6,025 research outputs found

    ON ITERATIVE LEARNING CONTROL FOR SOLVING NEW CONTROL PROBLEMS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Model-free adaptive iterative learning control of melt pool width in wire arc additive manufacturing

    Get PDF
    © 2020, Springer-Verlag London Ltd., part of Springer Nature. Wire arc additive manufacturing (WAAM) is a Direct Energy Deposition (DED) technology, which utilize electrical arc as heat source to deposit metal material bead by bead to make up the final component. However, issues like the lack of assurance in accuracy, repeatability and stability hinder the further application in industry. Therefore, a Model Free Adaptive Iterative Learning Control (MFAILC) algorithm was developed to be applied in WAAM process in this study. The dynamic process of WAAM is modelled by adaptive neuro fuzzy inference system (ANFIS). Based on this ANFIS model, simulations are performed to demonstrate the effectiveness of MFAILC algorithm. Furthermore, experiments are conducted to investigate the tracking performance and robustness of the MFAILC controller. This work will help to improve the forming accuracy and automatic level of WAAM

    Model-Based Policy Search for Automatic Tuning of Multivariate PID Controllers

    Full text link
    PID control architectures are widely used in industrial applications. Despite their low number of open parameters, tuning multiple, coupled PID controllers can become tedious in practice. In this paper, we extend PILCO, a model-based policy search framework, to automatically tune multivariate PID controllers purely based on data observed on an otherwise unknown system. The system's state is extended appropriately to frame the PID policy as a static state feedback policy. This renders PID tuning possible as the solution of a finite horizon optimal control problem without further a priori knowledge. The framework is applied to the task of balancing an inverted pendulum on a seven degree-of-freedom robotic arm, thereby demonstrating its capabilities of fast and data-efficient policy learning, even on complex real world problems.Comment: Accepted final version to appear in 2017 IEEE International Conference on Robotics and Automation (ICRA

    Design and development of the ‘POD Adventures’ smartphone game: a blended problem-solving intervention for adolescent mental health in India

    Get PDF
    Introduction: Digital technology platforms offer unparalleled opportunities to reach vulnerable adolescents at scale and overcome many barriers that exist around conventional service provision. This paper describes the design and development of POD Adventures, a blended problem-solving game-based intervention for adolescents with or at risk of anxiety, depression and conduct difficulties in India. This intervention was developed as part of the PRemIum for ADolEscents (PRIDE) research programme, which aims to establish a suite of transdiagnostic psychological interventions organised around a stepped care system in Indian secondary schools. Methods and materials: Intervention development followed a person-centered approach consisting of four iterative activities: (i) review of recent context-specific evidence on mental health needs and preferences for the target population of school-going Indian adolescents, including a multiple stakeholder analysis of school counselling priorities and pilot studies of a brief problem-solving intervention; (ii) new focus group discussions with N=46 student participants and N=8 service providers; (iii) co-design workshops with N=22 student participants and N=8 service providers; and (iv) user-testing with N=50 student participants. Participants were aged 12-17 years and recruited from local schools in New Delhi and Goa, including a subgroup with self-identified mental health needs (N=6). Results: Formative data from existing primary sources, new focus groups and co-design workshops supported a blended format for delivering a brief problem-solving intervention, with counsellors supporting use of a game-based app on ‘offline’ smartphones. User-testing with prototypes identified a need for simplification of language, use of concrete examples of concepts and practice elements to enhance engagement. There were also indications that participants most valued relatability and interactivity within real-world stories with judicious support from an in-app guide. The final prototype comprised a set of interactive and gamified vignettes and a structured set of problem-solving questions to consolidate and generalise learning while encouraging real-world application. Discussion: Findings shaped the design of POD Adventures and its delivery as an open-access blended intervention for secondary school students with a felt need for psychological support, consistent with an early intervention paradigm. A randomised controlled trial is planned to evaluate processes and impacts of POD Adventures when delivered for help-seeking students in low-resource school settings

    Performance Improvement of Low-Cost Iterative Learning-Based Fuzzy Control Systems for Tower Crane Systems

    Get PDF
    This paper is dedicated to the memory of Prof. Ioan Dzitac, one of the fathers of this journal and its founding Editor-in-Chief till 2021. The paper addresses the performance improvement of three Single Input-Single Output (SISO) fuzzy control systems that control separately the positions of interest of tower crane systems, namely the cart position, the arm angular position and the payload position. Three separate low-cost SISO fuzzy controllers are employed in terms of first order discrete-time intelligent Proportional-Integral (PI) controllers with Takagi-Sugeno-Kang Proportional-Derivative (PD) fuzzy terms. Iterative Learning Control (ILC) system structures with PD learning functions are involved in the current iteration SISO ILC structures. Optimization problems are defined in order to tune the parameters of the learning functions. The objective functions are defined as the sums of squared control errors, and they are solved in the iteration domain using the recent metaheuristic Slime Mould Algorithm (SMA). The experimental results prove the performance improvement of the SISO control systems after ten iterations of SMA

    Iterative learning control based on stretch and compression mapping for trajectory tracking in human-robot collaboration

    Get PDF
    This paper presents a novel iterative learning control (ILC) scheme based on stretch and compression mapping for a robotic manipulator to learn its human partner’s desired trajectory, which is a typical task in the field of human-robot interaction. The proposed scheme is used to reduce the interaction force between the robot and the human partner in repetitive learning process. Thus, the robot can track the human partner’s repetitive trajectory with a small interaction force, leading to little control effort from the human. As the human is involved in the control loop, there are various uncertainties in the system, including variable iteration period in the task under study. The stretch and compression mapping is applied to this problem. In the simulation, the proposed scheme is implemented in the human-robot interaction scenario. Results confirm the effectiveness of the proposed scheme and also illustrate better performance of the proposed ILC compared with other ILC methods with variable periods
    corecore