8 research outputs found

    Synthetic Turing protocells: vesicle self-reproduction through symmetry-breaking instabilities

    Full text link
    The reproduction of a living cell requires a repeatable set of chemical events to be properly coordinated. Such events define a replication cycle, coupling the growth and shape change of the cell membrane with internal metabolic reactions. Although the logic of such process is determined by potentially simple physico-chemical laws, the modeling of a full, self-maintained cell cycle is not trivial. Here we present a novel approach to the problem which makes use of so called symmetry breaking instabilities as the engine of cell growth and division. It is shown that the process occurs as a consequence of the breaking of spatial symmetry and provides a reliable mechanism of vesicle growth and reproduction. Our model opens the possibility of a synthetic protocell lacking information but displaying self-reproduction under a very simple set of chemical reactions

    Minimal model of self-replicating nanocells: a physically embodied information-free scenario

    Full text link
    The building of minimal self-reproducing systems with a physical embodiment (generically called protocells) is a great challenge, with implications for both theory and applied sciences. Although the classical view of a living protocell assumes that it includes information-carrying molecules as an essential ingredient, a dividing cell-like structure can be built from a metabolism-container coupled system, only. An example of such a system, modeled with dissipative particle dynamics, is presented here. This article demonstrates how a simple coupling between a precursor molecule and surfactant molecules forming micelles can experience a growth-division cycle in a predictable manner, and analyzes the influence of crucial parameters on this replication cycle. Implications of these results for origins of cellular life and living technology are outlined.Comment: 9 pages, 10 figure

    A Category Theoretical Argument Against the Possibility of Artificial Life

    Get PDF
    One of Robert Rosen's main contributions to the scientific community is summarized in his book 'Life itself'. There Rosen presents a theoretical framework to define living systems; given this definition, he goes on to show that living systems are not realisable in computational universes. Despite being well known and often cited, Rosen's central proof has so far not been evaluated by the scientific community. In this article we review the essence of Rosen's ideas leading up to his rejection of the possibility of real artificial life in silico. We also evaluate his arguments and point out that some of Rosen's central notions are ill- defined. The conclusion of this article is that Rosen's central proof is wrong

    The Past, Present, and Future of Artificial Life

    Get PDF
    For millennia people have wondered what makes the living different from the non-living. Beginning in the mid-1980s, artificial life has studied living systems using a synthetic approach: build life in order to understand it better, be it by means of software, hardware, or wetware. This review provides a summary of the advances that led to the development of artificial life, its current research topics, and open problems and opportunities. We classify artificial life research into fourteen themes: origins of life, autonomy, self-organization, adaptation (including evolution, development, and learning), ecology, artificial societies, behavior, computational biology, artificial chemistries, information, living technology, art, and philosophy. Being interdisciplinary, artificial life seems to be losing its boundaries and merging with other fields

    Model of Self-Replicating Cell Capable of Self-Maintenance.

    No full text
    Model of Self-Replicating Cell Capable of Self-Maintenance

    Model of Self-Replicating Cell Capable of Self-Maintenance.

    No full text
    We have constructed a simple model of a proto-cell that simulates stochastic dynamics of abstract chemicals on a two-dimensional lattice. We have assumed that chemicals catalyze their reproduction through interaction with each other, and that repulsion occurs between some chemicals. We have shown that chemicals organize themselves into a cell-like structure that maintains its membranes dynamically. Further, we have obtained cells that can divide themselves automatically into daughter cells
    corecore