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An offline model predictive control (MPC) algorithm for linear parameter varying (LPV) systems is presented. The main
contribution is to develop an offline MPC algorithm for LPV systems that can deal with both time-varying scheduling parameter
and persistent disturbance. The norm-bounding technique is used to derive an offline MPC algorithm based on the parameter-
dependent state feedback control law and the parameter-dependent Lyapunov functions.The online computational time is reduced
by solving offline the linear matrix inequality (LMI) optimization problems to find the sequences of explicit state feedback control
laws. At each sampling instant, a parameter-dependent state feedback control law is computed by linear interpolation between the
precomputed state feedback control laws. The algorithm is illustrated with two examples. The results show that robust stability can
be ensured in the presence of both time-varying scheduling parameter and persistent disturbance.

1. Introduction

Model predictive control (MPC), also known as receding hor-
izon control, is an effective multivariable control algorithm
in which a dynamic optimization problem is solved online.
At each sampling time, MPC solves a finite horizon optimal
control problem based on an explicit model of the plant.
Although an optimal control sequence is determined, only
the first control action is applied to the plant. Due to its
ability to guarantee optimality while ensuring the satisfaction
of constraints on input and state, MPC has received much
interest in both industry and academia [1–3].

An explicit linear model is typically used in the MPC
formulation because the online optimization can be reduced
to either a linear program or a quadratic program. Since an
industrial process is inherently nonlinear to a certain extent,
the control performance of linear MPC can deteriorate as
operating conditions significantly change [4, 5]. For this
reason, MPC for linear parameter varying (LPV) systems has
beenwidely developed. LPV systems are linear systemswhose

dynamics depend on the scheduling parameter that can be
measured online. The analysis and synthesis of LPV systems
play an important role in control theory since nonlinear
systems can be dealt within the framework of LPV systems
[6, 7].

In the context of MPC for LPV systems, one of the main
approaches is to solve a semidefinite problem under linear
matrix inequality (LMI) [8]. Quasi-Min-Max MPC algo-
rithm for LPV systems was developed by Lu and Arkun
[9]. Although the scheduling parameter is included in the
controller design, it is assumed that there is no disturbance
present in the problem formulation, so the algorithm can-
not deal with disturbance. MPC for LPV systems using
parameter-dependent Lyapunov functions was developed by
[10]. It is shown that the proposed MPC algorithm can
achieve less conservative results as compared with a robust
MPC algorithm derived by using a single Lyapunov function
[4]. However, this algorithm includes only time-varying
scheduling parameter in the problem formulation so it cannot
ensure robust stability in the presence of disturbance. The
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bound on the rate of variation of the scheduling parameter
can also be taken into account in the MPC formulation
[11, 12]. However, this technique is not applicable to the case
where there is the disturbance acting on the system.

MPC for LPV systems can be designed by using ellip-
soidal set prediction [13, 14]. At each sampling instant, the
predicted future states on the finite horizon are bounded
by using a sequence of ellipsoids. The terminal ellipsoid is
contained in a target set guaranteeing stability. The main
drawback of this approach lies in the fact that the computa-
tional load increases with the length of prediction horizon. In
order to reduce online computational time, an offline MPC
algorithm for LPV systems was developed [15]. The real-
time state feedback gain is calculated by linear interpolation
between the precomputed state feedback gains. Although
the online computational time is significantly reduced, the
disturbance is not taken into account in the offline MPC
formulation so robust stability cannot be guaranteed in the
presence of disturbance. Explicit MPC for LPV systems
was proposed by Besselmann et al. [16]. Only time-varying
scheduling parameter is included in the problem formulation
and it is also assumed that there is no disturbance. InDing [17,
18], both time-varying scheduling parameter and disturbance
are included in the problem formulation. However, the
optimization problem contains a lot of decision variables and
constraints, so the algorithm is computationally prohibitive
in practical situations.

In the context of tube-based MPC [19–21], the disturba-
nce is explicitly taken into account in the MPC design. The
basic concept of robust tube-based MPC is to compute the
region around the nominal prediction that contains any pos-
sible states of the uncertain system. One of the main advan-
tages is that its online computational complexity increases
only linearly with the prediction horizon. However, the time-
varying scheduling parameter is not incorporated into the
MPC design, so robust stability cannot be ensured in the
presence of parametric uncertainty.

In this paper, an offline MPC algorithm for LPV systems
is presented. Unlike Wan and Kothare [22] where only time-
varying scheduling parameter is considered in the offline
MPC formulation, the main contribution of this paper is
to develop an offline MPC algorithm for LPV systems that
can deal with both persistent disturbance and time-varying
scheduling parameter. The norm-bounding technique [23]
is used to derive an offline MPC algorithm based on the
parameter-dependent state feedback control law and the
parameter-dependent Lyapunov functions. Most of the opti-
mization problems are solved offline, so the developed MPC
algorithm can be applied to fast processes.This article is orga-
nized as follows. Section 2 concerns with problem statement
and control objectives. The proposed algorithm is described
in Section 3. In Section 4, the effectiveness of the proposed
MPC algorithm is illustrated. Finally, Section 5 presents some
conclusions.

Notation. For any vector 𝑥 and positive-definite matrix 𝑃,
‖𝑥‖

2

𝑃
= 𝑥

𝑇
𝑃𝑥. 𝑥(𝑘) is the state measured at real-time 𝑘 and

𝑥(𝑘 + 𝑖 | 𝑘) is the state at prediction time 𝑘 + 𝑖 predicted
at real-time 𝑘. The symbol ∗ denotes symmetric blocks

in matrices. An element belonging to a convex hull Co{⋅}
means that it is a convex combination of the elements in
{⋅}. The time-dependence (𝑘) of the MPC decision variables
is often dropped for simplicity. 𝐼 is the identity matrix with
appropriate dimension.

2. Problem Statement

Consider the following discrete-time LPV system:

𝑥 (𝑘 + 1) = 𝐴 (𝑝 (𝑘)) 𝑥 (𝑘) + 𝐵𝑢 (𝑘) + 𝐷 (𝛼 (𝑘)) V (𝑘) , (1)

𝑦 (𝑘) = 𝐶 (𝑝 (𝑘)) 𝑥 (𝑘) , (2)

where 𝑥(𝑘) ∈ R𝑛
𝑥 denotes the state, 𝑢(𝑘) ∈ R𝑛

𝑢 denotes the
control input, V(𝑘) ∈ R𝑛V denotes the disturbance, and
𝑦(𝑘) ∈ R𝑛

𝑦 denotes the output. The superscripts 𝑛
𝑥
, 𝑛

𝑢
,

𝑛V, and 𝑛
𝑦
denote the dimensions of𝑥(𝑘), 𝑢(𝑘), V(𝑘), and𝑦(𝑘),

respectively. It is assumed that the time-varying scheduling
parameter 𝑝(𝑘) = [𝑝

1
(𝑘), 𝑝

2
(𝑘), . . . , 𝑝

𝐿
(𝑘)] ∈ R𝐿 is measur-

able at each sampling time but its future values are considered
to be uncertain. The input and output constraints are

|𝑢 (𝑘)| ≤ 𝑢, 𝑢
ℎ
> 0, ℎ ∈ {1, 2, . . . , 𝑛

𝑢
} , (3)

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑘)

󵄨
󵄨
󵄨
󵄨
≤ 𝑦, 𝑦

𝑟
> 0, 𝑟 ∈ {1, 2, . . . , 𝑛

𝑦
} . (4)

Any 𝐴(𝑝(𝑘)) and 𝐶(𝑝(𝑘)) belong to a convex polytope Ω

defined by

Ω = Co {[𝐴
1
, 𝐶
1
] , [𝐴

2
, 𝐶
2
] , . . . , [𝐴

𝐿
, 𝐶
𝐿
]} , (5)

so they can be written as

[𝐴 (𝑝 (𝑘)) , 𝐶 (𝑝 (𝑘))] =

𝐿

∑

𝑗=1

𝑝
𝑗
(𝑘) [𝐴

𝑗
, 𝐶
𝑗
] ,

𝐿

∑

𝑗=1

𝑝
𝑗
(𝑘) = 1, 0 ≤ 𝑝

𝑗
(𝑘) ≤ 1,

(6)

where [𝐴
𝑗
, 𝐶
𝑗
] are the vertices of Ω and 𝐿 is the number of

the vertices of Ω. Any 𝐷(𝛼(𝑘)) belongs to a convex polytope
Ω
𝐷
defined by

Ω
𝐷

= Co {𝐷
1
, 𝐷

2
, . . . , 𝐷

𝑛
𝐷

} , (7)

so it can be written as

𝐷 (𝛼 (𝑘)) =

𝑛
𝐷

∑

𝑡=1

𝛼
𝑡
(𝑘)𝐷

𝑡
,

𝑛
𝐷

∑

𝑡=1

𝛼
𝑡
(𝑘) = 1, 0 ≤ 𝛼

𝑡
(𝑘) ≤ 1,

(8)
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where 𝐷
𝑡
are the vertices of Ω

𝐷
, 𝑛

𝐷
is the number of the

vertices of Ω
𝐷
, and 𝛼

𝑡
(𝑘) is the time-varying parameter that

is not necessary to be measurable. The disturbance V(𝑘) is
unmeasurable and persistent. It is assumed to lie in a convex
polytope ΩV defined by

ΩV = Co {V
1
, V
2
, . . . , V

𝑚V
} , (9)

where 𝑚V is the number of the vertices of ΩV. The objective
is to find a parameter-dependent state feedback control law
𝐾(𝑝(𝑘 + 𝑖)) = ∑

𝐿

𝑗=1
𝑝
𝑗
(𝑘 + 𝑖)𝐾

𝑗
, where 𝐾

𝑗
, 𝑗 ∈ {1, 2, . . . , 𝐿}

are the state feedback gains corresponding to the vertices of
Ω that is able to guarantee both robust stability and constraint
satisfaction within a positively invariant set.

Definition 1. The set𝑍 is said to be positively invariant set if it
has the property that whenever the current state is contained
in this set 𝑥(𝑘) ∈ 𝑍, all possible predicted states must be
contained in this set 𝑥(𝑘 + 𝑖 | 𝑘) ∈ 𝑍 for all admissible
realizations of 𝑝(𝑘 + 𝑖), 𝛼(𝑘 + 𝑖) and V(𝑘 + 𝑖), 𝑖 ≥ 0.

Remark 2. In this paper, the positively invariant set is 𝑍 =

{𝑥(𝑘 + 𝑖 | 𝑘) ∈ R𝑛
𝑥

| ‖𝑥(𝑘 + 𝑖 | 𝑘)‖
2

𝑃(𝑝(𝑘+𝑖))
≤ 𝛾}, where

𝑃(𝑝(𝑘 + 𝑖)) = ∑
𝐿

𝑗=1
𝑝
𝑗
(𝑘 + 𝑖)𝑃

𝑗
is a parameter-dependent

Lyapunov matrix, 𝑃
𝑗
, 𝑗 ∈ {1, 2, . . . , 𝐿} are the Lyapunov

matrices corresponding to the vertices ofΩ, and 𝛾 is an upper
bound on the infinite horizon cost. From the convexity of
the polytopic description, 𝑍 is an intersection area of 𝜀

𝑗
=

{𝑥(𝑘 + 𝑖 | 𝑘) ∈ R𝑛
𝑥
| ‖𝑥(𝑘 + 𝑖 | 𝑘)‖

2

𝑃
𝑗

≤ 𝛾}.
Considering the discrete-time LPV system (1) to (9) at

each sampling time 𝑘, a parameter-dependent state feedback
control law 𝑢(𝑘 + 𝑖 | 𝑘) = 𝐾(𝑝(𝑘 + 𝑖))𝑥(𝑘 + 𝑖 | 𝑘) that (i)
minimizes an upper bound 𝛾 on 𝐽

∞
(𝑘) and (ii) guarantees

both robust stability and robust constraint satisfaction within
a positively invariant set 𝑍 can be calculated by solving the
following optimization problem:

min
𝛾,𝐾(𝑝(𝑘+𝑖)),𝑃(𝑝(𝑘+𝑖)), 𝑖≥0

max
[𝐴(𝑝(𝑘+𝑖)),𝐶(𝑝(𝑘+𝑖))]∈Ω,

𝐷(𝛼(𝑘+𝑖))∈Ω
𝐷
,V(𝑘+𝑖)∈ΩV

𝐽
∞

(𝑘)=

∞

∑

𝑖=0

[
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
(𝑘+𝑖 | 𝑘)

󵄩
󵄩
󵄩
󵄩

2

𝜓
+
󵄩
󵄩
󵄩
󵄩
𝐾 (𝑝 (𝑘+𝑖)) 𝑥

𝑛
(𝑘+𝑖 | 𝑘)

󵄩
󵄩
󵄩
󵄩

2

𝜎
]

(10)

s.t.

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
(𝑘 + 𝑖 + 1 | 𝑘)

󵄩
󵄩
󵄩
󵄩

2

𝑃(𝑝(𝑘+𝑖+1))
−

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
(𝑘 + 𝑖 | 𝑘)

󵄩
󵄩
󵄩
󵄩

2

𝑃(𝑝(𝑘+𝑖))

≤ − [
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
(𝑘 + 𝑖 | 𝑘)

󵄩
󵄩
󵄩
󵄩

2

𝜓
+

󵄩
󵄩
󵄩
󵄩
𝐾 (𝑝 (𝑘 + 𝑖)) 𝑥

𝑛
(𝑘 + 𝑖 | 𝑘)

󵄩
󵄩
󵄩
󵄩

2

𝜎
]

(11)

‖𝑥(𝑘)‖
2

𝑃(𝑝(𝑘))
≤𝛾, 𝑥 (𝑘)=𝑥

𝑛
(𝑘 | 𝑘)=𝑥 (𝑘 | 𝑘) (12)

‖𝑥 (𝑘 + 𝑖 + 1 | 𝑘)‖
2

𝑃(𝑝(𝑘+𝑖+1))
≤ 𝛾 (13)

󵄨
󵄨
󵄨
󵄨
𝐾 (𝑝 (𝑘 + 𝑖)) 𝑥 (𝑘 + 𝑖 | 𝑘)

󵄨
󵄨
󵄨
󵄨
≤ 𝑢,

𝑢
ℎ
> 0, ℎ ∈ {1, 2, . . . , 𝑛

𝑢
}

(14)

󵄨
󵄨
󵄨
󵄨
𝐶 (𝑝 (𝑘 + 𝑖 + 1)) 𝑥 (𝑘 + 𝑖 + 1 | 𝑘)

󵄨
󵄨
󵄨
󵄨
≤ 𝑦,

𝑦
𝑟
> 0, 𝑟 ∈ {1, 2, . . . , 𝑛

𝑦
} ,

(15)

where 𝑥
𝑛
(𝑘 + 𝑖 + 1 | 𝑘) = [𝐴(𝑝(𝑘 + 𝑖)) + 𝐵𝐾(𝑝(𝑘 + 𝑖))]𝑥

𝑛
(𝑘 +

𝑖 | 𝑘) is the predicted state not corrupted by disturbance,
𝑥(𝑘 + 𝑖 + 1 | 𝑘) = [𝐴(𝑝(𝑘 + 𝑖)) + 𝐵𝐾(𝑝(𝑘 + 𝑖))]𝑥(𝑘 + 𝑖 |

𝑘)+𝐷(𝛼(𝑘+ 𝑖))V(𝑘+ 𝑖) is the predicted state with disturbance,
and 𝜓 and 𝜎 are symmetric weighting matrices. The cost
monotonicity is guaranteed by (11). A positively invariant set
containing the state 𝑥(𝑘) at each sampling time is computed
by (12). All predicted states 𝑥(𝑘 + 𝑖 + 1 | 𝑘) are restricted to
lie in a positively invariant set by (13). The input and output
constraints are guaranteed by (14) and (15), respectively.

3. Offline MPC for LPV Systems with
Persistent Disturbances

First of all, we will begin with the preliminary results ofWada
et al. [10] where only time-varying scheduling parameter is
considered in the problem formulation. Then, the proposed
algorithm that can deal with both time-varying scheduling
parameter and persistent disturbance will be developed. By
following Wada et al. [10], (11) and (12) are satisfied and the
cost monotonicity is guaranteed if there exist matrices 𝑌

𝑗
,𝐺

𝑗
,

symmetric matrices 𝑄
𝑗
and a positive scalar 𝛾 such that the

following LMIs are satisfied:

[

[

[

[

[

𝐺
𝑗
+ 𝐺

𝑇

𝑗
− 𝑄

𝑗
∗ ∗ ∗

𝐴
𝑗
𝐺
𝑗
+ 𝐵𝑌

𝑗
𝑄
𝑙

∗ ∗

𝜓
1/2

𝐺
𝑗

0 𝛾𝐼 ∗

𝜎
1/2

𝑌
𝑗

0 0 𝛾𝐼

]

]

]

]

]

≥ 0, 𝑗, 𝑙 ∈ {1, 2, . . . , 𝐿} ,

(16)

[

1 ∗

𝑥 (𝑘) 𝑄
𝑗

] ≥ 0, 𝑗 ∈ {1, 2, . . . , 𝐿} . (17)

Then, it follows that 𝛾 is the upper bound on 𝐽
∞

(𝑘). More-
over, a parameter-dependent state feedback gain is given by
𝐾(𝑝(𝑘 + 𝑖)) = ∑

𝐿

𝑗=1
𝑝
𝑗
(𝑘 + 𝑖)𝐾

𝑗
, 𝐾

𝑗
= 𝑌

𝑗
𝐺
−1

𝑗
.

Next, we will present the results of this paper that can
deal with both time-varying scheduling parameter and dis-
turbance.

Proposition 3 (Robust stability in the presence of both
time-varying scheduling parameter and disturbance). (13) is
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satisfied if there exist matrices 𝑌
𝑗
, 𝐺

𝑗
and symmetric matrices

𝑄
𝑗
such that the following LMIs are satisfied:

[

𝜃 (𝐺
𝑗
+ 𝐺

𝑇

𝑗
− 𝑄

𝑗
) ∗

𝐴
𝑗
𝐺
𝑗
+ 𝐵𝑌

𝑗
𝑄
𝑙

] ≥ 0, 𝑗, 𝑙 ∈ {1, 2, . . . , 𝐿} , (18)

[

𝜉 ∗

𝐷
𝑡
V
𝑠

𝑄
𝑙

] ≥ 0, 𝑡 ∈ {1, 2, . . . , 𝑛
𝐷
} , 𝑠 ∈ {1, 2, . . . , 𝑚V} ,

𝑙 ∈ {1, 2, . . . , 𝐿} , 𝜉 = (1 − 𝜃
1/2

)

2

,

(19)

where 0 < 𝜃 < 1 is a prespecified scalar. Then, all predicted
states are restricted to lie in a positively invariant set which
is an intersection area of 𝜀

𝑗
= {𝑥(𝑘 + 𝑖 | 𝑘) ∈ R𝑛

𝑥
|

‖𝑥(𝑘 + 𝑖 | 𝑘)‖
2

𝑄
−1

𝑗

≤ 1}.

Proof. Equation (13) is guaranteed by (18) and (19).The proof
detail can be found in Appendix A.

Remark 4. 𝜃 is a parameter that bounds disturbance-free state
trajectories.The value of 𝜃 should be chosen such that 𝜃 → 1

as V
𝑠

→ 0.

Proposition 5 (Robust constraint satisfaction in the presence
of both time-varying scheduling parameter and disturbance).
Robust constraint satisfaction is guaranteed if there exist
matrices 𝑌

𝑗
, 𝐺

𝑗
and symmetric matrices 𝑄

𝑗
such that the

following LMIs are satisfied:

[

𝜒 ∗

𝑌
𝑇

𝑗
𝐺
𝑗
+ 𝐺

𝑇

𝑗
− 𝑄

𝑗

] ≥ 0,

𝜒
ℎℎ

≤ 𝑢
2

ℎ
, ℎ ∈ {1, 2, . . . , 𝑛

𝑢
} , 𝑗 ∈ {1, 2, . . . , 𝐿} ,

(20)

[

Γ ∗

(𝐴
𝑗
𝐺
𝑗
+ 𝐵𝑌

𝑗
)

𝑇

𝐶
𝑇

𝑙
𝐺
𝑗
+ 𝐺

𝑇

𝑗
− 𝑄

𝑗

] ≥ 0,

Γ
𝑟𝑟

≤ Ξ
𝑟
,

Ξ
𝑟
=(𝑦

𝑟
− Φ

1/2

𝑟
)

2

, 𝑟 ∈ {1, 2, . . . , 𝑛
𝑦
} , 𝑗, 𝑙 ∈ {1, 2, . . . , 𝐿} ,

(21)

whereΦ
𝑟
is a scalar that can be obtained by solving the follow-

ing optimization problem

min
Φ
𝑟

Φ
𝑟 (22)

s.t. [

Φ
𝑟

∗

𝐶
𝑟,𝑙
𝐷
𝑡
V
𝑠

1
] ≥ 0,

𝑟 ∈ {1, 2, . . . , 𝑛
𝑦
} , 𝑙 ∈ {1, 2, . . . , 𝐿} ,

𝑡 ∈ {1, 2, . . . , 𝑛
𝐷
} , 𝑠 ∈ {1, 2, . . . , 𝑚V} ,

(23)

where 𝐶
𝑟,𝑙
is the 𝑟th row of 𝐶

𝑙
.

Proof. The input constraint (14) is guaranteed by (20). The
proof details can be found in Appendix B. The output

constraint (15) is guaranteed by (21). The proof details can be
found in Appendix C.

By considering Propositions 3 and 5, a parameter-depen-
dent state feedback control law that guarantees both robust
stability and robust constraint satisfaction can be calculated.
Consider the discrete-time LPV system (1) to (9) at each
sampling instant 𝑘, a parameter-dependent state feedback
control law 𝑢(𝑘 + 𝑖 | 𝑘) = 𝐾(𝑝(𝑘 + 𝑖))𝑥(𝑘 + 𝑖 | 𝑘), 𝐾(𝑝(𝑘 +

𝑖)) = ∑
𝐿

𝑗=1
𝑝
𝑗
(𝑘 + 𝑖)𝐾

𝑗
, 𝐾

𝑗
= 𝑌

𝑗
𝐺
−1

𝑗
that guarantees both

robust stability and robust constraint satisfaction within a
positively invariant set 𝑍 is obtained by solving the following
optimization problem:

min
𝛾,𝑌
𝑗
,𝐺
𝑗
,𝑄
𝑗

𝛾 (24)

s.t. (16) to (23) . (25)

It is computationally demanding to solve the optimization
problem (24) at each sampling time. Inspired byBumroongsri
and Kheawhom [15], we propose an offline MPC algorithm
for LPV systems that transfer most of the computations
offline.

Algorithm 6.

Offline. Choose a sequence of states 𝑥
𝑖
, 𝑖 ∈ {1, 2, . . . , 𝑁}. For

each 𝑖, substitute 𝑥(𝑘) in (17) by 𝑥
𝑖
and solve the optimization

problem (24) to obtain the corresponding feedback gains
𝐾
𝑖,𝑗

= 𝑌
𝑖,𝑗
𝐺
−1

𝑖,𝑗
and ellipsoids 𝜀

𝑖,𝑗
= {𝑥 ∈ R𝑛

𝑥
| 𝑥

𝑇
𝑄
−1

𝑖,𝑗
𝑥 ≤ 1},

where the subscript 𝑖, 𝑗 denote the solution of (24) for each
𝑥
𝑖
, 𝑖 ∈ {1, 2, . . . , 𝑁} and vertices 𝑗, 𝑗 ∈ {1, 2, . . . , 𝐿}. Note

that (i) the positively invariant set for each 𝑖 is an intersection
area of 𝜀

𝑖,𝑗
, 𝑗 ∈ {1, 2, . . . , 𝐿} (ii) the inequalities (26) should be

satisfied for each 𝑖 ̸=𝑁 to ensure robust stability of the offline
algorithm

𝜃𝑄
−1

𝑖,𝑗
− (𝐴

𝑗
+ 𝐵𝐾

𝑖+1,𝑗
)

𝑇

𝑄
−1

𝑖,𝑙
(𝐴

𝑗
+ 𝐵𝐾

𝑖+1,𝑗
) ≥ 0. (26)

Remark 7. A sequence of states 𝑥
𝑖
, 𝑖 ∈ {1, 2, . . . , 𝑁} should be

chosen such that for each 𝑗, the ellipsoids 𝜀
𝑖,𝑗
, ∀𝑖 ̸=𝑁 obtained

are nested (𝜀
𝑖+1,𝑗

⊂ 𝜀
𝑖,𝑗
, 𝑄

𝑖+1,𝑗
< 𝑄

𝑖,𝑗
). This is to guarantee that

the state is kept within 𝜀
𝑖,𝑗

and driven towards 𝜀
𝑖+1,𝑗

, and so
on.
Online. At each sampling time 𝑘, measure 𝑝(𝑘) and 𝑥(𝑘). If
𝑥(𝑘) ∈ 𝜀

𝑖,𝑗
, 𝑥(𝑘) ∉ 𝜀

𝑖+1,𝑗
, 𝑗 ∈ {1, 2, . . . , 𝐿}, 𝑖 ̸=𝑁, adopt the

following control law:

𝑢 (𝑘) = 𝐾 (𝜆 (𝑘)) 𝑥 (𝑘) , (27)

𝐾 (𝜆 (𝑘)) = 𝜆 (𝑘)
[

[

𝐿

∑

𝑗=1

𝑝
𝑗
(𝑘)𝐾

𝑖,𝑗
]

]

+ (1 − 𝜆 (𝑘))
[

[

𝐿

∑

𝑗=1

𝑝
𝑗
(𝑘)𝐾

𝑖+1,𝑗
]

]

,

(28)
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where 𝜆(𝑘) ∈ (0, 1] is calculated by solving

𝑥(𝑘)
𝑇
(𝜆 (𝑘)

[

[

𝐿

∑

𝑗=1

𝑝
𝑗
(𝑘) 𝑄

−1

𝑖,𝑗
]

]

+ (1 − 𝜆 (𝑘))
[

[

𝐿

∑

𝑗=1

𝑝
𝑗
(𝑘) 𝑄

−1

𝑖+1,𝑗
]

]

)𝑥 (𝑘) = 1.

(29)

If 𝑥(𝑘) ∈ 𝜀
𝑁,𝑗

, 𝑗 ∈ {1, 2, . . . , 𝐿}, adopt the following control
law:

𝑢 (𝑘) = 𝐾
𝑁
𝑥 (𝑘) , 𝐾

𝑁
=

𝐿

∑

𝑗=1

𝑝
𝑗
(𝑘)𝐾

𝑁,𝑗
. (30)

An intersection area of 𝜀
1,𝑗
, 𝑗 ∈ {1, 2, . . . , 𝐿} is the largest pos-

itively invariant set where robust stability and robust con-
straint satisfaction are guaranteed. If 𝑥(𝑘) ∈ 𝜀

1,𝑗
, 𝑗 ∈

{1, 2, . . . , 𝐿}, then 𝑥(𝑘 + 𝑖) ∈ 𝜀
1,𝑗

, 𝑗 ∈ {1, 2, . . . , 𝐿}, 𝑖 ∈

{0, 1, . . . ,∞}. Thus, Algorithm 6 is always feasible if it is
initially feasible.

Remark 8. The proposed offline MPC algorithm can deal
with both time-varying scheduling parameter and distur-
bance. In comparison, an offline MPC algorithm [22] cannot
deal with disturbance.

4. Examples

The numerical simulations have been performed in Intel
Core 2 Duo (2.53GHz), 2 GB RAM, using SeDuMi [24] and
YALMIP [25] within the Matlab R2008a environment.

Example 1. The first example is a continuous stirred tank
reactor (CSTR) adapted fromDing and Huang [26] where an
exothermic reaction𝐴 → 𝐵 takes place.The dynamicmodel
based on a component balance and an energy balance can be
written as

�̇�
𝐴

=

𝑞

𝑉

(𝐶
𝐴𝐹

− 𝐶
𝐴
) − 𝑘

𝑜
𝑒
(−𝐸𝑎/𝑅𝑇)

𝐶
𝐴

+ 𝐷
𝐶
V, (31)

̇
𝑇 =

𝑞

𝑉

(𝑇
𝑓
− 𝑇) +

−Δ𝐻

𝜌𝐶
𝑝

𝑘
𝑜
𝑒
(−𝐸𝑎/𝑅𝑇)

𝐶
𝐴

+

𝑈𝐴

𝑉𝜌𝐶
𝑝

(𝑇
𝑐
− 𝑇) + 𝐷

𝑇
V,

(32)

where 𝐶
𝐴
denotes the concentration of 𝐴 in the reactor, 𝑇

denotes the reactor temperature, 𝑇
𝑐
denotes the temperature

of the coolant stream, and V denotes the disturbance acting on
the system. The operating parameters are shown in Table 1.

By defining 𝐶
𝐴

= 𝐶
𝐴

− 𝐶
𝐴,eq, 𝑇 = 𝑇 − 𝑇eq and 𝑇

𝑐
=

𝑇
𝑐
− 𝑇

𝑐,eq, (31) and (32) can be transformed into the fllowing
nonlinear model:

[

̇
𝐶
𝐴

̇
𝑇

] =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

[

[

[

[

−

𝑞

𝑉

− 𝜑
1
(𝑇) −𝜑

2
(𝑇)

(

−Δ𝐻

𝜌𝐶
𝑝

)𝜑
1
(𝑇) −

𝑞

𝑉

−

𝑈𝐴

𝑉𝜌𝐶
𝑝

+ (

−Δ𝐻

𝜌𝐶
𝑝

)𝜑
2
(𝑇)

]

]

]

]

[
𝐶
𝐴

𝑇

] +
[

[

0

𝑈𝐴

𝑉𝜌𝐶
𝑝

]

]

𝑇
𝑐
+ [

𝐷
𝐶

𝐷
𝑇

] V, 𝑇 ̸= 0

[

[

[

[

−

𝑞

𝑉

− 𝜑
1
(𝑇) 0

(

−Δ𝐻

𝜌𝐶
𝑝

)𝜑
1
(𝑇) −

𝑞

𝑉

−

𝑈𝐴

𝑉𝜌𝐶
𝑝

]

]

]

]

[
𝐶
𝐴

𝑇

] +
[

[

0

𝑈𝐴

𝑉𝜌𝐶
𝑝

]

]

𝑇
𝑐
+ [

𝐷
𝐶

𝐷
𝑇

] V, 𝑇 = 0

}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}

}

, (33)

where 𝜑
1
(𝑇) = 𝑘

𝑜
exp(−(𝐸

𝑎
/𝑅)/(𝑇 + 𝑇eq)), 𝜑

2
(𝑇) =

𝑘
𝑜
[exp(−(𝐸

𝑎
/𝑅)/(𝑇 + 𝑇eq)) − exp(−(𝐸

𝑎
/𝑅)/𝑇eq)]𝐶𝐴,eq/𝑇. For

|𝑇| ≤ 𝛽, (33) is transformed into the followingmodel in order
to balance the submodels:

[

̇
𝐶
𝐴

̇
𝑇

]

=

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

[

[

[

[

−

𝑞

𝑉

− 𝜑
0

1
− 𝑔

1
(𝑇) −𝜑

0

2
− 𝑔

2
(𝑇)

(

−Δ𝐻

𝜌𝐶
𝑝

)𝜑
0

1
+(

−Δ𝐻

𝜌𝐶
𝑝

)𝑔
1
(𝑇) −

𝑞

𝑉

−

𝑈𝐴

𝑉𝜌𝐶
𝑝

+ (

−Δ𝐻

𝜌𝐶
𝑝

)𝜑
0

2
+(

−Δ𝐻

𝜌𝐶
𝑝

)𝑔
2
(𝑇)

]

]

]

]

[
𝐶
𝐴

𝑇

]+
[

[

0

𝑈𝐴

𝑉𝜌𝐶
𝑝

]

]

𝑇
𝑐
+[

𝐷
𝐶

𝐷
𝑇

] V, 𝑇 ̸=0

[

[

[

[

−

𝑞

𝑉

− 𝜑
0

1
− 𝑔

1
(𝑇) 0

(

−Δ𝐻

𝜌𝐶
𝑝

)𝜑
0

1
+ (

−Δ𝐻

𝜌𝐶
𝑝

)𝑔
1
(𝑇) −

𝑞

𝑉

−

𝑈𝐴

𝑉𝜌𝐶
𝑝

]

]

]

]

[
𝐶
𝐴

𝑇

] +
[

[

0

𝑈𝐴

𝑉𝜌𝐶
𝑝

]

]

𝑇
𝑐
+ [

𝐷
𝐶

𝐷
𝑇

] V, 𝑇 = 0

}
}
}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}
}
}

}

,

(34)

where𝑔
1
(𝑇) = 𝜑

1
(𝑇)−𝜑

0

1
, 𝑔

2
(𝑇) = 𝜑

2
(𝑇)−𝜑

0

2
, 𝜑0

1
= [𝜑

1
(−𝛽)+

𝜑
1
(𝛽)]/2 and 𝜑

0

2
= [𝜑

2
(−𝛽)+𝜑

2
(𝛽)]/2. Since 𝑔

1
(𝑇) and 𝑔

2
(𝑇)

can vary between 𝑔
1
(−𝛽) ≤ 𝑔

1
(𝑇) ≤ 𝑔

1
(𝛽) and 𝑔

2
(−𝛽) ≤

𝑔
2
(𝑇) ≤ 𝑔

2
(𝛽), we have that all the solutions of (34) are also

the solutions of the following differential inclusion:

[

̇
𝐶
𝐴

̇
𝑇

] ∈ (

4

∑

𝑗=1

𝑝
𝑗
𝐴
𝑗
)[

𝐶
𝐴

𝑇

] +
[

[

0

𝑈𝐴

𝑉𝜌𝐶
𝑝

]

]

𝑇c + [

𝐷
𝐶

𝐷
𝑇

] V, (35)
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where 𝐴
𝑗
are given by

𝐴
1

=

[

[

[

[

−

𝑞

𝑉

− 𝜑
0

1
− 2𝑔

1
(𝛽) −𝜑

0

2

(

−Δ𝐻

𝜌𝐶
𝑝

)𝜑
0

1
+ 2(

−Δ𝐻

𝜌𝐶
𝑝

)𝑔
1
(𝛽) −

𝑞

𝑉

−

𝑈𝐴

𝑉𝜌𝐶
𝑝

+ (

−Δ𝐻

𝜌𝐶
𝑝

)𝜑
0

2

]

]

]

]

,

𝐴
2

=

[

[

[

[

−

𝑞

𝑉

− 𝜑
0

1
− 2𝑔

1
(−𝛽) −𝜑

0

2

(

−Δ𝐻

𝜌𝐶
𝑝

)𝜑
0

1
+ 2(

−Δ𝐻

𝜌𝐶
𝑝

)𝑔
1
(−𝛽) −

𝑞

𝑉

−

𝑈𝐴

𝑉𝜌𝐶
𝑝

+ (

−Δ𝐻

𝜌𝐶
𝑝

)𝜑
0

2

]

]

]

]

,

𝐴
3

=

[

[

[

[

−

𝑞

𝑉

− 𝜑
0

1
−𝜑

0

2
− 2𝑔

2
(𝛽)

(

−Δ𝐻

𝜌𝐶
𝑝

)𝜑
0

1
−

𝑞

𝑉

−

𝑈𝐴

𝑉𝜌𝐶
𝑝

+ (

−Δ𝐻

𝜌𝐶
𝑝

)𝜑
0

2
+ 2(

−Δ𝐻

𝜌𝐶
𝑝

)𝑔
2
(𝛽)

]

]

]

]

,

𝐴
4

=

[

[

[

[

−

𝑞

𝑉

− 𝜑
0

1
−𝜑

0

2
− 2𝑔

2
(−𝛽)

(

−Δ𝐻

𝜌𝐶
𝑝

)𝜑
0

1
−

𝑞

𝑉

−

𝑈𝐴

𝑉𝜌𝐶
𝑝

+ (

−Δ𝐻

𝜌𝐶
𝑝

)𝜑
0

2
+ 2(

−Δ𝐻

𝜌𝐶
𝑝

)𝑔
2
(−𝛽)

]

]

]

]

(36)

and 𝑝
𝑗
are given by

𝑝
1
=

1

2

(𝑔
1
(𝑇) − 𝑔

1
(−𝛽))

(𝑔
1
(𝛽) − 𝑔

1
(−𝛽))

,

𝑝
2
=

1

2

(𝑔
1
(𝛽) − 𝑔

1
(𝑇))

(𝑔
1
(𝛽) − 𝑔

1
(−𝛽))

,

𝑝
3
=

1

2

(𝑔
2
(𝑇) − 𝑔

2
(−𝛽))

(𝑔
2
(𝛽) − 𝑔

2
(−𝛽))

,

𝑝
4
=

1

2

(𝑔
2
(𝛽) − 𝑔

2
(𝑇))

(𝑔
2
(𝛽) − 𝑔

2
(−𝛽))

.

(37)

The objective is to regulate𝐶
𝐴
and𝑇 bymanipulating𝑇

𝑐
.The

input and output constraints are |𝐶
𝐴
| ≤ 0.5mol/L, |𝑇| ≤5K

and |𝑇
𝑐
| ≤ 40K.The discrete-time LPVmodel is obtained by

discretizing (35) with a sampling period of 0.01min and it is
omitted here for brevity. The symmetric weighting matrices
in (10) are Ψ = [

1 0

0 0
] and 𝜎 = 0.1. The value of 𝜃 in (18)

has been fixed at 0.97 which has negligible influence on the
control performance.

Figure 1(a) shows the ellipsoids computed offline by
Algorithm 6. In this example, four sequences of ellipsoids
are computed because the polytope Ω has four vertices. A

sequence of positively invariant sets computed by intersection
among four sequences of ellipsoids is shown in Figure 1(b).

Figure 2 shows the closed-loop responses of the system
when the disturbances are varied as V(𝑡) = 0.1 sin(10𝑡),
0.05 sin(10𝑡), and 0.001 sin(10𝑡), respectively. It can be
observed that 𝐶

𝐴
and 𝑇 are bounded for all values of distur-

bances so robust stability is ensured by applying Algorithm 6.
The online computational time of Algorithm 6 is very low

as shown in Table 2 so it is applicable to fast systems.

Example 2. The second example is an angular positioning
system adapted fromKothare et al. [4].The system consists of
an electric motor driving a rotating antenna so that is always
points in the direction of a moving object. The motion of the
antenna can be described by the following discrete-time LPV
model:

[

𝑥
1
(𝑘 + 1)

𝑥
2
(𝑘 + 1)

] = [

1 0.1

0 1 − 0.1Δ (𝑘)
] [

𝑥
1
(𝑘)

𝑥
2
(𝑘)

]

+ [

0

0.0787
] 𝑢 (𝑘) + [

0.15

0.15
] V (𝑘) ,

(38)

𝑦 (𝑘) = [

1 0

0 1
] [

𝑥
1
(𝑘)

𝑥
2
(𝑘)

] , (39)

where𝑥
1
(𝑘) is the angular position of the antenna,𝑥

2
(𝑘) is the

angular velocity of the antenna, 𝑢(𝑘) is the input voltage to the
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(b) A sequence of positively invariant sets

Figure 1: The ellipsoids computed offline in Example 1 (a) four sequences of ellipsoids corresponding to 𝐴
𝑗
(b) a sequence of positively

invariant sets.

motor, and V(𝑘) is the disturbance acting on the system. The
scheduling parameter Δ(𝑘) is measurable at each sampling
time and its value is varied between 0.1 and 10. We have that
all the solutions of (38) are also the solutions of the following
differential inclusion:

[

𝑥
1
(𝑘 + 1)

𝑥
2
(𝑘 + 1)

] ∈ (

2

∑

𝑗=1

𝑝
𝑗
𝐴
𝑗
)[

𝑥
1
(𝑘)

𝑥
2
(𝑘)

]

+ [

0

0.0787
] 𝑢 (𝑘) + [

0.15

0.15
] V (𝑘) ,

(40)

where 𝐴
𝑗
are given by 𝐴

1
= [

1 0.1

0 0.99
], 𝐴

2
= [

1 0.1

0 0
] and 𝑝

𝑗

are given by 𝑝
1

= (10 − Δ(𝑘))/0.9, 𝑝
2

= (Δ(𝑘) − 0.1)/0.9.

The objective is to regulate 𝑥
1
(𝑘) and 𝑥

2
(𝑘) by manipulating

𝑢(𝑘). The input constraint is |𝑢(𝑘)| ≤ 2 volts. The symmetric
weightingmatrices in (10) areΨ = [

1 0

0 0
] and𝜎 = 0.00002.The

value of 𝜃 in (18) has been fixed at 0.98 which has negligible
influence on the control performance. A sampling time is
0.1 s.

Figure 3(a) shows two sequences of ellipsoids corre-
sponding to 𝐴

𝑗
. A sequence of positively invariant sets com-

puted by intersection between two sequences of ellipsoids is
shown in Figure 3(b).

Figure 4 shows 100 state trajectories of the closed-loop
system when V(𝑘) and Δ(𝑘) are arbitrarily time-varying in
the ranges of −0.01 ≤ V(𝑘) ≤ 0.01 and 0.1 ≤ Δ(𝑘) ≤

10. Two initial points (0.9, 0) and (−0.8, 0.8) are chosen. It
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Figure 2: The closed-loop responses in Example 1 (a) regulated output and (b) control input.

can be observed from the figure that all state trajectories are
restricted to lie in a sequence of positively invariant sets. The
average time for Algorithm 6 to compute a real-time control
law is 0.001 s.

5. Conclusions

In this paper, we have presented an offline MPC algorithm
for constrained LPV systems.The main contribution is to
develop an offline MPC algorithm for LPV systems that
can deal with both persistent disturbance and time-varying
scheduling parameter.The norm-bounding technique is used
to derive an offline MPC algorithm based on the parameter-
dependent state feedback control law and the parameter-
dependent Lyapunov functions. Most of the optimization

problems are solved offline so the algorithm is applicable to
fast systems. At each sampling time, a parameter-dependent
state feedback control law is calculated by linear interpolation
between the precomputed state feedback control laws. The
controller design is illustrated with two examples.

Appendices

A. Proof of Proposition 3

Lemma A.1 will be used in the proof.

LemmaA.1 (see [23]). Suppose𝑀 > 0 is a symmetric matrix,
while 𝑎 and 𝑏 are vectors with appropriate dimensions. Then,



Journal of Applied Mathematics 9

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−20
−15
−10

−5
0
5

10
15
20

X
2

(r
ad

ia
n/

s)

X
2

(r
ad

ia
n/

s)

X1 (radian) X1 (radian)
𝜀i,1 = {x Rn𝑥 /x

T
Q
−1
i,1x ≤ 1}, i {1, 2, . . . , 5}∈ ∈ ∈∈ 𝜀i,2 = {x Rn𝑥 /x

T
Q
−1
i,2x ≤ 1}, i {1, 2, . . . , 5}

(a) Two sequences of ellipsoids corresponding to 𝐴𝑗

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

X
2

(r
ad

ia
n/

s)

X1 (radian)

(b) A sequence of positively invariant sets

Figure 3: The ellipsoids computed offline in Example 2 (a) two sequences of ellipsoids corresponding to 𝐴
𝑗
and (b) a sequence of positively

invariant sets.
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Figure 4: The state trajectories of the closed-loop system in
Example 2.

for any scalar 𝛿 > 0, (𝑎 + 𝑏)
𝑇
𝑀(𝑎 + 𝑏) ≤ (1 + 𝛿)𝑎

𝑇
𝑀𝑎 + (1 +

(1/𝛿))𝑏
𝑇
𝑀𝑏.

The norm-bounding technique [23] is used to derive an
offline MPC algorithm based on the parameter-dependent
state feedback control law and the parameter-dependent
Lyapunov functions.

By substituting 𝑥(𝑘 + 𝑖 + 1 | 𝑘) = [𝐴(𝑝(𝑘 + 𝑖)) + 𝐵𝐾(𝑝(𝑘 +

𝑖))]𝑥(𝑘 + 𝑖 | 𝑘) + 𝐷(𝛼(𝑘 + 𝑖))V(𝑘 + 𝑖) into (A.1)

‖𝑥 (𝑘 + 𝑖 + 1 | 𝑘)‖
2

𝑃(𝑝(𝑘+𝑖+1))
≤ 𝛾 (A.1)

Table 1:The operating parameters of nonlinear CSTR in Example 1.

Parameter Value Unit
𝑞 100 L/min
𝑇
𝑓

350 K
𝐶AF 1 mol/L
𝑉 100 L
𝜌 1,000 g/L
𝐶
𝑝

0.239 J/(g K)
Δ𝐻 −5 × 104 J/mol
𝐸
𝑎
/𝑅 8,750 K

𝑘
𝑜

7.2 × 1010 min−1

UA 5 × 104 J/(minK)
𝐶
𝐴,eq 0.5 mol/L

𝑇eq 350 K
𝑇
𝑐,eq 300 K

𝐷
𝐶

0.01 mol/(Lmin)
𝐷
𝑇

0.1 K/min

Table 2: The numerical burdens in Example 1.

Algorithm CPU time (s)
Offline Online (per step)

Algorithm 6 20.043 0.001
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and applying Lemma A.1, for any 𝛿
1
> 0, we see that (A.1) is

satisfied if

(1 + 𝛿
1
)

×
󵄩
󵄩
󵄩
󵄩
[𝐴 (𝑝 (𝑘+𝑖))+𝐵𝐾 (𝑝 (𝑘+𝑖))] 𝑥 (𝑘+𝑖 | 𝑘)

󵄩
󵄩
󵄩
󵄩

2

𝑃(𝑝(𝑘+𝑖+1))/𝛾

+ (1 +

1

𝛿
1

) ‖𝐷(𝛼(𝑘 + 𝑖))V(𝑘 + 𝑖)‖
2

𝑃(𝑝(𝑘+𝑖+1))/𝛾
≤ 1.

(A.2)

Consider the term ‖[𝐴(𝑝(𝑘 + 𝑖)) + 𝐵𝐾(𝑝(𝑘 + 𝑖))]

𝑥(𝑘 + 𝑖 | 𝑘)‖
2

𝑃(𝑝(𝑘+𝑖+1))/𝛾
in (A.2); let 𝜃‖𝑥(𝑘 + 𝑖 | 𝑘)‖

2

𝑃(𝑝(𝑘+𝑖))/𝛾

be themaximum value of this term, where 0 < 𝜃 < 1 is a pres-
pecified scalar:

󵄩
󵄩
󵄩
󵄩
[𝐴 (𝑝 (𝑘 + 𝑖)) + 𝐵𝐾 (𝑝 (𝑘 + 𝑖))] 𝑥 (𝑘 + 𝑖 | 𝑘)

󵄩
󵄩
󵄩
󵄩

2

𝑃(𝑝(𝑘+𝑖+1))/𝛾

≤ 𝜃‖𝑥 (𝑘 + 𝑖 | 𝑘)‖
2

𝑃(𝑝(𝑘+𝑖))/𝛾
.

(A.3)

Applying the Schur complement leads to

[

[

[

[

𝜃

𝑃 (𝑝 (𝑘 + 𝑖))

𝛾

∗

𝑃 (𝑝 (𝑘 + 𝑖 + 1))

𝛾

[𝐴 (𝑝 (𝑘 + 𝑖)) + 𝐵𝐾 (𝑝 (𝑘 + 𝑖))]

𝑃 (𝑝 (𝑘 + 𝑖 + 1))

𝛾

]

]

]

]

≥ 0. (A.4)

From the convexity of the polytopic description, with 𝑃
𝑗

=

𝛾𝑄
−1

𝑗
, 𝑃
𝑙
= 𝛾𝑄

−1

𝑙
and 𝐾

𝑗
= 𝑌

𝑗
𝐺
−1

𝑗
, (A.4) is satisfied if

[

𝜃𝑄
−1

𝑗
∗

𝑄
−1

𝑙
[𝐴

𝑗
+ 𝐵𝑌

𝑗
𝐺
−1

𝑗
] 𝑄

−1

𝑙

] ≥ 0, 𝑗, 𝑙 ∈ {1, 2, . . . , 𝐿} .

(A.5)

Multiplying (A.5) from the left by diag{𝐺𝑇
𝑗
, 𝑄

𝑇

𝑙
} and from the

right by diag{𝐺
𝑗
, 𝑄

𝑙
} and applying 𝐺

𝑇

𝑗
𝑄
−1

𝑗
𝐺
𝑗
≥ 𝐺

𝑗
+ 𝐺

𝑇

𝑗
− 𝑄

𝑗
,

we obtain LMIs (A.6)

[

𝜃 (𝐺
𝑗
+ 𝐺

𝑇

𝑗
− 𝑄

𝑗
) ∗

𝐴
𝑗
𝐺
𝑗
+ 𝐵𝑌

𝑗
𝑄
𝑙

] ≥ 0, 𝑗, 𝑙 ∈ {1, 2, . . . , 𝐿} . (A.6)

Consider the term ‖𝐷(𝛼(𝑘 + 𝑖))V(𝑘 + 𝑖)‖
2

𝑃(𝑝(𝑘+𝑖+1))/𝛾
in (A.2);

let 𝜉 be the maximum value of this term:

‖𝐷(𝛼(𝑘 + 𝑖))V(𝑘 + 𝑖)‖
2

𝑃(𝑝(𝑘+𝑖+1))/𝛾
≤ 𝜉. (A.7)

Applying the Schur complement leads to

[

[

𝜉 ∗

𝑃 (𝑝 (𝑘 + 𝑖 + 1))

𝛾

𝐷 (𝛼 (𝑘 + 𝑖)) V (𝑘 + 𝑖)

𝑃 (𝑝 (𝑘 + 𝑖 + 1))

𝛾

]

]

≥ 0.

(A.8)

From the convexity of the polytopic description, with 𝑃
𝑙

=

𝛾𝑄
−1

𝑙
, (A.8) is satisfied if

[

𝜉 ∗

𝑄
−1

𝑙
𝐷
𝑡
V
𝑠

𝑄
−1

𝑙

] ≥ 0, 𝑙 ∈ {1, 2, . . . , 𝐿} , 𝑡 ∈ {1, 2, . . . , 𝑛
𝐷
} ,

𝑠 ∈ {1, 2, . . . , 𝑚V} .

(A.9)

Multiplying (A.9) from the left by diag{𝐼, 𝑄
𝑙
} and from the

right by diag{𝐼, 𝑄
𝑙
}, we obtain LMIs (A.10):

[

𝜉 ∗

𝐷
𝑡
V
𝑠

𝑄
𝑙

] ≥ 0, 𝑡 ∈ {1, 2, . . . , 𝑛
𝐷
} , 𝑠 ∈ {1, 2, . . . , 𝑚V} ,

𝑙 ∈ {1, 2, . . . , 𝐿} .

(A.10)

From (A.3) and (A.7), with ‖𝑥(𝑘 + 𝑖 | 𝑘)‖
2

𝑃(𝑝(𝑘+𝑖))/𝛾
≤ 1, (A.2)

is equivalent to

(1 + 𝛿
1
) 𝜃 + (1 +

1

𝛿
1

) 𝜉 ≤ 1. (A.11)

The maximum allowable value of 𝜉 can be calculated by
solving

𝜉 = max
𝛿
1

1 − (1 + 𝛿
1
) 𝜃

(1 + (1/𝛿
1
))

. (A.12)

From (A.12), 𝜉 is obtained as

𝜉 = (1 − 𝜃
1/2

)

2

. (A.13)

B. Proof of Proposition 5 (Input Constraint)

Defining 𝜁
ℎ
as the ℎth row of the 𝑛

𝑢
-dimensional identity

matrix, we have

max
𝑖≥0

󵄨
󵄨
󵄨
󵄨
𝜁
ℎ
𝑢 (𝑘 + 𝑖 | 𝑘)

󵄨
󵄨
󵄨
󵄨

2

=max
𝑖≥0

󵄨
󵄨
󵄨
󵄨
𝜁
ℎ
𝐾(𝑝 (𝑘 + 𝑖)) 𝑥 (𝑘 + 𝑖 | 𝑘)

󵄨
󵄨
󵄨
󵄨

2

.

(B.1)
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Applying Cauchy-Schwarz inequality, with ‖𝑥(𝑘 + 𝑖 |

𝑘)‖
2

𝑃(𝑝(𝑘+𝑖))/𝛾
≤ 1, leads to

max
𝑖≥0

󵄨
󵄨
󵄨
󵄨
𝜁
ℎ
𝐾(𝑝 (𝑘 + 𝑖)) 𝑥 (𝑘 + 𝑖 | 𝑘)

󵄨
󵄨
󵄨
󵄨

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜁
ℎ
𝐾(𝑝(𝑘 + 𝑖))(

𝑃(𝑝(𝑘 + 𝑖))

𝛾

)

−1/2󵄩󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

.

(B.2)

The input constraint is satisfied if

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜁
ℎ
𝐾(𝑝 (𝑘 + 𝑖)) (

𝑃 (𝑝 (𝑘 + 𝑖))

𝛾

)

−1/2󵄩󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 𝑢
2

ℎ
,

ℎ ∈ {1, 2, . . . , 𝑛
𝑢
} .

(B.3)

By applying the Schur complement, (B.3) is equivalent to

[

[

𝜒 ∗

𝐾(𝑝 (𝑘 + 𝑖))
𝑇

(

𝑃 (𝑝 (𝑘 + 𝑖))

𝛾

)

]

]

≥ 0,

𝜒
ℎℎ

≤ 𝑢
2

ℎ
, ℎ ∈ {1, 2, . . . , 𝑛

𝑢
} .

(B.4)

From the convexity of the polytopic description, with 𝑃
𝑗

=

𝛾𝑄
−1

𝑗
and 𝐾

𝑗
= 𝑌

𝑗
𝐺
−1

𝑗
, (B.4) is satisfied if

[

𝜒 ∗

(𝑌
𝑗
𝐺
−1

𝑗
)

𝑇

𝑄
−1

𝑗

] ≥ 0, 𝜒
ℎℎ

≤ 𝑢
2

ℎ
,

ℎ ∈ {1, 2, . . . , 𝑛
𝑢
} , 𝑗 ∈ {1, 2, . . . , 𝐿} .

(B.5)

Premultiplying by diag{𝐼, 𝐺𝑇
𝑗
}, postmultiplying by diag{𝐼, 𝐺

𝑗
}

and applying𝐺
𝑇

𝑗
𝑄
−1

𝑗
𝐺
𝑗
≥ 𝐺

𝑗
+𝐺

𝑇

𝑗
−𝑄

𝑗
, we obtain LMIs (B.6)

[

𝜒 ∗

𝑌
𝑇

𝑗
𝐺
𝑗
+ 𝐺

𝑇

𝑗
− 𝑄

𝑗

] ≥ 0, 𝜒
ℎℎ

≤ 𝑢
2

ℎ
,

ℎ ∈ {1, 2, . . . , 𝑛
𝑢
} , 𝑗 ∈ {1, 2, . . . , 𝐿} .

(B.6)

C. Proof of Proposition 5 (Output Constraint)

Defining 𝜁
𝑟
as the 𝑟th row of the 𝑛

𝑦
-dimensional identity

matrix, we have

max
𝑖≥0

󵄨
󵄨
󵄨
󵄨
𝜁
𝑟
𝑦 (𝑘 + 𝑖 + 1 | 𝑘)

󵄨
󵄨
󵄨
󵄨

2

= max
𝑖≥0

󵄨
󵄨
󵄨
󵄨
𝜁
𝑟
𝐶 (𝑝 (𝑘 + 𝑖 + 1)) 𝑥 (𝑘 + 𝑖 + 1 | 𝑘)

󵄨
󵄨
󵄨
󵄨

2

.

(C.1)

Substituting 𝑥(𝑘 + 𝑖 + 1 | 𝑘) = [𝐴(𝑝(𝑘 + 𝑖)) + 𝐵𝐾(𝑝(𝑘 +

𝑖))]𝑥(𝑘 + 𝑖 | 𝑘) + 𝐷(𝛼(𝑘 + 𝑖))V(𝑘 + 𝑖) and applying Cauchy-
Schwarz inequality and Lemma A.1, for any 𝛿

2
> 0, we see

that the output constraint is satisfied if

(1 + 𝛿
2
)
󵄩
󵄩
󵄩
󵄩𝑟

𝐶 (𝑝 (𝑘 + 𝑖 + 1))

× [𝐴 (𝑝 (𝑘 + 𝑖)) + 𝐵𝐾 (𝑝 (𝑘 + 𝑖))] 𝑥 (𝑘 + 𝑖 | 𝑘)
󵄩
󵄩
󵄩
󵄩

2

+ (1 +

1

𝛿
2

)
󵄩
󵄩
󵄩
󵄩
𝜁
𝑟
𝐶(𝑝(𝑘 + 𝑖 + 1))𝐷(𝛼(𝑘 + 𝑖))V(𝑘 + 𝑖)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝑦
2

𝑟
.

(C.2)
Consider the term ‖𝜁

𝑟
𝐶(𝑝(𝑘 + 𝑖 + 1))[𝐴(𝑝(𝑘 + 𝑖)) + 𝐵𝐾(𝑝(𝑘 +

𝑖))]𝑥(𝑘 + 𝑖 | 𝑘)‖
2 in (C.2); let Ξ

𝑟
be themaximum value of this

term

󵄩
󵄩
󵄩
󵄩
𝜁
𝑟
𝐶 (𝑝 (𝑘 + 𝑖 + 1)) [𝐴 (𝑝 (𝑘 + 𝑖)) + 𝐵𝐾 (𝑝 (𝑘 + 𝑖))]

× 𝑥 (𝑘 + 𝑖 | 𝑘)
󵄩
󵄩
󵄩
󵄩

2

≤ Ξ
𝑟
.

(C.3)

Since ‖𝑥(𝑘 + 𝑖 | 𝑘)‖
2

𝑃(𝑝(𝑘+𝑖))/𝛾
≤ 1, applying the Schur comple-

ment leads to

[

[

Γ ∗

[𝐴 (𝑝 (𝑘 + 𝑖)) + 𝐵𝐾 (𝑝 (𝑘 + 𝑖))]
𝑇

𝐶(𝑝 (𝑘 + 𝑖 + 1))
𝑇

(

𝑃 (𝑝 (𝑘 + 𝑖))

𝛾

)

]

]

≥ 0,

Γ
𝑟𝑟

≤ Ξ
𝑟
, 𝑟 ∈ {1, 2, . . . , 𝑛

𝑦
} .

(C.4)

From the convexity of the polytopic description, with 𝑃
𝑗

=

𝛾𝑄
−1

𝑗
and 𝐾

𝑗
= 𝑌

𝑗
𝐺
−1

𝑗
, (C.4) is satisfied if

[

Γ ∗

[𝐴
𝑗
+ 𝐵𝑌

𝑗
𝐺
−1

𝑗
]

𝑇

𝐶
𝑇

𝑙
𝑄
−1

𝑗

] ≥ 0, Γ
𝑟𝑟

≤ Ξ
𝑟
,

𝑟 ∈ {1, 2, . . . , 𝑛
𝑦
} , 𝑗, 𝑙 ∈ {1, 2, . . . , 𝐿} .

(C.5)

Premultiplying by diag{𝐼, 𝐺𝑇
𝑗
}, postmultiplying by diag{𝐼,

𝐺
𝑗
}, and applying 𝐺

𝑇

𝑗
𝑄
−1

𝑗
𝐺
𝑗
≥ 𝐺

𝑗
+ 𝐺

𝑇

𝑗
− 𝑄

𝑗
, we obtain LMIs

(C.6)

[

Γ ∗

(𝐴
𝑗
𝐺
𝑗
+ 𝐵𝑌

𝑗
)

𝑇

𝐶
𝑇

𝑙
𝐺
𝑗
+ 𝐺

𝑇

𝑗
− 𝑄

𝑗

] ≥ 0, Γ
𝑟𝑟

≤ Ξ
𝑟
,

𝑟 ∈ {1, 2, . . . , 𝑛
𝑦
} , 𝑗, 𝑙 ∈ {1, 2, . . . , 𝐿} .

(C.6)
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Consider the term ‖𝜁
𝑟
𝐶(𝑝(𝑘 + 𝑖 + 1))𝐷(𝛼(𝑘 + 𝑖))V(𝑘 + 𝑖)‖

2 in
(C.2); let Φ

𝑟
be the maximum value of this term:

󵄩
󵄩
󵄩
󵄩
𝜁
𝑟
𝐶(𝑝(𝑘 + 𝑖 + 1))𝐷(𝛼(𝑘 + 𝑖))V(𝑘 + 𝑖)

󵄩
󵄩
󵄩
󵄩

2

≤ Φ
𝑟
. (C.7)

By applying the Schur complement, we obtain

[

Φ
𝑟

∗

𝜁
𝑟
𝐶 (𝑝 (𝑘 + 𝑖 + 1))𝐷 (𝛼 (𝑘 + 𝑖)) V (𝑘 + 𝑖) 1

] ≥ 0. (C.8)

From the convexity of the polytopic description, (C.8) is sat-
isfied if

[

Φ
𝑟

∗

𝐶
𝑟,𝑙
𝐷
𝑡
V
𝑠

1
] ≥ 0, 𝑟 ∈ {1, 2, . . . , 𝑛

𝑦
} , 𝑙 ∈ {1, 2, . . . , 𝐿} ,

𝑡 ∈ {1, 2, . . . , 𝑛
𝐷
} , 𝑠 ∈ {1, 2, . . . , 𝑚V} ,

(C.9)

where 𝐶
𝑟,𝑙
is the 𝑟th row of 𝐶

𝑙
. Thus, Φ

𝑟
can be calculated by

solving

min
Φ
𝑟

Φ
𝑟

s.t. (C.9) . (C.10)

From (C.3) and (C.7), (C.2) is equivalent to

(1 + 𝛿
2
) Ξ

𝑟
+ (1 +

1

𝛿
2

)Φ
𝑟
≤ 𝑦

2

𝑟
. (C.11)

The maximum allowable value of Ξ
𝑟
can be calculated by

solving

Ξ
𝑟
= max

𝛿
2

𝑦
2

𝑟
− (1 + (1/𝛿

2
))Φ

𝑟

(1 + 𝛿
2
)

. (C.12)

From (C.12), Ξ
𝑟
is obtained as

Ξ
𝑟
= (𝑦

𝑟
− Φ

1/2

𝑟
)

2

. (C.13)
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