to be the 

uncertain parameters. They are assumed to be arbitrarily time-varying in the indicated range of variation. 
The linearized model based on the component balance and the energy balance is given as follows [6]: 
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where AC is the concentration of A in the reactor, 
FAC ,

 is the feed concentration of A , T is the reactor 

temperature and cF  is the coolant flow. The operating parameters are shown in Table 4.1.  

 
 
Table 4.1. The operating parameters of non-isothermal CSTR in Example 4.1. 
 

Parameter Value Unit 

F  1  m3/min 

V  1  m3 

  106  g/m3 

pC  1  cal/g.K 

rxnH  107-108  cal/kmol 

RE /  8330.1  K 

ok  109-1010  min-1 

UA  5.34x106  cal/K.min 
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 , where the subscript eq  is used to 

denote the corresponding variable at equilibrium condition. The discrete-time model (4.2) is obtained by 
discretizing (4.1) using Euler first-order approximation with a sampling time of 0.15 min. 
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where 1010/)(1 9  okk  and 1010/)(1 7  rxnHk . Because two uncertain parameters 

)(k and )(k  are independent of each other, we have to consider the polytopic uncertain model with its 

four vertices representing all the possible combinations of the two uncertain parameters. The polytopic 
uncertain set is given as follows 
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The objective is to regulate AC  and T  by manipulating FAC ,  and 
c

F , respectively. The input constraints 

are 3
, kmol/m 5.0FAC

 
and min/m  5.1 3CF . Here )(, kJn   is given by (2.5) with I  and .1.0 IR   The 

nominal model is given by 






 
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3990.066.24

007.0357.0^

A  and 



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


912.00

015.0^

B . 

Figure 4.1 shows the comparison among a) the polyhedral invariant sets constructed off-line by 
algorithm 3.1, b) the ellipsoidal invariant sets constructed off-line based on the worst-case performance cost 
as proposed by Wan and Kothare [6] and c) the ellipsoidal invariant sets constructed off-line based on the 

nominal performance cost as proposed by Ding et al. [7]. Note that for all algorithms, the invariant sets 
are constructed by choosing the same sequence of states 

)}.0275.0,0275.0(),0325.0,0325.0(),0375.0,0375.0(),0425.0,0425.0(),0475.0,0475.0(),0525.0,0525.0{(ix  

 

 

 

 

 

 
 

 
(a) The polyhedral invariant sets 6,...,1, iSi  constructed off-line by algorithm 3.1. 
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(b) The ellipsoidal invariant sets 6,...,1, ii constructed off-line based on the worst-case performance cost . 

 

 
(c) The ellipsoidal invariant sets 6,...,1, ii  constructed off-line based on the nominal performance cost . 

 
Fig. 4.1. The comparison among (a) The polyhedral invariant sets constructed off-line by algorithm 3.1, (b) 

the ellipsoidal invariant sets constructed off-line based on the worst-case performance cost and (c) 
the ellipsoidal invariant sets constructed off-line based on the nominal performance cost. For all 
algorithms, the invariant sets are constructed by choosing the same sequence of states 

{(0.0525,0.0525),(0.0475,0.0475),(0.0425,0.0425),(0.0375,0.0375),(0.0325,0.0325),

(0.0275,0.0275)}.

ix 
 

 
 

Figure 4.2 shows the stabilizable regions of feedback gains K1 and K2. In this example, K2 is larger than 
K1 because K2 is computed by using the state which is closer to the origin than K1.  Note that each feedback 
gain Ki of algorithm 3.1 and Ki of an ellipsoidal off-line robust MPC algorithm based on the nominal 
performance cost are identical because they are all derived by minimizing the nominal performance cost. In 
comparison, each Ki of an ellipsoidal off-line robust MPC algorithm based on the worst-case performance 
cost is derived by minimizing the worst-case performance cost and hence it can entail a certain degree of 



DOI:10.4186/ej.2012.16.4.73 

82                                                       ENGINEERING JOURNAL Volume 16 Issue 4, ISSN 0125-8281(http://www.engj.org/)  

conservativeness because the effect of plant uncertainty is overestimated. It can be observed from the 
figure that an ellipsoidal off-line robust MPC algorithm based on the worst-case performance cost and an 
ellipsoidal off-line robust MPC algorithm based on the nominal performance cost cannot stabilize the state 
at point A. This is due to the fact that the state at point A is not contained in the largest invariant ellipsoid 

point A 1.x   In comparison, algorithm 3.1 can stabilize the state at point A because the state is contained 

in the largest polyhedral invariant set point A 1.x S  It can also be observed from the figure that if we start at 

point B, an ellipsoidal off-line robust MPC algorithm based on the worst-case performance cost and an 
ellipsoidal off-line robust MPC algorithm based on the nominal performance cost can stabilize the state by 

using the lowest feedback gain K1 because point B 1.x   In comparison, the algorithm 3.1 can stabilize the 

state by using higher feedback gain K2 due to the fact that point B 2.x S  In this circumstance, algorithm 3.1 

can adopt higher feedback gain as compared with an ellipsoidal off-line robust MPC algorithm based on the 
worst-case performance cost and an ellipsoidal off-line robust MPC algorithm based on the nominal 
performance cost. Thus, algorithm 3.1 can achieve less conservative result. 

 

 
Fig. 4.2. The stabilizable regions of feedback gains K1 and K2. 
 
 

Figure 4.3 shows the closed-loop responses of the system when )(k  and )(k  are randomly time-

varying between 109 10)(10  okk  and 87 10)(10  rxnHk . It can be observed from the figure that 

algorithm 3.1 can achieve less conservative result as compared with an ellipsoidal off-line robust MPC 
algorithm based on the worst-case performance cost and an ellipsoidal off-line robust MPC algorithm 
based on the nominal performance cost.  
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Fig. 4.3. The closed-loop responses of the system when )(k  and )(k  are randomly time-varying 

between 109 10)(10  okk  and 87 10)(10  rxnHk . 

 
 

For an ellipsoidal off-line robust MPC algorithm based on the worst-case performance cost, the on-line 
computational time is reduced by computing off-line a sequence of control laws corresponding to a 
sequence of ellipsoidal invariant sets. Although the algorithm substantially reduces on-line computational 
time, the conservative result is obtained. This is due to the fact that the invariant ellipsoids constructed are 
only the approximations of the true polyhedral invariant sets. Moreover, the state feedback gain is derived 
by minimizing the worst-case performance cost that is not likely to occur. Thus, the effect of model 
uncertainty is overestimated. For the algorithm 3.1, most of the computational burdens are moved off-line 
by pre-computing a sequence of state feedback control laws corresponding to a sequence of polyhedral 
invariant sets. The state feedback gains computed are derived by minimizing the nominal performance cost. 
Thus, the algorithm 3.1 can achieve better control performance as compared with an ellipsoidal off-line 
robust MPC algorithm based on the worst-case performance cost because the effect of model uncertainty is 
estimated based on the most likely or nominal scenario. Moreover, the algorithm 3.1 is derived based on 
the polyhedral invariant sets. Thus, it can obtain a significantly larger stabilizable region as compared with 
an ellipsoidal off-line robust MPC algorithm based on the worst-case performance cost. 
 
Example 4.2:  
 
In the second example, we will consider the application of our approach to a continuous bioreactor in 
fermentation process. Biochemical reactors are used to produce a large number of products including 
pharmaceuticals, food and beverages. In this bioreactor model, only two components are considered 

 

  
(b) Control input 

 

  
(a) Regulated output 
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including biomass BX  and substrate S . A fermentation process is assumed to occur in an isothermal 

continuous bioreactor with constant volume and constant physical-chemical properties. The maximum 

growth rate 
max of biomass is considered to be the uncertain parameter. It is assumed to be arbitrarily 

time-varying in the indicated range of variation. The dynamic model based on the component balance is 
given as follows [13]: 
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where 
B

X  is the biomass concentration,  S  is the substrate concentration and D  is the dilution rate. The 

operating parameters are shown in Table 4.2.  
 
 
Table 4.2. The operating parameters of continuous bioreactor in example 4.2. 
 

Parameter Value Unit 

FS  4 3/ mkg  

Y  0.4 - 

max  0.01-0.99 1hr  

1K  0.12 3/ mkg  

2K  0.4545 kgm /3
 

 
 

Let 
eqBBB

XXX
,

 , 
eq

SSS  and 
eq

DDD  . The discrete-time model (4.5) is obtained by 

linearization and discretization of (4.4) using Euler first-order approximation with a sampling time of 0.2 hr. 
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where 99.0)(01.0
max

 k . Because the uncertain parameter )(max k is varied between 0.01 and 0.99, we 

conclude that )(kA  where   is given as follows 
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The objective is to regulate
 B
X and S  by manipulating D . The input constraint is 1hr 015.0)( kD . 

Here )(, kJn   is given by (2.5) with I  and .1.0 IR   The nominal model is given by 













4876.01500.0

1809.09994.0^

A  and 









7651.0

3060.0^

B . 

Figure 4.4 shows the comparison among a) the polyhedral invariant sets constructed off-line by 
algorithm 3.1, b) the ellipsoidal invariant sets constructed off-line based on the worst-case performance cost 
as proposed by Wan and Kothare [6] and c) the ellipsoidal invariant sets constructed off-line based on the 
nominal performance cost as proposed by Ding et al. [7]. Note that for all algorithms, the invariant sets are 
constructed by choosing the same sequence of states

 
)}.05.0,05.0(),10.0,10.0(),15.0,15.0(),20.0,20.0(),25.0,25.0{(ix  It can be observed that the algorithm 

3.1 has the largest stabilizable region as compared with other algorithms. 
 
 
 

 
(a) The polyhedral invariant sets 5,...,1, iSi  constructed off-line by algorithm 3.1. 
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(b) The ellipsoidal invariant sets 5,...,1, ii  constructed off-line based on the worst-case performance 

cost. 
 

 
(c) The ellipsoidal invariant sets 5,...,1, ii  constructed off-line based on the nominal performance cost. 

 
 
Fig. 4.4. The comparison among (a) The polyhedral invariant sets constructed off-line by algorithm 3.1, (b) 

the ellipsoidal invariant sets constructed off-line based on the worst-case performance cost, and (c) 
the ellipsoidal invariant sets constructed off-line based on the nominal performance cost. For all 
algorithms, the invariant sets are constructed by choosing the same sequence of states 

)}.05.0,05.0(),10.0,10.0(),15.0,15.0(),20.0,20.0(),25.0,25.0{(ix  
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Figure 4.5 shows the stabilizable regions of feedback gains K1 and K2. In this example, K2 is larger than K1 
because K2 is computed by using the state which is closer to the origin than K1.  Note that each Ki of 
algorithm 3.1 and Ki of an ellipsoidal off-line robust MPC algorithm based on the nominal performance 
cost are identical because they are all derived by minimizing the nominal performance cost. In comparison, 
each Ki of an ellipsoidal off-line robust MPC algorithm based on the worst-case performance cost is derived 
by minimizing the worst-case performance cost and hence it can entail a certain degree of conservativeness 
because the effect of plant uncertainty is overestimated. It can be observed from the figure that an 
ellipsoidal off-line robust MPC algorithm based on the worst-case performance cost and an ellipsoidal off-
line robust MPC algorithm based on the nominal performance cost cannot stabilize the state at point A. 
This is due to the fact that the state at point A is not contained in the largest invariant ellipsoid 

point A 1.x   In comparison, algorithm 3.1 can stabilize the state at point A because the state is contained 

in the largest polyhedral invariant set point A 1.x S  It can also be observed from the figure that if we start at 

point B, an ellipsoidal off-line robust MPC algorithm based on the worst-case performance cost and an 
ellipsoidal off-line robust MPC algorithm based on the nominal performance cost can stabilize the state by 

using the lowest feedback gain K1 because point B 1.x   In comparison, the algorithm 3.1 can stabilize the 

state by using higher feedback gain K2 due to the fact that point B 2.x S  In this circumstance, algorithm 3.1 

can adopt higher feedback gain as compared with an ellipsoidal off-line robust MPC algorithm based on the 
worst-case performance cost and an ellipsoidal off-line robust MPC algorithm based on the nominal 
performance cost. Although the stabilizable region of algorithm 3.1 is significantly larger than the 
stabilizable region of an ellipsoidal off-line robust MPC algorithm based on the worst-case performance 
cost, there are some points in the stabilizable region of an ellipsoidal off-line robust MPC algorithm based 
on the worst-case performance cost that are not contained in the largest polyhedral invariant set  of 

algorithm 3.1, for example .1 int Sx Cpo   This is due to the fact that the feedback gain of algorithm 3.1 is 

derived by minimizing the nominal performance cost while the feedback gain of an ellipsoidal off-line 
robust MPC algorithm based on the worst-case performance cost is derived by minimizing the worst-case 
performance cost. Thus, it’s not necessary for both algorithms to have the overlapping stabilizable region. 
 

 
Fig. 4.5. The stabilizable regions of feedback gains K1 and K2. 
 

Table 4.3 shows the cumulative cost 






0

)()()()(

i

TT iRuiuixix  obtained from the simulations when 

)(max k  is randomly time-varying between
 99.0)(01.0

max
 k . It can be observed that algorithm 3.1 

can achieve better control performance as compared with an ellipsoidal off-line robust MPC algorithm 
based on the worst-case performance cost and an ellipsoidal off-line robust MPC algorithm based on the 
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nominal performance cost. This is due to the fact that for each chosen state ix , the stabilizable region of 

polyhedral invariant set constructed off-line by algorithm 3.1 is significantly larger than the stabilizable 
region of an ellipsoidal invariant set constructed off-line by an ellipsoidal off-line robust MPC algorithm 
based on the worst-case performance cost and the stabilizable region of an ellipsoidal invariant set 
constructed off-line by an ellipsoidal off-line robust MPC algorithm based on the nominal performance 
cost. As previously discussed in example 4.1, algorithm 3.1 can adopt higher feedback gain as compared 
with an ellipsoidal off-line robust MPC algorithm based on the worst-case performance cost and an 
ellipsoidal off-line robust MPC algorithm based on the nominal performance cost.  
 

Table 4.3. The cumulative cost 






0

)()()()(

i

TT iRuiuixix in Example 4.2. 

Algorithm 
Cumulative 

Cost 

Algorithm 3.1 0.093 

An ellipsoidal off-line algorithm based on the nominal cost 0.101 

An ellipsoidal off-line algorithm based on the worst-case cost 0.109 

 
 

5. Conclusions 
 
In this paper, we have presented an off-line synthesis approach to robust constrained model predictive 
control using polyhedral invariant sets. The on-line computational time is reduced by computing off-line a 
sequence of state feedback control laws corresponding to a sequence of polyhedral invariant sets. The 
nominal model of the plant is included in the problem formulation in order to improve control 
performance. The controller design is illustrated with two examples of the continuous stirred-tank reactor 
and the bioreactor in fermentation process. The proposed algorithm is compared with the ellipsoidal off-
line robust model predictive control algorithms. The results show that the proposed algorithm can achieve 
better control performance. Moreover, a significantly larger stabilizable region is obtained.  
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