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Summary

Summary

Iterative learning control (ILC) is an approach for improving the transient performance

of uncertain systems that operate repetitively over a fixed time interval. Over the past

three decades, although ILC has been well established in terms of the underlying theory,

there are several limitations in traditional ILC that hinder its applicability. Motivated by

this observation, the main contributions of this thesis are to apply ILC approach to solve

new control problems, such as uncertain systems with non-repeatable factors, systems

with unstructured uncertainties, applicability of ILC in systems of partial differential

equations (PDEs), and motion control of robotic fish via ILC.

The first main objective of this research is to deal with temporal and/or spatial factors in

the control system that are not strictly repeatable (non-uniform) along the iteration axis.

Three different ILC schemes are developed to deal with learning control systems with

iteration-varying trial lengths. Firstly, a modified ILC scheme is proposed for discrete-

time linear systems with randomly varying trial lengths. By considering the stochastic

property of trial lengths, a stochastic variable satisfying the Bernoulli distribution and

an iteration-average operator are introduced into the classic ILC algorithm to handle the

variation of trial lengths. Based on the contraction mapping method and λ -norm, the

convergence of tracking error is guaranteed in the sense of mathematical expectation.

Next, a novel ILC scheme with an embedded iteratively-moving-average operator is

developed for continuous-time nonlinear dynamic systems with randomly varying trial

lengths. It is shown that for nonlinear affine and non-affine systems, the proposed learn-

ing algorithm works effectively to nullify the tracking error. Furthermore, in practice

a control system may implement different but highly correlated motion tasks. Whether
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a control system can learn consecutively from different but highly correlated track-

ing tasks is of great interest and challenge. In this thesis, a new adaptive ILC (AILC)

scheme with a time-scaling factor is proposed for control tasks with different magnitude

and time scales. The major advantage of the proposed AILC algorithm is the ability to

utilize all the learned knowledge despite the iteratively varying tracking tasks

The second main objective is to deal with the norm-bounded uncertainties. A new robust

ILC (RILC) scheme is developed for state tracking control of nonlinear MIMO system-

s. By introducing a composite energy function (CEF), the asymptotical convergence

of tracking error is proved. The idea behind the proposed controller is to parameterize

the bounding functions, and then learn those parametric uncertainties pointwisely in the

iteration domain. In such sense, ILC of systems with non-parametric uncertainties is

fulfilled by a parametric adaptation method. The results are first derived for systems

without input disturbance, and then generalized to systems with uncertain input distri-

bution matrix and state-dependent input disturbance.

Despite the great progress of ILC for lumped parameter systems (LPSs) modeled by or-

dinary differential equations (ODEs), studies of ILC for distributed parameter systems

(DPSs) governed by partial differential equations (PDEs) are limited. Thus, the third

main objective of this research is to explore the applicability of learning rules to PDE

systems. Firstly, a design and analysis framework of ILC for linear inhomogeneous

distributed parameter systems (LIDPSs) is constructed. Owing to the system model

characteristics, LIDPSs are first reformulated into a matrix form in the frequency do-

main. Then, through the determination of a fundamental matrix, the transfer function of

LIDPS is precisely evaluated in a closed form. The derived transfer function provides
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Summary

the direct input-output relationship of the LIDPS, and thus facilitates the consequent

ILC design and convergence analysis in the frequency domain. Subsequently, a D-type

anticipatory ILC scheme is applied to the boundary control of a class of nonlinear inho-

mogeneous heat equations. By transforming the inhomogeneous heat equation into its

integral form and exploiting the properties of the embedded Jacobi Theta functions, the

learning convergence of ILC is obtained through CM method. The adopted ILC scheme

is capable of dealing with state-independent or state-dependent uncertainties.

To the end, as a real-time application, an ILC approach is presented for precise speed

tracking of a two-link Carangiform robotic fish. By virtue of the Lagrangian mechanics

method, a mathematical model for the robotic fish is first established, which is highly

nonlinear and non-affine-in-input. In this thesis, a P-type ILC algorithm is adopted,

which can significantly improve the tracking performance despite the high nonlinearity

in fish model. It is shown, from both theoretical analysis and real-time experiments,

that ILC is an appropriate and powerful motion control method for robotic fish because

of its partial model-free property and the simplicity of the control algorithm.
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Chapter 1

Introduction

1.1 Iterative Learning Control

Iterative learning control (ILC), as an effective control strategy, is designed to im-

prove the current performance of uncertain systems by fully utilizing the past control

experience. Specifically, ILC is usually designed for systems that are able to complete

some tasks over a fixed time interval and perform them repeatedly. By synthesizing the

control input from the previous control input and tracking error, the controller learn-

s from the past experience and improves the current tracking performance. ILC was

initially developed by S. Arimoto [1], and has been widely explored by the control

community since then [2–9].

Fig. 1 shows the schematic diagram of ILC, where the subscript i denotes the itera-

tion index and yd denotes the reference trajectory. Based on the input signal ui at the ith

iteration, as well as the tracking error ei , yd− yi, the input ui+1 for the next iteration,

namely, the (i+1)th iteration, is constructed. Meanwhile, the input signal ui+1 is also

stored into the memory for the (i+2)th iteration.

It is important to note that in Fig. 1.1, a closed loop feedback is formed in the

1



Chapter 1. Introduction

Figure 1.1: Framework of ILC

iteration domain rather than the time domain. Comparing to other control methods

such as proportional-integral-derivative (PID) control and sliding mode control, there

is a number of distinct features about ILC. First, ILC is designed to handle repetitive

control tasks, while other control techniques are difficult to take advantage of the task

repetition. Under a repeatable control environment, repeating the same feedback would

yield the same control performance. While by incorporating learning, ILC is able to

improve the control performance iteratively. Second, the control objective is different.

ILC aims at achieving perfect tracking during the whole operation interval. Whereas,

most control methods target at achieving asymptotic convergence property along the

time axis. Third, ILC is a feedforward control method if viewing in the time domain,

and the plant shown in Fig. 1.1 is a generalized plant, that is, the generalized plant can

actually include a feedback loop. ILC is used to further improve the performance of

the generalized plant. As such, the generalized plant could be made stable in the time

domain, which is helpful in guaranteeing transient response while learning proceeds.

Last but not least, ILC is a partial model-free control method. As long as an appropriate

learning gain is chosen, perfect tracking can be achieved without using the perfect plant

model.

Generally speaking there are two main frameworks for ILC, namely contraction-
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mapping (CM)-based and composite energy function (CEF)-based approaches. CM-

based iterative learning controller has a very simple structure and it is extremely easy

to implement. A correction term in the controller is constructed by the output tracking

error. To ensure convergence, an appropriate learning gain can be selected based on

the system gradient information instead of accurate dynamic model. As it is a partial

model-free control method, CM-based ILC is applicable to non-affine-in-input system-

s. These features are highly desirable in practice as there are plenty of data available

in the industry processes but are lack of accurate system models. CM-based ILC has

been adopted in many applications, for example X-Y table, chemical batch reactors,

laser cutting system, motor control, water heating system, freeway traffic control, wafer

manufacturing, and etc [9]. A limitation of CM-based ILC is that it is only applicable to

global Lipschitz continuous (GLC) systems. GLC is required by ILC in order to form

a contractive mapping, and rule out the finite escape time phenomenon. In compari-

son, CEF-based ILC, a complementary part of CM-based ILC, applies Lyapunov-like

method to design learning rules. CEF is an effective method to handle local Lipschitz

continuous (LLC) systems, because the system dynamics is used in the design of learn-

ing and feedback mechanisms. It is however worthwhile pointing out that in CM-based

ILC, the learning mechanism only requires output signals, while in CEF-based ILC, the

full state information is usually required. CEF-based ILC has been applied in satellite

trajectory keeping [10] and robotic manipulators control [11–13].

1.2 Motivations and Contributions

ILC is an intelligent control methodology based on strict system environment, where

the strict system environment includes that every trial (pass, cycle, and iteration) must
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end in a fixed time of duration, that the initial state must be reset to the same point

in each iteration, and that the invariance of systems must be ensured throughout the

repetition, etc. Due to its structural simplicity as well as almost model-free nature in

the process of controller design, ILC has been widely used in industries for control of

repetitive motions, such as robotic manipulator, hard disk drives, chemical plants, and

so forth [13–15]. In the past few decades, ILC has been well established in terms of

both the underlying theory and experimental applications ([6, 14, 16–23]). However,

there are still several open problems to be solved in traditional ILC, such as ILC for

systems with non-uniform trial lengths, ILC for systems with norm-bounded uncertain-

ties, ILC for infinite dimensional (PDE) systems, and ILC for motion control of robotic

fish, etc. This thesis follows the line of ILC for ODE systems, ILC for PDE systems

and real-time application of ILC.

In traditional ILC, it is required that the control tasks repeat in a fixed time interval.

In many applications of ILC, nevertheless, fixed time of duration may not hold. A pass

might be terminated early or late, either by events that depend on the states of the system

or on the controller performance or by randomly occurring events. For instance, as in-

troduced in [24], when stroke patients walk on a treadmill, depending on their strength

and abilities, the steps will be usually cut short by suddenly putting the foot down. As-

suming that up to this point the movement of hip and knee was hardly different from

the movement in a full-length step, the data gathered in these aborted steps should be

used for learning under the framework of ILC. Similarly, as demonstrated in [25], the

gait problems of humanoid robots are divided into phases defined by foot strike times,

where the durations of the phases are usually not the same from cycle to cycle during

the learning process. Thus, when ILC is applied, the non-uniform trial length problem
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occurs. One more example is the timing belt drive system that might be used in a copy

machine [25]. When the velocity of output shaft varies, the period of rotation changes

accordingly because of the inaccuracies of gearing, thus also hinders the application of

classic ILC schemes. Besides those cases, the presence of limiting constraints might al-

so pose pass length questions in the applications of ILC. One example is the functional

electrical stimulation for upper limb movement [24]. For reasons of safety, a trial needs

to be terminated whenever the output and reference begin to differ too much, and the

data gathered outside the neighborhood of reference trajectory cannot be used for learn-

ing. If ILC is used for such systems, the trial length might be different from iteration to

iteration. Another example is the trajectory tracking with output constraints on a lab-

scale gantry crane [26]. When the output constraints are violated, the load is wound up

and the trial is terminated, which results in variable pass lengths for ILC. Additionally,

there exists another type of non-uniform trial length problem. For example, a robotic

manipulator draws a circle in Cartesian space with the same radius but different periods.

For such kind of non-repeatable learning control problem, in spite of the variation of the

trial lengths, it should be noted that the underlying dynamic properties of the controlled

system remain the same. Therefore, how to deal with systems with iteration-varying

trial lengths under the framework of ILC is an open and challenging topic.

In the research field of ILC, two categories of uncertainties are considered, namely,

parametric ones and non-parametric/unstructured ones. For the former class, the system

model is assumed to be linear in parameters, and adaptive ILC scheme is developed to

learn the unknown system parameters pointwisely in the iteration domain [27–30]. For

the latter class, there are mainly three types of unstructured uncertainties [31]: (1) the

uncertainty itself is norm-bounded by a known function ρ(x, t): ‖η(x, t)‖2≤ ρ(x, t), (2)
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the variation of uncertainty is norm-bounded by a known function ρ(x1,x2, t): ‖η(x1, t)−

η(x2, t)‖2 ≤ ρ(x1,x2, t)‖x1− x2‖2, and (3) the uncertainty itself is norm-bounded but

with unknown coefficient θ : ‖η(x, t)‖2 ≤ θρ(x, t). Much effort has been made to

address ILC design for the second type of non-parametric uncertainties, which may be

globally Lipschitz continuous (GLC) [5] or locally Lipschitz continuous (LLC) [32, 33].

When the system is GLC, the popular methodology for convergence analysis is based

on contraction mapping. However, for LLC systems, the contraction mapping method-

ology is not globally applicable any more, and as an alternative, CEF-based ILC design

has been well exploited, e.g., [5, 28, 30, 31]. Relatively, there are few works that focus

on learning controller design for systems with the other two types of non-parametric un-

certainties. The second part of this thesis aims to deal with systems with uncertainties

of type (1) and (3) under the framework of ILC.

Despite the significant progress of ILC for finite dimensional systems, studies on

ILC for distributed parameter processes or infinite-dimensional processes are limited

due to the interweave of 3D dynamics in the time, space, and iteration domains. In

practice, many important industrial processes are described by distributed parameter

systems (DPSs) governed by partial differential equations (PDEs), such as heat ex-

changer, industrial chemical reactor, biochemical reactors, fluid flow, etc. Currently,

there has been some works reported on ILC of PDE systems. In [34], an iterative

learning approach is applied for the constrained digital regulation of a class of linear

hyperbolic PDE systems, where the plant model is first reduced to ordinary differen-

tial equation (ODE) systems and then approximated by the discrete-time equivalence.

In [35], ILC scheme is presented for more general spatio-temporal dynamics using nD

discrete linear system models. Without any discretization of system, [36] considers the
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design of P-type and D-Type ILC laws for a class of infinite-dimensional linear systems

using semigroup theory. Furthermore, to address the application of ILC for some spe-

cific DPSs, [37] considers ILC of flow rate in a center pivot irrigator used in dry-land

farming, which can be modeled as a spatial-temporal diffusion process in three spatial

dimensions coupled with flow in one dimension. Besides, based on Lyapunov theory,

differential-difference type ILC is augmented with proportional controller to attenuate

the unknown periodic speed variation for a stretched string system on a transporter in

[38]. In [39], the similar ILC scheme is combined with proportional-derivative con-

troller to compensate for the unknown periodic motion on the right end for a class of

axially moving material systems. In [38] and [39], ILC is mainly designed for the sta-

bility maintenance of mechanical processes. Recently, under the framework of ILC,

velocity boundary control of a quasi-linear PDE process is considered in [40], where

the convergence of output regulation is guaranteed in the steady-state stage. Addition-

ally, there are some works investigating trajectory tracking problems for both linear

and nonlinear DPSs ([41–46]) under the framework of ILC. While the ILC design in

[41–46] lies in “in domain” control, i.e., actuation penetrates inside the domain of PDE

systems. Boundary control, by contrast, is physically more realistic because actuation

and sensing are non-intrusive. Hence, as a third extension of ILC strategy, ILC design of

boundary tracking control for both linear and nonlinear PDE systems will be addressed.

The main difficulty is how to develop the direct input-output relationship of the PDE

systems.

As a real-time application of ILC, we are now at the position of considering the

precise speed tracking control of a robotic fish via ILC approach. With the increas-

ing underwater activities, many kinds of autonomous underwater vehicles (AUVs) have
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been applied for ocean exploration, scientific research, and commercial missions, etc.

Among different kinds of AUVs, robotic fish is regarded as one of the most remarkable

one because of its high efficiency, high maneuverability and low noise. In previous

robotic fish studies, the majority of works investigate how to model various fish behav-

iors and generate fish-like locomotion [47–55], as well as how to replicate the bodily

motion of swimming fish in a robot, etc. Nevertheless, the control issue of robotic fish is

still challenging due to nonlinearity, time variance, unpredictable external disturbances,

the difficulty in accurately modeling the hydrodynamic effect, etc. Up to now, efforts

in studying motion control and motion planning of robotic fish have been made, such

as speed and orientation control [56], efficient swimming control [57], target-tracking

[58–60], etc. However, as an essential part of motion control and motion planning, the

research on precise speed tracking control of robotic fish is limited. This motivates us

to apply ILC approach to robotic fish. Owning to its partial model-free property, ILC is

proven to work well despite the high nonlinearity and uncertainties in hydrodynamics,

and the speed tracking control performance can be improved significantly via ILC.

The objective of the thesis is to extend ILC approach to solve new control prob-

lems. The main contributions lie in the following aspects: ILC design for systems with

non-uniform trial lengths, systems with unstructured uncertainties, infinite dimensional

(PDE) systems, and real-time application of ILC. The contributions of the thesis are

summarized in Table 1.1.

In details, the contributions of this thesis are list as follows.

1. In Chapter 2, an ILC design problem for discrete-time linear systems with ran-

domly varying trial lengths is investigated. The novelty is that a stochastic vari-

able satisfying the Bernoulli distribution is introduced due to the stochastic prop-
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Table 1.1: The Contribution of The Thesis.

System (Plant) Trial lengths Uncertainty Method Performance

Discrete time Linear Non-uniform Linear CM-ILC ‖ · ‖E

Non-uniform GLC CM-ILC Asym. conv.

ODE Nonlinear Non-uniform Parametric CEF-ILC ‖ · ‖L2

Continuous Uniform Norm-bounded CEF-ILC ‖ · ‖L2

time PDE Linear Uniform Linear CM-ILC Asym. conv.

Nonlinear Uniform GLC CM-ILC ‖ · ‖λ

Robotic fish Nonlinear Uniform LLC CEF-ILC Unif. conv.

1 ODE: ordinary differential equation, PDE: partial differential equation, ILC: iterative learning control,

GLC: global Lipschitz continuous, LLC: local global Lipschitz continuous, CM: contraction mapping,

CEF: composite energy function, CM-ILC: CM-based ILC, CEF-ILC: CEF-based ILC, Conv.: convergence.
2 ‖ · ‖E : convergence in the sense of mathematical expectation, ‖ · ‖L2 : convergence in the sense of L2-norm

‖ · ‖λ : convergence in the sense of λ -norm, Asym. conv.: asymptotic convergence in iteration domain,

Unif. conv.: uniform convergence.

erty of trial lengths. Furthermore, a unified expression of ILC scheme for systems

with different trial lengths is presented by introducing an iteration-average oper-

ator. It turns out that the proposed ILC algorithm is able to handle tracking tasks

with non-uniform trial lengths, which thus mitigates the requirement on classic

ILC that all trial lengths must be identical. Considering the stochastic property of

trial lengths, the learning convergence condition of ILC is derived in the sense of

mathematical expectation through CM methodology.

2. In Chapter 3, ILC with non-uniform varying trial lengths is extended to continuous-

time nonlinear dynamical systems. By considering the fact that the latest trials

could provide more accurate control information than those ‘older’ trials, an ILC

scheme based on an iteratively-moving-average operator is introduced, where the

iteratively-moving-average operator incorporates control information of the few
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most recent trials. It is shown that for nonlinear affine and non-affine systems, the

proposed learning algorithm works effectively to handle the randomness of trial

lengths and nullify the tracking error.

3. In practice, a control system may implement different but highly correlated mo-

tion tasks. Whether a control system can learn consecutively from different but

highly correlated tracking tasks is of great interest and challenge. In Chapter 4,

a new adaptive ILC (AILC) scheme with a time-scaling function is proposed for

control tasks with different magnitude and time scales. The rigorous convergence

analysis for nonlinear systems with time-invariant and time-varying parametric

uncertainties are derived by applying CEF approach. As such, the learning con-

trol system is capable of fully utilizing all the learned knowledge to solve differ-

ent but somehow correlated control problems.

4. In Chapter 5, a new robust ILC (RILC) scheme is presented for state tracking

control of nonlinear MIMO systems. The main characteristic of the proposed

controller lies in its ability to deal with unstructured uncertainties that are norm-

bounded but not globally or locally Lipschitz continuous as usual. The classical

resetting condition of ILC is removed and replaced with more practical align-

ment condition. Furthermore, the proposed ILC law is extended to more general

systems with input distribution uncertainties.

5. Chapter 6 aims to construct a design and analysis framework for ILC of linear in-

homogeneous distributed parameter systems (LIDPSs), which may be hyperbolic,

parabolic, or elliptic, and include many important physical processes such as dif-

fusion, vibration, heat conduction and wave propagation as special cases. Owing

to the system model characteristics, LIDPSs are first reformulated into a matrix
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form in the Laplace transform domain. Then, through the determination of a fun-

damental matrix, the transfer function of LIDPS is precisely evaluated in a closed

form. The derived transfer function provides the direct input-output relationship

of the LIDPS, and thus facilitates the consequent ILC design and convergence

analysis in the frequency domain. The proposed control design scheme is able

to deal with parametric and non-parametric uncertainties and make full use of

the process repetition, while avoid any simplification or discretization for the 3D

dynamics of LIDPS in the time, space, and iteration domains.

6. In Chapter 7, a D-type anticipatory ILC scheme is applied to the boundary con-

trol of a class of nonlinear inhomogeneous heat equations, where the heat flux at

one side is the control input while the temperature measurement at the other side

is the control output. By transforming the inhomogeneous heat equation into its

integral form and exploiting the properties of the embedded Jacobi Theta func-

tion, the learning convergence of ILC is guaranteed through rigorous analysis.

One of the major advantages of the adopted ILC scheme is the ability to deal with

state-independent or state-dependent uncertainties. Meanwhile, due to the feed-

forward characteristic of ILC, the proposed scheme not only makes anticipatory

compensation possible to overcome the heat conduction delay in boundary output

tracking, but also eliminates the gain margin limitation encountered in feedback

control.

7. In Chapter 8, an ILC approach is applied to a two-link Carangiform robotic fish

in real time and achieves precise speed tracking performance. Firstly, a math-

ematical model for the robotic fish is established by virtue of Newton’s second

law, which is highly nonlinear and non-affine in control input. Then a P-type ILC
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algorithm is adopted for speed tracking tasks of the robotic fish, and the conver-

gence of tracking error is derived based on CEF method. By employing ILC, the

speed tracking control performance can be improved significantly without using

the perfect model. ILC is thus shown to be an appropriate and powerful mo-

tion control method for robotic fish from both theoretical analysis and real-time

experiments.
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Chapter 2

ILC for Discrete-time Linear

Systems with Randomly Varying

Trial Lengths

2.1 Introduction

ILC is usually designed for control tasks that repeat in a fixed time interval. In many

applications of ILC, nevertheless, it would not be the case that every trial ends in a fixed

time of duration. A pass might be terminated early or late, either by events that depend

on the states of the system or on the controller performance or by randomly occurring

events. Therefore, how to design ILC algorithms for systems with different trial lengths

is an interesting and challenging problem.

In existing literature, there are some works investigating the ILC problems with

non-uniform trial lengths. In [61] a non-standard ILC approach is developed for the

systems operating continuously in time. The ILC approach was applied by defining a
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“trial” in terms of completion of a single “period” of the output trajectory, where the ac-

tual trial lengths will likely be different from the desired trial length. In [25], the authors

investigate the utilization of ILC and repetitive control to implement periodic gaits. In

[24], the monotonic convergence of linear ILC systems with varying pass lengths is

considered by using the lifting method, where a concept maximum pass length error

is introduced. As an application, the ILC algorithm with variable pass lengths in [24]

is applied to trajectory tracking on a lab-scale gantry crane with output constraints in

[26]. However, to the best of our knowledge, there are no works applying the iteration-

average operator to the ILC problems with non-uniform trial lengths. In our case, the

trial lengths will randomly vary in the iteration domain. If the previous trial ends be-

fore we want it to end, it implies that some of the tracking information are missing,

which thus cannot be used to improve the current performance. When introducing the

iteration-average operator, all tracking information of the past trials will be applied for

learning simultaneously. Thus, the absent tracking information in the last trial will be

made up by that of other previous trials if there are any. Then the current performance

will be improved by fully utilizing the past control experience. Furthermore, it is prac-

tically hard or even impossible to set the initial state of the system at the same value

perfectly, the study on the initial resetting conditions has become a hotspot research in

recent years, such as [62–64], etc. In [24–26, 61], the identical initialization condition

is one of the fundamental requirements for their controller design. While by introducing

the iteration-average operator, this requirement would be removed.

In this chapter, considering the stochastic property of trial lengths, a modified ILC

scheme is developed by adopting an iteration-average operator. The learning condition

of ILC that guarantees the convergence of tracking error in mathematical expectation is
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derived through rigorous analysis. The proposed ILC scheme mitigates the requirement

on classic ILC that all trial lengths must be identical. In addition, the identical initial-

ization condition can be removed. Moreover, the extension from time-invariant systems

to time-varying systems is also addressed parallelly.

This chapter is organized as follows. Section 2.2 formulates the ILC problems with

randomly varying trial lengths. In Section 2.3, controller design and convergence anal-

ysis are presented. Further, the proposed ILC law is extended to time-varying systems

in Section 2.4. Section 2.5 gives two illustrative examples.

2.2 Problem Formulation

First of all, some notations are presented. Throughout this chapter, denote ‖ · ‖ the

Euclidean norm or any consistent norm, and ‖f(t)‖λ = supt∈{0,1,...,T}α−λ t‖f(t)‖ the λ -

norm of a vector function f(t) with λ > 0 and α > 1. Denote N the set of natural

numbers, and I the identity matrix. Moreover, define Id , {0,1, . . . ,Td}, where Td is

the desired trial length, and Ii , {0,1, . . . ,Ti}, where Ti is the trial length of the ith

iteration. When Ti < Td , it follows that Ii ⊂Id . Define Id/Ii , {t ∈Id : t /∈Ii} as

the complementary set of Ii in Id . Given two integers N1 and N2 satisfying 0≤N1 < Td

and N2 ≥ 0, respectively. Set IN , {0,1, . . . , . . . ,Td +N2} and it may be divided into

two subsets, Ia , {0,1, . . . ,Td−N1−1} and Ib , {Td−N1, . . . ,Td +N2}. On the set

Ia, the control system is deterministic, whereas on the set Ib the system trial length

is randomly varying. Denote τm , Td−N1 +m, m ∈ {0,1, . . . ,N1 +N2}, which implies

τm ∈Ib.
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Consider a class of linear time-invariant systems
xi(t +1) = Axi(t)+Bui(t),

yi(t) =Cxi(t),
(2.1)

where i ∈ N and t ∈ Ii denote the iteration index and discrete time, respectively.

Meanwhile, xi(t) ∈ Rn, ui(t) ∈ Rp, and yi(t) ∈ Rr denote state, input, and output of

the system (2.1), respectively. Further, A, B and C are constant matrices with appropri-

ate dimensions, and CB is full-rank. Let yd(t), t ∈Id be the desired output trajectory.

Assume that, for any realizable output trajectory yd(t), there exists a unique control

input ud(t) ∈ Rp such that
xd(t +1) = Axd(t)+Bud(t),

yd(t) =Cxd(t),
(2.2)

where ud(t) is uniformly bounded for all t ∈Id .

The main difficulty in designing ILC scheme for the system (2.1) is that the actual

trial length Ti is iteration-varying and different from the desired trial length Td . Here

a simple example is illustrated in Fig. 2.1 to show the variation of the trial lengths in

the iteration domain. Assume that the desired trial length is 10, namely, Td = 10, and

N1 = 3, N2 = 2. Clearly, there have Id = {0,1, . . . ,10}, IN = {0,1, . . . ,12}, Ia =

{0,1, . . . ,6} and Ib = {7,8, . . . ,12}. The span of curve i, i ∈ {1,2, . . . ,5} in Fig. 2.1

represents the trial length of the control process at the ith iteration, and the dashed line

stands for the possible values, {Td −N1, . . . ,Td +N2}, of the stochastic variable Ti. As

can be seen from Fig. 2.1, T1 = 7, T2 = 11, T3 = 9, T4 = 10 and T5 = 12. For i = 1,3,

there has Ti < Td , namely, Ii ⊂ Id . It is easy to verify that Id/I1 = {8,9,10} and

Id/I3 = {10}. Fig. 2.1 shows that the trial lengths randomly vary between 7 and 12

and they are likely different from the desired trial length.
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Figure 2.1: Randomly varying trial lengths.

Before addressing the ILC design problem with non-uniform trial lengths, let us

give some notations and assumptions that would be useful in the derivation of our main

result.

Definition 2.1 E{ f} stands for the expectation of the stochastic variable f . P[ f ] means

the occurrence probability of the event f .

Assumption 2.1 Assume that Ti ∈Ib is a stochastic variable with P[Ti = τm] = pm, m∈

{0,1, . . . ,N1 +N2}, where τm = Td−N1 +m, and 0≤ pm < 1 is a known constant.

Assumption 2.2 E{xi(0)}= xd(0).

Remark 2.1 The contraction mapping based ILC usually requires the identical initial

condition in each iteration. In Assumption 2.2, the condition is extended clearly. The

initial states of system could change randomly with E{xi(0)}= xd(0) and there are no

limitations to the variance of xi(0).

If the control process (2.1) repeats with the same trial length Td , namely, Ti = Td ,

and under the identical initial condition, a simple and effective ILC [65] for the linear

system (2.1) is

ui+1(t) = ui(t)+Lei(t +1), (2.3)
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where ei(t + 1) , yd(t + 1)− yi(t + 1), and L ∈ Rp×r is an appropriate learning gain

matrix. The convergence analysis of (2.3) is given in Appendix A.1. However, when the

trial length Ti is iteration-varying, which corresponds to a non-standard ILC process,

the learning control scheme (2.3) has to be re-designed.

2.3 ILC Design and Convergence Analysis

In this section, based on the assumptions and notations that are given in Section 2.2,

ILC design and convergence analysis are addressed, respectively.

In practice, for one scenario that the ith trial ends before the desired trial length,

namely, Ti < Td , both the output yi(t) and the tracking error ei(t) on the time interval

Id/Ii are missing, which thus cannot be used for learning. For the other scenario that

the ith trial is still running after the time instant we want it to stop, i.e., Ti > Td , the

signals yi(t) and ei(t) after the time instant Td are redundant and useless for learning.

In order to cope with those missing signals or redundant signals in different scenarios,

a sequence of stochastic variables satisfying Bernoulli distribution is defined. By using

those stochastic variables, a newly defined tracking error e∗i (t) is introduced to facilitate

the modified ILC design.

The main procedure for deriving a modified ILC scheme can be described as fol-

lows:

(1) Define a stochastic variable γi(t) in the ith iteration.

Let γi(t), t ∈IN be a stochastic variable satisfying Bernoulli distribution and taking

binary values 0 and 1. On the one hand, the relationship γi(t) = 1 represents the event

that the control process (2.1) can continue to the time instant t in the ith iteration, which

occurs with a probability of p(t), where 0 < p(t) ≤ 1 is a prespecified function of
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time t. On the other hand, the relationship γi(t) = 0 denotes the event that the control

process (2.1) cannot continue to the time instant t in the ith iteration, which occurs with

a probability of 1− p(t).

(2) Compute the probability P[γi(t) = 1].

Since the control process (2.1) will not stop within the time interval Ia, the event

that γi(t) = 1 surely occurs when t ∈Ia, which implies that p(t) = 1, ∀t ∈Ia. While

for the scenario of t ∈Ib, denote Am the event that the control process (2.1) stops at τm,

where τm = Td−N1 +m, m ∈ {0,1, . . . ,N1 +N2}. Then it follows from Assumption 2.1

that P[Am] = pm and the events Am, m ∈ {0,1, . . . ,N1 +N2}, are mutually exclusive

clearly. For t ∈ Ib, the event γi(t) = 1 corresponds to the statement that the control

process (2.1) stops at or after the time instant t. Thus,

P[γi(t) = 1] = P[
N1+N2⋃

m=t−Td+N1

Am]

=
N1+N2

∑
m=t−Td+N1

P[Am]

=
N1+N2

∑
m=t−Td+N1

pm. (2.4)

Thus, it follows that

p(t) =


1, t ∈Ia,

∑
N1+N2
m=t−Td+N1

pm, t ∈Ib.

(2.5)

Further, there has that 0 < p(t) ≤ 1. In order to demonstrate the calculation of the

probability P[γi(t) = 1] more clearly, a simple example is illustrated in Fig. 2.2. In

addition, since γi(t) satisfies Bernoulli distribution, the expectation E{γi(t)}= 1 · p(t)+

0 · (1− p(t)) = p(t).

(3) Define a modified tracking error.
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Figure 2.2: Similarly as Fig. 2.1, set Td = 10, N1 = 3 and N2 = 2, the stochastic variable Ti has
six possible values τm = 7+m, m ∈ {0,1, . . . ,5}. All of the possible outcomes are shown in the
table and the probability of the event γi(t) = 1 is related to the number of the character 1 in the
corresponding column. It is easy to verify the formulation (2.4). For instance, when t = 9, there
are four 1s in its corresponding column. Then, P[γi(9) = 1] = P[A2

⋃
· · ·
⋃

A5] = ∑
5
m=2 P[Am] =

∑
5
m=2 pm. Similarly, when t = 11, there are only two 1s in its corresponding column. Thus, it

follows that P[γi(11) = 1] = P[A4
⋃

A5] = ∑
5
m=4 P[Am] = ∑

5
m=4 pm.

Denote

e∗i (t), γi(t)ei(t), t ∈Id (2.6)

as a modified tracking error, which renders to

e∗i (t) =


ei(t), t ∈Ii,

0, t ∈Id/Ii,

(2.7)

when Ti < Td , and

e∗i (t) = ei(t), t ∈Id , (2.8)

when Ti ≥ Td .

Remark 2.2 Since the absent signals are unavailable, and the redundant signals are

useless for learning, it is reasonable to define a modified tracking error e∗i (t) as in
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(2.6), or equivalently (2.7) and (2.8). In the modified tracking error e∗i (t), the redundant

signals in ei(t) are cut off when Ti > Td , and the unavailable signals in ei(t) are set as

zero when Ti < Td .

(4) The modified ILC scheme.

Introduce an iteration-average operator [22],

A{ fi(·)},
1

i+1

i

∑
j=0

f j(·), (2.9)

for a sequence f0(·), f1(·), . . . , fi(·), which plays a pivotal role in the proposed controller.

The modified ILC scheme is given as follows,

ui+1(t) = A{ui(t)}+
i+2
i+1

L
i

∑
j=0

e∗j(t +1), t ∈Id , (2.10)

for all i ∈N , where the learning gain matrix L will be determined in the following.

Remark 2.3 As a matter of fact, the second term on the right hand side of (2.10) can

be rewritten as (i + 2)LA{e∗i (t + 1)}. In A{e∗i (t + 1)}, the error profiles e∗j(t + 1),

j = 0,1,2, . . . , i, have been reduced by (i+ 1) times. Nevertheless, by multiplying the

factor (i+2) in the feedback loop, their magnitudes can be retained even when i→ ∞.

The following theorem presents the first main result of this chapter.

Theorem 2.1 For the discrete-time linear system (2.1) and the ILC scheme (2.10),

choose the learning gain matrix L such that, for any constant 0≤ ρ < 1,

sup
t∈Id

‖I− p(t)LCB‖ ≤ ρ, (2.11)

then the expectation of the error, E{ei(t)}, t ∈Id , will converge to zero asymptotically

as i→ ∞.
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Remark 2.4 In practice, the probability distribution of the trial length Ti could be es-

timated in advance based on previous multiple experiments or by experience. In conse-

quence, the probability pm in Assumption 2.1 is known. Finally, p(t) can be calculated

by (2.5), thus is available for controller design.

Remark 2.5 From the convergence condition (2.11) and Remark 2.4, it can be found

that the only system knowledge needed for ILC is the system gradient information CB.

In the next chapter, it will be discussed that the accurate mathematical expression of

p(t) is not actually required, and we only need its upper and lower bounds when design

ILC law.

Proof. The proof consists of two parts. Part I proves the convergence of the in-

put error in iteration-average and expectation by using the λ -norm. Part II proves the

convergence of the tracking error in expectation.

Part I. Let4ui(t), ud(t)−ui(t) and4xi(t), xd(t)−xi(t) be the input and state

errors, respectively, then there have
4xi(t +1) = A4xi(t)+B4ui(t),

ei(t) =C4xi(t).
(2.12)

By the definition of iteration-average operator (2.9), A{4ui+1(t)} can be rewritten

as

A{4ui+1(t)}=
1

i+2
[4ui+1(t)+(i+1)A{4ui(t)}]. (2.13)

In addition, subtracting ud(t) from both sides of the ILC law (2.10) implies

4ui+1(t) = A{4ui(t)}−
i+2
i+1

L
i

∑
j=0

e∗i (t +1). (2.14)

Then substituting (2.14) into the right hand side of (2.13) and applying the operator
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E{·} on both sides of (2.13) yield

E{A{4ui+1(t)}}= E{A{4ui(t)}}−LE{A{e∗i (t +1)}}. (2.15)

Since both E{·} and A{·} are linear operators, the operation orders of E{·} and A{·}

can be exchanged, yielding

E{A{e∗i (t +1)}}= p(t +1)E{A{ei(t +1)}}, (2.16)

where E{γ j(t +1)e j(t +1)}= p(t +1)E{e j(t +1)} is applied as γ j(t +1) and e j(t +1)

are independent with each other. Meanwhile, from (2.12), it follows that

ei(t +1) =CA4xi(t)+CB4ui(t). (2.17)

Then, combining (2.16) and (2.17) gives

E{A{e∗i (t +1)}} = p(t +1)CAE{A{4xi(t)}}

+p(t +1)CBE{A{4ui(t)}}. (2.18)

In consequence, substituting (2.18) into (2.15) yields

E{A{4ui+1(t)}} = [I− p(t +1)LCB]E{A{4ui(t)}}

−p(t +1)LCAE{A{4xi(t)}}. (2.19)

Further, since the solution of the reference system (2.2) is

xd(t) = Atxd(0)+
t−1

∑
k=0

At−k−1Bud(k), (2.20)

it can be obtained similarly from (2.12) that

4xi(t) = At(xd(0)−xi(0))+
t−1

∑
k=0

At−1−kB4ui(k). (2.21)

Applying both operators E{·} and A{·} on both sides of (2.21) and noticing Assumption

2.2, it concludes that

E{A{4xi(t)}}=
t−1

∑
k=0

At−1−kBE{A{4ui(k)}}. (2.22)
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Then substituting (2.22) into (2.19) and taking the norm ‖ · ‖ on both sides lead to

‖E{A{4ui+1(t)}}‖ ≤ ‖I− p(t +1)LCB‖‖E{A{4ui(t)}}‖

+β

t−1

∑
k=0

α
t−k‖E{A{4ui(k)}}‖, (2.23)

where the parameter α satisfies α ≥ ‖A‖ and β , supt∈Id
‖p(t +1)LC‖‖B‖. Multiply-

ing both sides of (2.23) by α−λ t , and taking the supremum over Id , there have

sup
t∈Id

α
−λ t‖E{A{4ui+1(t)}}‖ ≤ ρ sup

t∈Id

α
−λ t‖E{A{4ui(t)}}‖ (2.24)

+β sup
t∈Id

α
−λ t

t−1

∑
k=0

α
t−k‖E{A{4ui(k)}}‖,

where the constant ρ is chosen such that (2.11) holds. From the definition of λ -norm,

it follows that

sup
t∈Id

α
−λ t

t−1

∑
k=0

α
t−k‖E{A{4ui(k)}}‖

= sup
t∈Id

α
−(λ−1)t

t−1

∑
k=0

α
−λk‖E{A{4ui(k)}}‖α(λ−1)k

≤ ‖E{A{4ui(t)}}‖λ sup
t∈Id

α
−(λ−1)t

t−1

∑
k=0

α
(λ−1)k

≤ 1−α−(λ−1)Td

αλ−1−1
‖E{A{4ui(t)}}‖λ . (2.25)

Then, combining (2.24) and (2.25), there finally have

‖E{A{4ui+1(t)}}‖λ ≤ ρ0‖E{A{4ui(t)}}‖λ , (2.26)

where ρ0 , ρ +β
1−α

−(λ−1)Td

αλ−1−1 . Since 0≤ ρ < 1 by the condition (2.11), it is possible to

choose a sufficiently large λ such that ρ0 < 1. Therefore, (2.26) implies that

lim
i→∞
‖E{A{4ui(t)}}‖λ = 0. (2.27)

Part II: Now prove the convergence of ei(t) in expectation. Multiplying both sides

of (2.26) by (i+2), it follows that

‖E{
i+1

∑
j=0
4u j(t)}‖λ ≤ ρ0‖E{

i

∑
j=0
4u j(t)}‖λ +ρ0‖E{A{4ui(t)}}‖λ . (2.28)
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According to the boundedness of ‖E{A{4ui(t)}}‖λ from (2.26), (2.27) and Lemma 1

in [22], limi→∞ ‖E{∑i
j=04u j(t)}‖λ = 0 is further derived, thus

lim
i→∞

E{4ui(t)}= lim
i→∞

[E{
i

∑
j=0
4u j(t)}−E{

i−1

∑
j=0
4u j(t)}] = 0. (2.29)

Pre multiplying the matrix C on both sides of (2.21) and taking the operator E{·} on

both sides of yield

E{ei(t)}=
t−1

∑
k=0

CAt−1−kBE{4ui(k)}, (2.30)

where Assumption 2.2 is applied. Finally, since (2.29) holds for any t ∈Id , it is proved

that limi→∞ E{ei(t)}= 0, t ∈Id .

2.4 Extension to Time-varying Systems

In this section, the proposed ILC scheme is extended to time-varying systems
xi(t +1) = A(t)xi(t)+B(t)ui(t),

yi(t) =C(t)xi(t),
(2.31)

where A(t), B(t) and C(t) are time-varying matrices with appropriate dimensions and

C(t)B(t) is full-rank. The result is summarized in the following theorem.

Theorem 2.2 For the discrete-time linear time-varying system (2.31) and the ILC algo-

rithm (2.10), choose the learning gain matrix L such that, for any constant 0≤ ρ < 1,

sup
t∈Id

‖I− p(t)L(t)C(t)B(t)‖ ≤ ρ, (2.32)

the expectation of the error, E{ei(t)}, t ∈ Id , will converge to zero asymptotically as

i→ ∞.

Proof. The proof can be performed similarly as in the proof of Theorem 1.
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Considering the desired dynamics that corresponds to (2.31), namely, (2.2) with the

matrices A,B,C replaced by A(t),B(t), and C(t), respectively, there has

xd(t) =

(
t−1

∏
k=0

A(k)

)
xd(0) (2.33)

+
t−1

∑
k=0

(
t−k−2

∏
l=0

A(t−1− l)

)
B(k)ud(k).

Since a similar relationship also holds at the ith iteration, it follows that

4xi(t) =

(
t−1

∏
k=0

A(k)

)
(xd(0)−xi(0))

+
t−1

∑
k=0

(
t−k−2

∏
l=0

A(t−1− l)

)
B(k)4ui(k). (2.34)

Now, replacing (2.20) and (2.21) in the proof of Theorem 2.1 with (2.33) and (2.34),

respectively, we can obtain that the inequality (2.26) holds, where the parameter α

satisfies α ≥ supt∈Id
‖A(t)‖ and β , supt∈Id

‖p(t + 1)L(t)C(t)‖ · supt∈Id
‖B(t)‖. By

choosing a sufficient large λ and noticing the condition (2.32), it follows that ρ0 < 1.

Hence limi→∞ ‖E{A{4ui(t)}}‖λ = 0 can be obtained similarly. Following the second

part of the proof of Theorem 2.1, it gives that limi→∞ E{ei(t)}= 0, t ∈Id .

Remark 2.6 In Theorems 2.1 and 2.2, the identical initialization condition is replaced

by E{xi(0)}= xd(0). According to (2.21), it has

ei(t) =CAt(xd(0)−xi(0))+
t−1

∑
k=0

CAt−1−kB4ui(k).

So, other than deriving the convergence of tracking error, its expectation converges

asymptotically is proved by using the expectation operator and the proposed iteration-

average based ILC scheme.

Remark 2.7 The proposed ILC law (2.10) can be extended to the following m-th (m≥

2) order ILC scheme,

ui+1(t) =
m

∑
j=1

α jui− j+1(t)+
m

∑
j=1

β je∗i− j+1(t +1), t ∈Id , (2.35)
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where α j and β j are design parameters. Similarly as the proofs of Theorems 1 and 2,

the convergence of the expectation of tracking error, E{ei(t)}, can be derived by the

contraction mapping method, and the learning convergence conditions are ∑
m
j=1 α j = 1

and ∑
m
j=1 γ j < 1, where γ j , supt∈Id

‖α j · I−β j p(t)CB‖. In (2.35), only the tracking

information of the last m trials are adopted.

2.5 Illustrative Example

In order to show the effectiveness of the proposed ILC scheme, two examples are

considered.

Example 1: Time-invariant system.

Consider the following discrete-time linear time-invariant system

xi(t +1) =


0.50 0 1.00

0.15 0.30 0

−0.75 0.25 −0.25

xi(t)+


0

0

1.00

ui(t), (2.36)

yi(t) =

(
0 0 1.00

)
xi(t),

where xi(0) = [0,0,0]T , i ∈ N . Let the desired trajectory be yd(t) = sin(2πt/50) +

sin(2πt/5)+sin(50πt), t ∈Id , {0,1, . . . ,50}, as shown in Fig. 2.3, and thus, Td = 50.

Without loss of generality, set u0(t) = 0, t ∈ Id in the first iteration. Moreover, as-

sume that N1 = N2 = 5 and that Ti is a stochastic variable satisfying discrete uni-

form distribution. Then, Ti ∈ {45,46, . . . ,55} and P[Ti = τm] = 1/11, where τm =

45+m, m ∈ {0,1, . . . ,10}. Further, the learning gain is set as L = 0.5, which ren-

ders to supt∈Id
‖I− p(t)LCB‖ ≈ 0.7273 < 1. The performance of the maximal tracking

error, ‖ei‖s , supt∈Id
‖ei‖, is presented in Fig. 2.4. It shows that the maximal tracking

error ‖ei‖s decreases from 1.801 to 0.0098 within 42 iterations.
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Figure 2.3: The reference yd with desired trial length Td = 50.
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Figure 2.4: Maximal tracking error profile of ILC with non-uniform trial length: N1 = N2 = 5.

Moreover, Fig. 2.5 gives the tracking error profiles for 10th, 20th, 40th, 80th iter-

ations, respectively. The ends of these trials are marked with the dots A, B, C and D,

respectively.

Figure 2.5: Tracking error profiles of ILC with non-uniform trial length: N1 = N2 = 5.

To demonstrate the effects of N1 and N2 on the convergence speed of the tracking

error, the learning gain is fixed as L = 0.5, and it is assumed N1 = N2 = 30. Here

Ti ∈ {20,21, . . . ,80} and P[Ti = τm] = 1/61, where τm = 20+m, m ∈ {0,1, . . . ,60},
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then it follows that supt∈Id
‖I− p(t)LCB‖ ≈ 0.7417 < 1. It can be seen from Fig. 2.6

that more than 60 iterations are needed to decrease the ‖ei‖s from 1.801 to 0.0097. The

convergence speed is obviously slower than the case N1 = N2 = 5.
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Figure 2.6: Maximal tracking error profile of ILC with non-uniform trial length: N1 = N2 = 30.

Figure 2.7: The expectation of tracking errors when the proposed ILC scheme is applied in
(2.36).
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Figure 2.8: Tracking error profiles when the proposed ILC scheme is applied in (2.36).

To show the effectiveness of the proposed ILC scheme with randomly varying initial

states, it is assumed that the learning gain L = 0.5 and N1 = N2 = 5. Assume xi(0) is
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a stochastic variable with probability P[xi(0) = v1] = 1/3, P[xi(0) = v2] = 1/3 and

P[xi(0) = v3] = 1/3, where v1 = [0,0,−1]T , v2 = [0,0,0]T , v3 = [0,0,1]T . Fig. 2.7

shows that the expectation of the tracking error E{ei(t)} will converge to zero within

80 iterations. The tracking error profiles of the proposed ILC scheme and the ILC

scheme in [24] are illustrated in Fig. 2.8 and Fig. 2.9, respectively. It is obvious that

the performance of the proposed ILC scheme is superior to that of the ILC scheme in

[24] under the situation of randomly varying initial states. Similarly, in [25] and [61],

the identical initialization condition is also indispensable.
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Figure 2.9: Tracking error profiles when the ILC scheme in [24] is applied in (2.36).

Example 2: Time-varying system.

In order to show effectiveness of our proposed ILC algorithm for time-varying sys-

tems, the following discrete-time linear time-varying system is considered

xi(t +1) =


0.2e−t/100 −0.6 0

0 0.5 sin(t)

0 0 0.7

xi(t)+


1.3

0.5

0.6

ui(t), (2.37)

yi(t) =

(
−0.5 1.5 0

)
xi(t),

where xi(0) = [0,0,0]T , i ∈ N . Similarly as example 1, let the desired trajectory be

yd(t) = sin(2πt/50)+ sin(2πt/5)+ sin(50πt), t ∈ Id = {0,1, . . . ,50}. Set u0(t) = 0,

t ∈ Id in the first iteration. Assume that N1 = N2 = 5 and Ti satisfies the binomial
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distribution with P[Ti = τm] = Cm
11 pm(1− p)11−m and p = 0.5, where τm = 45 + m,

m ∈ {0,1, . . . ,10}. Set the learning gain as L = 2, then it follows that supt∈Id
‖I −

p(t)LCB‖= ‖1−0.5 ·0.2‖= 0.9 < 1. The performance of the maximal tracking error

‖ei‖s is presented in Fig. 2.10, where ‖ei‖s decreases from 1.553 to 0.0058 within 80

iterations.
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Figure 2.10: Maximal tracking error profile of ILC with non-uniform trial length: N1 =N2 = 5.

Remark 2.8 When xi(0) is a stochastic variable, the tracking error ei(t) is also a s-

tochastic variable, and satisfies the same probability distribution with xi(0). If xi(0) is

fixed, E{ei(t)}= ei(t), and plotting ||ei||s would be a rational and clear way to demon-

strate the efficacy of the proposed ILC scheme.

2.6 Conclusion

This chapter presents the ILC design and analysis results for discrete-time linear

time-invariant or time-varying systems with non-uniform trial lengths. Due to the vari-

ation of the trial lengths, a modified ILC scheme is developed by applying an iteration-

average operator. The learning condition of ILC that guarantees the convergence of

tracking error in expectation is derived through rigorous analysis. The proposed IL-

C scheme mitigates the requirement on classic ILC that each trial must end in a fixed

time of duration. In addition, the identical initialization condition might be removed.
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Therefore, the proposed ILC scheme is applicable to more repetitive control processes.

The formulation of ILC with non-uniform trial lengths is novel and could be extended

to other control problems that are perturbed by random factors, for instance, control

systems with random factors in communication channels. In the next chapter, how to

extend the proposed ILC scheme to nonlinear control systems will be addressed.
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Chapter 3

ILC for Continuous-time Nonlinear

Systems with Randomly Varying

Trial Lengths

3.1 Introduction

In Chapter 2, an ILC design problem for discrete-time linear systems with randomly

varying trial lengths is addressed, where an ILC scheme based on the iteration-average

operator is proposed. The novelty is that a stochastic variable satisfying the Bernouli

distribution is introduced due to the stochastic property of trial lengths. Furthermore, a

unified expression of ILC scheme for systems with different trial lengths is presented.

Motivated by the ideas in Chapter 2, the ILC design problem for continuous-time non-

linear dynamical systems with randomly varying trial lengths will be addressed in this

chapter.

The main contributions of this chapter can be summarized as: (i) A new formulation
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is presented for continuous-time nonlinear dynamic systems with randomly varying

trial lengths, where the trial lengths satisfy a continuous probability distribution; (ii)

Different from Chapter 2 that considers linear systems, ILC for nonlinear affine and

non-affine dynamic systems with non-uniform trial lengths is investigated; (iii) Instead

of using the iteration-average operator that includes all the past tracking information as

in Chapter 2, an iteratively-moving-average operator that incorporates the most recent

few trials is introduced. With the ILC convergence, it is clear that, the latest trials could

provide more accurate control information than those “older” trials.

This chapter is organized as follows. Section 3.2 formulates the ILC problems with

randomly varying trial lengths. In Section 3.3, controller design and convergence anal-

ysis are presented. Further, the proposed ILC law is extended to nonlinear non-affine

systems in Section 3.4. Section 3.5 gives two illustrative examples. Throughout this

chapter, denote N the set of natural numbers, and I the identity matrix. Moreover,

denote Td the desired trial length, and Ti, i ∈N the trial length of the ith iteration.

3.2 Problem Formulation

Consider a nonlinear dynamical system
ẋi(t) = f(xi(t), t)+bui(t),

yi(t) = cT xi(t),
(3.1)

where i∈N and t ∈ [0,Ti] denote the iteration index and time, respectively. Meanwhile,

xi(t) ∈ Rn, ui(t) ∈ R, and yi(t) ∈ R denote state, input, and output of the system (3.1),

respectively. f(x, t) is Lipschitz continuous with respect to x, i.e., ‖f(x1, t)− f(x2, t)‖ ≤

f0‖x1−x2‖. Further, b ∈ Rn and c ∈ Rn are constant vectors, and cT b 6= 0. Let yd(t) ∈

R, t ∈ [0,Td ] be the desired output trajectory. Assume that, for any realizable output
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trajectory yd(t), there exists a unique control input ud(t) ∈ R such that
ẋd(t) = f(xd(t), t)+bud(t),

yd(t) = cT xd(t),
(3.2)

where ud(t) is uniformly bounded for all t ∈ [0,Td ]. The main difficulty in designing

ILC scheme for the system (3.1) is that the actual trial length Ti is iteration-varying and

may be different from the desired trial length Td .

Before addressing the ILC design problem with non-uniform trial lengths, let us

give some notations and assumptions that would be useful in the derivation of our main

result.

Definition 3.1 E{η} stands for the expectation of the stochastic variable η . P[η ≤ t]

means the occurrence probability of the event η ≤ t with a given t.

Assumption 3.1 Assume that Ti is a stochastic variable and its probability distribution

function is

FTi(t), P[Ti ≤ t] =



0, t ∈ [0,Td−N1),

p(t), t ∈ [Td−N1,Td +N2],

1, t > Td +N2,

(3.3)

where 0 ≤ p(t) ≤ 1 is a known function, and 0 ≤ N1 < Td and N2 ≥ 0 are two given

constants.

Assumption 3.2 xi(0) = xd(0).

If the control process (3.1) repeats with the same trial length Td , namely, Ti = Td ,

and under the identical initial condition, a simple and effective ILC for system (3.1) is

ui+1(t) = ui(t)+Lėi(t), (3.4)
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where ei(t), yd(t)−yi(t) is the tracking error on the interval [0,Td ], ėi(t) is the deriva-

tive of ei(t) on [0,Td ], and L ∈ R is the learning gain. However, when the trial length

Ti is iteration-varying, which corresponds to a non-standard ILC process, the learning

control scheme (3.4) has to be re-designed.

3.3 ILC Design and Convergence Analysis

In this section, based on the assumptions and notations that are given in Section 3.2,

ILC design and convergence analysis are addressed, respectively.

In practice, for one scenario that the ith trial ends before the desired trial length,

namely, Ti < Td , both the output yi(t) and the derivative of tracking error ėi(t) on the

time interval (Ti,Td ] are missing, which thus cannot be used for learning. For the other

scenario that the ith trial is still running after the time instant we want it to stop, i.e.,

Ti > Td , the signals yi(t) and ėi(t) after the time instant Td are redundant and useless for

learning. In order to cope with those missing signals or redundant signals in different

scenarios, a sequence of stochastic variables satisfying Bernoulli distribution is defined.

By using those stochastic variables, a newly defined tracking error ė∗i (t) is introduced

to facilitate the modified ILC design.

The main procedure for deriving a modified ILC scheme can be described as fol-

lows:

(1) Define a stochastic variable γi(t) at the ith iteration.

Let γi(t), t ∈ [0,Td +N2] be a stochastic variable satisfying Bernoulli distribution and

taking binary values 0 and 1. The relationship γi(t) = 1 represents the event that the

control process (3.1) can continue to the time instant t in the ith iteration, which occurs

with a probability of q(t), where 0 < q(t) ≤ 1 is a prespecified function of time t. The
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relationship γi(t) = 0 denotes the event that the control process (3.1) cannot continue to

the time instant t in the ith iteration, which occurs with a probability of 1−q(t).

(2) Compute the probability P[γi(t) = 1].

Since the control process (3.1) will not stop within the time interval [0,Td −N1), the

event that γi(t) = 1 surely occurs when t ∈ [0,Td −N1), which implies that q(t) = 1,

∀t ∈ [0,Td −N1). While for the scenario of t ∈ [Td −N1,Td +N2], the event γi(t) = 1

corresponds to the statement that the control process (3.1) stops at or after the time

instant t, which means that Ti ≥ t. Thus,

P[γi(t) = 1] = P[Ti ≥ t]

= 1−P[Ti < t]

= 1−P[Ti < t]−P[Ti = t]

= 1−P[Ti ≤ t] = 1−FTi(t), (3.5)

where P[Ti = t] = 0 is applied. Thus, it follows that

q(t) = 1−FTi(t) =



1, t ∈ [0,Td−N1),

1− p(t), t ∈ [Td−N1,Td +N2],

0, t > Td +N2

(3.6)

Since γi(t) satisfies Bernoulli distribution, the expectation E{γi(t)} = 1 ·q(t)+0 · (1−

q(t)) = q(t).

(3) Define a modified tracking error.

Denote

e∗i (t), γi(t)ei(t), t ∈ [0,Td ] (3.7)

as a modified tracking error, and

ė∗i (t), γi(t)ėi(t), t ∈ [0,Td ], (3.8)
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which renders to

ė∗i (t) =


ėi(t), t ∈ [0,Ti],

0, t ∈ (Ti,Td ],

(3.9)

when Ti < Td , and

ė∗i (t) = ėi(t), t ∈ [0,Td ], (3.10)

when Ti ≥ Td .

(4) The ILC scheme.

Different from Chapter 2, an iteratively-moving-average operator is introduced,

A{ fi(·)},
1

m+1

m

∑
j=0

fi− j(·), (3.11)

for a sequence fi−m(·), fi−m+1(·), . . . , fi(·) with m ≥ 1 being the size of the moving

window, which includes only the last m+ 1 trials since the recent trials could provide

more accurate control information for learning. The ILC scheme is given as follows,

ui+1(t) = A{ui(t)}+
m

∑
j=0

β jė∗i− j(t), t ∈ [0,Td ], (3.12)

for all i ∈N , where the learning gains β j ∈ R, j = 0,1, . . . ,m, will be determined in

the following and u−1(t) = u−2(t) = · · ·= u−m(t) = 0.

The following theorem presents the first main result of this chapter.

Theorem 3.1 For the nonlinear system (3.1) and the ILC scheme (3.12), choose the

learning gains β j, j = 0,1,2, . . . ,m, such that, for any constant 0≤ ρ < 1,

m

∑
j=0

η j ≤ ρ, (3.13)

where

η j , sup
t∈[0,Td ]

{∣∣∣∣ 1
m+1

−β jcT b
∣∣∣∣q(t)+ 1−q(t)

m+1

}
,

then the tracking error ei(t), t ∈ [0,Ti], will converge to zero asymptotically as i→ ∞.
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Remark 3.1 In practice, the probability distribution of the trial length Ti could be es-

timated in advance based on previous multiple experiments or by experience. In conse-

quence, the probability distribution function FTi(t) in Assumption 3.1 is known. Thus,

q(t) is available for controller design and can be calculated by (3.6).

Proof. Denote4ui(t), ud(t)−ui(t) and4xi(t), xd(t)−xi(t) the input and state

errors, respectively, then there has

ėi(t) = ẏd(t)− ẏi(t)

= cT (ẋd(t)− ẋi(t))

= cT (f(xd(t), t)− f(xi(t), t))+ cT b4ui(t). (3.14)

From (3.12), the following relationship can be obtained

4ui+1(t) = A{4ui(t)}−
m

∑
j=0

β jė∗i− j(t)

= A{4ui(t)}−
m

∑
j=0

β jγi− j(t)ėi− j(t)

= A{4ui(t)}− cT b
m

∑
j=0

γi− j(t)β j4ui− j(t)

−cT
m

∑
j=0

γi− j(t)β j[f(xd , t)− f(xi− j, t)]

=
m

∑
j=0

[
1

m+1
− γi− j(t)β jcT b

]
4ui− j(t)

−cT
m

∑
j=0

γi− j(t)β j[f(xd , t)− f(xi− j, t)]. (3.15)

Taking norm on both sides of (3.15) yields

|4ui+1(t)| ≤
m

∑
j=0

∣∣∣∣ 1
m+1

− γi− j(t)β jcT b
∣∣∣∣ |4ui− j(t)|+c f0

m

∑
j=0

γi− j(t)|β j|‖4xi− j‖,(3.16)

where c≥ ‖cT‖. According to Assumption 3.2, system (3.1) can be rewritten as

4xi(t) =
∫ t

0
[f(xd(τ),τ)− f(xi(τ),τ)+b4ui(τ)]dτ, (3.17)
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then

‖4xi(t)‖ ≤ f0

∫ t

0
‖4xi(τ)‖dt +b

∫ t

0
|4ui(τ)|dτ, (3.18)

where b≥ ‖b‖. By applying Gronwall Lemma, it gives

‖4xi(t)‖ ≤ be f0t
∫ t

0
|4ui(τ)|dτ

≤ be f0t
∫ t

0
eλτdτ|4ui(t)|λ

= be f0t eλ t −1
λ
|4ui(t)|λ . (3.19)

Substituting (3.19) into (3.16) implies that

|4ui+1(t)| ≤
m

∑
j=0

∣∣∣∣ 1
m+1

− γi− j(t)β jcT b
∣∣∣∣ |4ui− j(t)|

+bc f0e f0t eλ t −1
λ

m

∑
j=0

γi− j(t)|β j||4ui− j(t)|λ . (3.20)

Applying the expectation operator E on both sides of (3.20) and noting that γi(t) is the

only stochastic variable, which is independent of4ui(t), imply

|4ui+1(t)| ≤
m

∑
j=0

E
{∣∣∣∣ 1

m+1
− γi− j(t)β jcT b

∣∣∣∣} |4ui− j(t)|

+bc f0e f0t eλ t −1
λ

m

∑
j=0

E{γi− j(t)}|β j||4ui− j(t)|λ . (3.21)

According to the definition of mathematical expectation, it follows

E
{∣∣∣∣ 1

m+1
− γi− j(t)β jcT b

∣∣∣∣} =

∣∣∣∣ 1
m+1

−1 ·β jcT b
∣∣∣∣q(t)

+

∣∣∣∣ 1
m+1

−0 ·β jcT b
∣∣∣∣(1−q(t))

=

∣∣∣∣ 1
m+1

−β jcT b
∣∣∣∣q(t)+ 1−q(t)

m+1
(3.22)

and

|4ui+1(t)| ≤
m

∑
j=0

[∣∣∣∣ 1
m+1

−β jcT b
∣∣∣∣q(t)+ 1−q(t)

m+1

]
|4ui− j(t)|

+bc f0q(t)e f0t eλ t −1
λ

m

∑
j=0
|β j||4ui− j(t)|λ . (3.23)
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From (3.23) and the definition of λ -norm, there has

|4ui+1|λ ≤
m

∑
j=0

sup
t∈[0,Td ]

{∣∣∣∣ 1
m+1

−β jcT b
∣∣∣∣q(t)+ 1−q(t)

m+1

}
|4ui− j|λ

+bc f0e f0Td
1− e−λTd

λ

m

∑
j=0
|β j||4ui− j|λ . (3.24)

Define

η j , sup
t∈[0,Td ]

{∣∣∣∣ 1
m+1

−β jcT b
∣∣∣∣q(t)+ 1−q(t)

m+1

}
(3.25)

and

δ , bc f0e f0Td
1− e−λTd

λ

m

∑
j=0
|β j|. (3.26)

Then (3.24) can be rewritten as

|4ui+1|λ ≤ (
m

∑
j=0

η j +δ )max{|4ui|λ , |4ui−1|λ , . . . , |4ui−m+1|λ}, (3.27)

where 0 < q(t)≤ 1 is applied. Since δ can be made sufficiently small with a sufficiently

large λ and is independent of i, noting that ∑
m
j=0 η j ≤ ρ < 1, it follows that ∑

m
j=0 η j +

δ ≤ ρ +δ < 1. That is, as i goes to infinity, it has4ui→ 0, namely, ui→ ud .

According to the convergence of4ui and the inequality (3.19), it is obvious that

lim
i→∞
‖4xi(t)‖= 0. (3.28)

Since

|ei(t)|= |cT4xi(t)| ≤ ‖cT‖‖4xi(t)‖ ≤ c‖4xi(t)‖, (3.29)

it follows that limi→∞ ei(t) = 0.

Remark 3.2 In Assumption 3.1, it is assumed that the probability distribution is known

and the expectation of q(t) can be calculated directly. While, if p(t) is unknown, but
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its lower and upper bounds 0≤ α1 ≤ p(t)≤ α2 < 1 for t ∈ [Td−N1,Td ] are available,

where α1, α2 are known constants, then according to (3.6), there has

1−α2 ≤ q(t)≤ 1−α1, t ∈ [Td−N1,Td ].

Based on the lower and upper bounds of q(t) and convergence condition (3.13), the

learning gains can be selected as follows.

One sufficient condition of (3.13) is η j ≤ ρ

m+1 , j = 0,1,2, . . . ,m. Since

η j = sup
t∈[0,Td ]

{∣∣∣∣ 1
m+1

−β jcT b
∣∣∣∣q(t)+ 1−q(t)

m+1

}
= sup

t∈[0,Td ]

{(∣∣∣∣ 1
m+1

−β jcT b
∣∣∣∣− 1

m+1

)
q(t)

}
+

1
m+1

=

(∣∣∣∣ 1
m+1

−β jcT b
∣∣∣∣− 1

m+1

)
(1−α2)+

1
m+1

, (3.30)

the inequality η j ≤ ρ

m+1 yields

1−ρ

(m+1)(1−α2)
≤ β jcT b≤ 1+ρ−2α2

(m+1)(1−α2)
, (3.31)

where ρ ≥ α2 is required. Without loss of generality, it is assumed that cT b > 0. From

(3.31), the learning gain β j satisfies

1−ρ

(m+1)(1−α2)(cT b)
≤ β j ≤

1+ρ−2α2

(m+1)(1−α2)(cT b)
. (3.32)

Further, if cT b is unknown, but its lower and upper bounds are known, i.e., b≤ cT b≤ b,

then from (3.31), it gives

1−ρ

(m+1)(1−α2)
≤ β jb≤ β jcT b≤ β jb≤

1+ρ−2α2

(m+1)(1−α2)
. (3.33)

Therefore, β j should be selected as

1−ρ

(m+1)(1−α2)b
≤ β j ≤

1+ρ−2α2

(m+1)(1−α2)b
. (3.34)

In such case, ρ should satisfy that

ρ ≥ b+2α2b−b
b+b

,
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where

b+2α2b−b
b+b

<
b+2b−b

b+b
=

b+b
b+b

= 1.

Remark 3.3 The selection of m in the controller (3.12) is dependent on length of the

random interval for the trial length Ti. If the random interval is long, it implies that the

trial length Ti varies drastically in the iteration domain. In such case, increasing m in

some ways will improve the control performance since some of the missing information

can be made up by the average operator. While if the random interval is short, which

means that the trial length in each iteration changes slightly and is close to the desired

trial length, it is better to choose a small m. When the randomness is low, a large m

may adversely weaken the learning effect because the large averaging operation would

reduce the corrective action from the most recent trials.

3.4 Extension to Nonlinear Non-affine Systems

In this section, the proposed ILC scheme is extended to nonlinear non-affine systems
ẋi(t) = f(xi(t),ui(t), t),

yi(t) = cT (t)xi(t),
(3.35)

where f(xi(t),ui(t), t) has at least second derivatives with respect to x ∈ Rn, u ∈ R

and t, and satisfies ‖f(x1(t),u1(t), t)− f(x2(t),u2(t), t)‖ ≤ f0(‖x1(t)−x2(t)‖+ |u1(t)−

u2(t)|), c(t) ∈ Rn is a bounded vector-valued function, and cT (t)fu 6= 0, fu , ∂ f/∂u.

The result is summarized in the following theorem.

Theorem 3.2 For the nonlinear non-affine system (3.35) and the ILC algorithm (3.12),
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choose the learning gains β j(t) such that, for any constant 0≤ ρ < 1,

m

∑
j=0

η j ≤ ρ, (3.36)

where

η j , sup
t∈[0,Td ]

{∣∣∣∣ 1
m+1

−β j(t)cT (t)fi− j
u

∣∣∣∣q(t)+ 1−q(t)
m+1

}
, (3.37)

then the tracking error ei(t), t ∈ [0,Ti], will converge to zero asymptotically as i→ ∞.

Proof. The proof can be performed similarly as in the proof of Theorem 1.

The error dynamics corresponding to (3.35) is

ėi(t) = cT (t)(f(xd(t),ud(t), t)− f(xi(t),ui(t), t))

= cT (t)fi
x4xi(t)+ cT (t)fi

u4ui(t) (3.38)

where the mean value theorem is applied, and fi
x , fx(xd + θ4xi,ud(t) + θ4ui(t)),

fi
u , fu(xd +θ4xi,ud(t)+θ4ui(t)) and 0 < θ < 1. Similar as (3.16), there has

|4ui+1(t)| ≤
m

∑
j=0

∣∣∣∣ 1
m+1

− γi− j(t)β j(t)cT (t)fi− j
u

∣∣∣∣ |4ui− j(t)|

+c f0

m

∑
j=0

γi− j(t)|β j(t)|‖4xi− j‖ (3.39)

where c≥ supt∈[0,Td ]
‖cT (t)‖. Now, replacing (3.14) and (3.16) in the proof of Theorem

3.1 with (3.38) and (3.39), respectively, it obtains that the inequality (3.27) holds, where

η j is defined by (3.37) and

δ , c( f0)
2e f0Td

1− e−λTd

λ

m

∑
j=1

sup
t∈[0,Td ]

|β j(t)|.

By choosing a sufficient large λ and noticing the condition (3.36), it follows that ∑
m
j=0 η j+

δ ≤ ρ +δ < 1. Hence limi→∞ |4ui|λ = 0 can be obtained similarly, which implies that

limi→∞ ei(t) = 0.
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3.5 Illustrative Example

To show the effectiveness of the proposed ILC scheme, both numerical example and

application are considered.

Example 1: Numerical example.

Consider the following non-affine dynamical system

ẋi(t) = f (xi(t),ui(t), t),

yi(t) = xi(t),

where f (xi(t),ui(t), t), 0.5cos(xi(t))+ui(t)+0.5sin(ui(t)), xi(0) = 0, i∈N . Let the

desired trajectory be yd(t) = sin(2πt)+ sin(2πt/5)+ sin(5πt), t ∈ [0,2], and thus, Td =

2. Without loss of generality, set u0(t) = 0, t ∈ [0,2] in the first iteration. Assume that

Ti satisfies the Gaussian distribution with mean 2 and standard deviation 0.25. Further,

set m = 4 and choose the learning gain as β0 = β1 = β2 = β3 = β4 = 1/5, which renders

to η0 = η1 = η2 = η3 = η4 = 3/20 in this example, it follows that ∑
4
j=0 η j = 3/4 < 1.

The performance of the maximal tracking error ‖ei‖s , supt∈Id
‖ei‖ is presented in Fig.

3.1, where ‖ei‖s decreases from 2.351 to 0.003035 within 20 iterations. Moreover, Fig.

3.2 gives the tracking error profiles for 1st, 4th, 10th, 16th iterations, respectively. The

ends of these trials are marked with the dots A, B, C and D, respectively.

Fig. 3.3 shows the control performance of the proposed ILC law with different

choices of m in the controller (3.12). We can see that for m = 0,1,2,3,4, the larger the

value of m, the faster the convergence rate. While for m = 5, the control performance

is degraded. This indicates that for the systems with non-uniform trial lengths, the

introducing of the iteratively-moving-average operator will improve the control perfor-

mance of ILC. However, the size of moving window m cannot be increased arbitrarily.

A large m may adversely weaken the learning effect because the large averaging opera-
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Figure 3.1: Maximal tracking error profile of ILC with trial length satisfying Gaussian distri-
bution and m=4.

Figure 3.2: Tracking error profiles of ILC with trial length satisfying Gaussian distribution and
m=4.
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Figure 3.3: Maximal tracking error profiles of ILC with different choices of m.

tion would reduce the corrective action from the most recent trials.

Example 2: Application to robotic fish.

To show the applicability of the proposed ILC scheme, it is applied to the speed

control of a two-link robotic fish. The mathematical model of the two-link robotic fish
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in cruise motion is 
Mv̇ =−µv2 +F,

y = v
(3.40)

where M and v represent the mass and the velocity of the robotic fish, respectively,

µ > 0 is the water resistance coefficient, and F is the forward thrust generated by tail

motion of the robotic fish. Dividing M on both sides of the first equation in (3.40), the

system can be rewritten as 
v̇ =−αv2 +u,

y = v
(3.41)

where α , µ/M > 0 and by Least Square Method, its estimation value is α = 31.2485.

u , F/M is viewed as the control input of the system. Because of the term −αv2,

system (3.41) is local Lipschitz continuous. However, in real world the velocity of the

robotic fish is bounded, namely, there exists a constant v̄ > 0 such that |v| ≤ v̄. As such,

for any v1, v2, there has

|−αv2
1− (−αv2

2)| = α|v2
2− v2

1|

= α|v2 + v1||v2− v1|

≤ 2α v̄|v2− v1|, (3.42)

which implies the global Lipschitz continuity of system (3.41) and the applicability of

the proposed ILC scheme. Let the desired velocity trajectory be vd(t) = 48/505t2(t−

50)2, t ∈ [0,50].

To improve the control performance, the following PD-type ILC is adopted

ui+1(t) =
1

m+1

m

∑
j=0

ui− j(t)+(
m

∑
j=0

β jė∗i− j(t)−Le∗i (t)), (3.43)

where m = 2, β0 = β1 = β2 = 1/3, and e∗i (t) , γi(t)ei(t). Based on the results in [66],

the P-type learning gain L should be a negative value. Without loss of generality, set
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Figure 3.4: Maximal tracking error profile of ILC for speed control of robotic fish with N1 = 6,
N2 = 8.

Figure 3.5: Tracking error profiles of ILC for speed control of robotic fish with N1 = 6, N2 = 8.

L = −1 and u0(t) = 0.05, t ∈ [0,50]. Moreover, due to the random disturbances in

the external environment, the trial length Ti in each experiment is randomly varying.

Based on multiple experiments and estimation, Ti approximately satisfies an uniform

distribution U(44,58). Consequently, Fig. 3.4 presents the convergence of the maximal

tracking error ‖ei‖s, which shows that ‖ei‖s decreases more than 90 times within 30

iterations, and Fig. 3.5 gives the tracking error profiles for 1st, 5th, 10th, 20th iterations,

respectively.

3.6 Conclusion

This chapter presents the ILC design and analysis results for nonlinear dynamic sys-

tems with non-uniform trial lengths. Due to the variation of the trial lengths, a modified
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ILC scheme is developed by introducing an iteratively-moving-average operator. As

such, the requirement on classic ILC that each trial must end in a fixed time of duration

is mitigated. Moreover, the efficiency of the proposed ILC scheme is verified by both

numerical example and practical application. The formulation of ILC with non-uniform

trial lengths is novel and could be extended to other control problems that are perturbed

by random factors, for instance, control systems with random factors in biomedical

engineering.
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Chapter 4

Adaptive ILC for Tracking Tasks

with Different Magnitude and Time

Scales

4.1 Introduction

In practice, a control system may implement different but highly correlated motion

tasks. For instance, consider that a XY -table draws a number of circles in specified time

periods [67]. There are three different kinds of operation specifications: 1) draw all the

circles with the same radius but different periods; 2) draw all the circles with the same

periods but different radii; 3) draw all the circles which differ one from another in both

radii and periods. Obviously, those control signals are inherently correlated because: 1)

they are generated by the same robotic dynamics and 2) each motion pattern is related

(or proportional) to another either in spatial distribution or in time scale. Now, the

control problem is whether a control system can learn consecutively from different but
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highly correlated tracking tasks.

Different from Chapters 2 and 3 that randomly varying trial lengths are caused by

external disturbance, this chapter considers ILC design for systems with non-uniform

trial lengths which are aroused because of the variation of control tasks. In the existing

literature, there are some works that have investigated learning control problems for

iteration-varying control tasks. In [68], D-type, PD-type, and PID-type learning algo-

rithms were presented for tracking trajectories “slowly” varying in the iteration domain.

In that work, the difference between two consecutive iterations is assumed to be bound-

ed by a small constant. Due to the presence of non-parametric system uncertainties,

only a bounded tracking error is guaranteed if the target trajectory keeps changing in

the iteration axis. In [67, 69–71], direct learning control and recursive direct learning

control schemes were developed to make the use of previously obtained control infor-

mation to generate control input for a new trajectory. However, a difficulty encountered

in further expansion of these direct learning control schemes is the requirement for the

perfect preceding control information and the open-loop control nature. In [72], the

authors developed a new ILC method based on composite energy function, where the

target trajectories of any two consecutive iterations can be different, but the dynamics

must repeat in a fixed time interval. In a sense, it is a special case of control tasks in the

same time scale but different magnitude scales. To the best of our knowledge, there are

no works dealing with learning control problems for target trajectories that are different

in both magnitude and time scales. For these kinds of non-repeatable learning control

problems, in spite of the variations of the trajectory patterns, it should be noted that the

underlying dynamic properties of the controlled system remain the same. We need to

explore the inherent relations of different trajectory patterns and the learning scheme
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could potentially be both plant-dependent and trajectory-dependent.

In this chapter, a new adaptive iterative learning control (AILC) scheme is designed

by introducing a time-scaling factor to deal with control tasks with different magnitude

and time scales. By adopting the time-scaling transformations, all the target trajectories

are scaled into the same time scale, and the convergence of tracking errors for nonlinear

systems with time-invariant and time-varying parametric uncertainties are proved based

on Lyapunov theory. In this way, the learning control system is capable of fully utilizing

all the learned knowledge to solve different but somehow correlated control problems.

The main contribution of this chapter is to show that the limitations of traditional ILC,

that the target trajectory must be identical in iteration domain and every trial must repeat

in a fixed time duration, can be removed.

The chapter is organized as follows. In Section 4.2, learning control problem is

formulated. In Section 4.3, the controller design and convergence analysis are present-

ed. Further, the proposed AILC law is extended to nonlinear systems with time-varying

parametric uncertainties in Section 4.4. Lastly, Section 4.5 gives two illustrative exam-

ples. Throughout this chapter, for a given vector x = [x1,x2, . . . ,xn] ∈ Rn, ‖x‖ denotes

the vector norm. For any matrix A ∈ Rn×n, ‖A‖ is the induced matrix norm. For any

function h(t), t ∈ [0,T ], ‖h(t)‖L2 ,
∫ T

0 ‖h(s)‖2ds represents the L2-norm of h(t).

4.2 Problem Formulation

Consider the following nonlinear dynamic system

dx
dt

= Θf(x)+B(x, t)v(t), (4.1)
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where x ∈ Rm is the physically measurable state vector; v ∈ Rm is the control input;

Θ = diag(θ T
1 ,θ

T
2 , . . . ,θ

T
m ) ∈ Rm×n is an unknown constant parametric matrix,

θ j = [θ j,1,θ j,2, . . . ,θ j,q j ]
T ∈ Rq j , j = 1,2, . . . ,m,

m

∑
j=1

q j = n,q j ∈ Z+;

f(x) = [ f1(x), . . . , fn(x)]T ∈ Rn is a known vector valued function; B(x, t) ∈ Rm×m is a

known control input distribution matrix, which is invertible.

The target trajectory at the ith iteration is denoted as xr
i (ti) ∈ Rm, ti ∈ [0,Ti], that

could be different from iteration to iteration, where ti is the time scale and Ti is the trial

length of ith iteration. Throughout this chapter, we assume that the given trajectories

xr
i (ti) are at least continuously differentiable with respect to the time ti.

Before addressing the non-repeatable learning control problem, let us provide some

notations and definitions that would be useful in the derivation of our main result.

Definition 4.1 [67] Trajectory xi(ti), ti ∈ [0,Ti] is said to be proportional to another

trajectory x(t), t ∈ [0,T ] both in magnitude and time scales if and only if

K−1
i (ti)xi(ti) = x(t)

where K−1
i (ti) is the inverse matrix of the time-varying magnitude scaling factor Ki(ti),

diag(κi,1(ti), . . . ,κi,m(ti)) ∈ Rm×m, and ρi(t) = ti is the time scaling factor, which is

continuously differentiable and satisfies ρi(0) = 0 and ρi(T ) = Ti.

Remark 4.1 The definition “proportional both in magnitude and time scales” describes

quite general inherent relations among different trajectories and includes the following

one as a special case. When ρi(t)= t, from Definition 4.1, we have x(t)=K−1
i (ti)xi(ti)=

K−1
i (ρi(t))xi(ρi(t)) = K−1

i (t)xi(t), i.e., xi(t) = Ki(t)x(t), which means that the trajec-

tory xi(ti) and x(t) are proportional in magnitude while the time scale are the same. For

this case, it can be considered as a special case of the problem addressed in [72].
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Assumption 4.1 dρi(t)/dt > 0 and the inverse function ρ
−1
i (ti) of ρi(t) exists and is

known. The magnitude scaling matrix Ki(ti) is continuously differentiable.

Remark 4.2 dρi(t)/dt > 0 implies that ρi(t) is a monotonically increasing function

with respect to the time t. The conditions ρi(0) = 0 and ρi(T ) = Ti are satisfied for this

kind of monotonically increasing function.

Assume that xr
i (ti), i= 1,2,3, . . . are proportional to a trajectory xr(t), t ∈ [0,T ]. Ac-

cording to the Definition 4.1, there has K−1
i (ti)xr

i (ti) = xr(t). Premultiply Ki(ti) on both

sides, we can obtain xr
i (ti) =Ki(ti)xr(t) =Ki(ρi(t))xr(t). Denote xd

i (t) =Ki(ρi(t))xr(t),

i = 1,2,3, . . . , it shows that xr
i (ti) = xd

i (t), i = 1,2,3, . . . .

Since the time scale at the ith iteration is ti ∈ [0,Ti], the dynamics at the ith iteration

is

dxi

dti
= Θf(xi)+B(xi, ti)vi(ti), ti ∈ [0,Ti]. (4.2)

By applying a time-scaling transformation dti = ρ̇i(t)dt, system (4.2) can be rewritten

as

dxi

dt
=

dxi

dti
· dti

dt

= (Θf(xi)+B(xi, ti)vi(ti)) ·
dti
dt

= (Θf(xi)+B(xi, ti)vi(ti)) ·
dρi(t)

dt

= ρ̇i(t)Θf(xi)+ ρ̇i(t)B(xi,ρi(t))ui(t), (4.3)

where t ∈ [0,T ] and ui(t), vi(ρi(t)).

Denote xi(t), t ∈ [0,T ] the solution of system (4.3) and ei(t), xi(t)−xd
i (t), t ∈ [0,T ]

the tracking error. The error dynamics at the ith iteration is

dei(t)
dt

=
dxi(t)

dt
− dxd

i (t)
dt

= ρ̇i(t)Θf(xi)+ ρ̇i(t)B(xi,ρi(t))ui(t)− ẋd
i (t). (4.4)
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The control objective is to tune ui(t) such that the tracking error ei(t) converges to zero

as the iteration number i→ ∞.

As is common in ILC field, the following assumption is made.

Assumption 4.2 Initial error satisfies the identical initialization condition ei(0) = 0,

∀i ∈ Z+.

4.3 AILC Design and Convergence Analysis

In this section, based on the assumptions and notations that were given in Section

4.2, AILC law design and convergence analysis are addressed, respectively.

The proposed controller is

ui(t) = B−1
i (t)(−Γei(t)+ ẋd

i (t)/ρ̇i(t)− Θ̂i(t)f(xi)), t ∈ [0,T ] (4.5)

with the updating law

Θ̂i(t) = Θ̂i−1(t)+ ρ̇i(t)ei(t)fT (xi), (4.6)

Θ̂0(t) = 0, t ∈ [0,T ],

where Γ = diag(γ1, . . . ,γm) is the feedback gain, γ j > 0, j = 1,2, . . . ,m, Θ̂i(t) is the

estimation of Θ at the ith iteration and B−1
i (t) is the matrix such that B(xi,ρi(t))B−1

i (t)=

Im×m. Then, our main result is presented in the following theorem.

Theorem 4.1 For the nonlinear system (4.3), under the Assumption 4.2, the AILC

scheme (4.5) with (4.6) guarantees that the tracking error converges to zero pointwisely

over [0,T ], i.e., limi→∞ ei(t) = 0, ∀t ∈ [0,T ], which leads to xi(ti)→ xr
i (ti), as i→ ∞,

where xi(ti) is solutions of system (4.2).

Proof. See Appendix A.2.
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Remark 4.3 ILC design in Chapters 2 and 3 is based on the contraction mapping (CM)

method. A limitation of CM-based ILC is that it is only applicable to systems with glob-

al Lipschitz continuous nonlinear factors. As a complementary part of CM-based ILC,

adaptive ILC is developed to handle broader classes of system nonlinearities, such as

local Lipschitz continuous ones, and system uncertainties, such as time-varying para-

metric and non-parametric uncertainties.

Remark 4.4 The key idea in this chapter to deal with the iteration-varying trial lengths

is to map the iteration-varying time intervals to a fixed time interval by a class of time-

scaling maps, and then analyze the convergence of tracking error on the fixed time scale

t ∈ [0,T ]. After that by making the inverse transformation, the convergence of tracking

error on the iteration-varying time scale ti ∈ [0,Ti] can be obtained. The last part of

Theorem 4.1 shows that the convergence on the fixed time scale implies the convergence

on the iteration-varying time scales.

Remark 4.5 From (4.5) and vi(ti) = vi(ρi(t)) = ui(t), the control input at the ith itera-

tion is

vi(ti) = ui(ρ
−1
i (ti))

= B−1
i (ρ−1

i (ti)){−Γei(ρ
−1
i (ti))+

dxr
i (ti)
dti

− Θ̂
T
i (ρ

−1
i (ti))f(xi(ρ

−1
i (ti)))}.

4.4 Extension to Systems with Time-varying Parameter

In this section, the proposed AILC scheme is extended to nonlinear systems with

time-varying parameter

dx
dt

= Θ(t)f(x)+B(x, t)v(t), t ∈ [0,T ], (4.7)
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where x ∈ Rm is the physically measurable state vector; v ∈ Rm is the control in-

put; Θ(t) = diag(θ T
1 (t),θ

T
2 (t), . . . ,θ

T
m (t)) ∈ Rm×n is the unknown time-varying param-

eter matrix, θ j(t) = [θ j,1(t),θ j,2(t), . . . ,θ j,q j(t)]
T ∈ Rq j , j = 1,2, . . . ,m, ∑

m
j=1 q j = n,

q j ∈ Z+; f(x) = [ f1(x), f2(x), . . . , fn(x)]T ∈ Rn is a known vector-valued function; and

B(x, t) ∈ Rm×m is a known invertible input distribution matrix. In addition, there exists

a known continuous function g(x)> 0 such that ‖f(x)‖ ≤ g(x).

The dynamics at the ith iteration is

dxi

dti
= Θ(ti)f(x)+B(xi, ti)vi(ti), ti ∈ [0,Ti], (4.8)

It is worth noting that if we apply the time-scaling transformation dti = ρ̇i(t)dt directly

to the system (4.8), the system can be rewritten as

dxi

dt
= ρ̇i(t)ζi(t)f(xi)+ ρ̇i(t)B(xi,ρi(t))ui(t), t ∈ [0,T ], (4.9)

where ui(t) , vi(ρi(t)) and ζi(t) , Θ(ρi(t)) is iteration-time-varying. To solve the

learning problem for system (4.9) with iteration-time-varying uncertainties ζi(t), we

present the following assumption firstly.

Assumption 4.3 Assume that the time-varying parameters θ j,k(t), j = 1,2, . . . ,m, k =

1,2, . . . ,q j, are smooth and can be approximated as:

θ j,k(t) = Π
T
j,k(t)η j,k + ε j,k(t)

in a sufficiently large interval [0,T ], where T ≥maxi≥1{T,Ti}, Π j,k(t)∈Rh j,k , h j,k ∈Z+,

is a known vector-valued function, which is an orthonormal basis, η j,k ∈ Rh j,k is the

unknown constant coefficient and ε j,k(t) is the approximation error.

Due to the boundedness of θ j,k(t) for t ∈ [0,T ], there exists a constant λ j,k > 0 such
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that |ε j,k(t)| ≤ λ j,k, t ∈ [0,T ]. Let

Π j(t) = diag(Π j,1(t),Π j,2(t), . . . ,Π j,q j(t)) ∈ R(∑
q j
k=1 h j,k)×q j ,

η j = [ηT
j,1,η

T
j,2, . . . ,η

T
j,q j

]T ∈ R∑
q j
k=1 h j,k ,

ε j(t) = [ε j,1(t),ε j,2(t), . . . ,ε j,q j(t)]
T ∈ Rq j ,

then we have

θ j(t) = Π
T
j (t)η j + ε j(t), j = 1,2, . . . ,m.

It is obvious that Θ(t) can be rewritten in the matrix form

Θ(t) = η
T

Π(t)+ ε(t), (4.10)

where

Π(t) = diag(Π1(t),Π2(t), . . . ,Πm(t)) ∈ R(∑m
j=1 ∑

q j
k=1 h j,k)×n,

η = diag(η1,η2, . . . ,ηm) ∈ R(∑m
j=1 ∑

q j
k=1 h j,k)×m,

ε(t) = diag(εT
1 (t),ε

T
2 (t), . . . ,ε

T
m(t)) ∈ Rm×n,

Further, according to |ε j,k(t)| ≤ λ j,k, t ∈ [0,T ], there exists a constant λ > 0 such that

‖ε(t)‖ ≤ λ for t ∈ [0,T ].

From (4.10), we have

Θ(ti) = η
T

Π(ti)+ ε(ti), ti ∈ [0,Ti]. (4.11)

Substituting (4.11) into the system (4.8) yields

dxi

dti
= η

T
Π(ti)f(xi)+ ε(ti)f(xi)+B(xi, ti)vi(ti). (4.12)

Similarly as the previous case with time-invariant parameters, apply the time-scaling

transformation dti = ρ̇i(t)dt, t ∈ [0,T ] to system (4.12), we can obtain

dxi

dt
= ρ̇i(t)ηT

Ξi(t)f(xi)+ ρ̇i(t)ξi(t)f(xi)+ ρ̇i(t)B(x,ρi(t))ui(t), (4.13)
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where Ξi(t) , Π(ρi(t)), ξi(t) , ε(ρi(t)) and ui(t) = vi(ρi(t)). Since ‖ε(t)‖ ≤ λ for

t ∈ [0,T ] and ‖f(x)‖ ≤ g(x), we have

‖ε(t)f(x)‖ ≤ λg(x), t ∈ [0,T ].

Further, according to [0,Ti]⊆ [0,T ], it is obvious that

‖ξi(t)f(xi)‖= ‖ε(ρi(t))f(xi)‖= ‖ε(ti)f(xi)‖ ≤ λg(xi). (4.14)

Denote η̂i(t) and λ̂i(t) the estimation of η and λ at the ith iteration, respectively.

The new AILC law is proposed as

ui(t) = B−1
i (t)(−Γei(t)+ẋd

i (t)/ρ̇i(t)−η̂
T
i (t)Ξi(t)f(xi)−λ̂i(t)g(xi)sgn(ei(t))), (4.15)

where Γ= diag(γ1, . . . ,γm) is the feedback gain, γ j > 0, j = 1,2, . . . ,m; B−1
i (t) is the ma-

trix such that B(xi,ρi(t))B−1
i (t)= Im×m; and sgn(ei(t)), [sgn(ei,1(t)), . . . ,sgn(ei,m(t))]T .

The updating laws for η̂i(t) and λ̂i(t) are

η̂i(t) = η̂i−1(t)+ ρ̇i(t)Ξi(t)f(xi)eT
i (t), (4.16)

η̂0(t) = 0, t ∈ [0,T ],

and

λ̂i(t) = λ̂i−1(t)+ ρ̇i(t)g(xi)
m

∑
j=1
|ei, j(t)|, (4.17)

λ̂0(t) = 0, t ∈ [0,T ],

respectively.

The convergence property of the proposed learning controller is derived in the fol-

lowing theorem.

Theorem 4.2 For the nonlinear system (4.13), under the Assumptions 4.2, 4.3, the

AILC scheme (4.15) with (4.16) and (4.17) guarantees that the tracking error con-
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verges to zero pointwisely over [0,T ], i.e., limi→∞ ei(t) = 0, ∀t ∈ [0,T ], which implies

xi(ti)→ xr
i (ti), as i→ ∞, where xi(ti) is solutions of system (4.8).

Proof. See Appendix A.3.

In general, the discontinuous control scheme (4.15) should be avoided, since it caus-

es not only the problem of existence and uniqueness of solutions ([73, 74]), but also

chattering ([75]) that may excite high-frequency unmodeled dynamics ([76]). This mo-

tivates us to seek an appropriate smooth approximation of (4.15) that can guarantee the

boundedness of the parameter estimations η̂i(t) and λ̂i(t), as well as the convergence of

ei(t) to a reasonably small neighborhood of the origin.

Let ε > 0 be a constant and consider the following smooth learning scheme

ui(t) = B−1
i (t)(−Kei(t)+ ẋd

i (t)/ρ̇i(t)− η̂
T
i (t)Ξi(t)f(xi)− λ̂i(t)ω(xi,ei)), (4.18)

with the updating laws

η̂i(t) = η̂i−1(t)+ ρ̇i(t)Ξi(t)f(xi)eT
i (t)−µ1η̂i(t), (4.19)

η̂0(t) = 0, t ∈ [0,T ],

and

λ̂i(t) = λ̂i−1(t)+ ρ̇i(t)eT
i (t)ω(xi,ei)−µ2λ̂i(t), (4.20)

λ̂0(t) = 0, t ∈ [0,T ],

where

ω(xi,ei),



g(xi) tanh(ρ̇i(t)g(xi)ei,1(t)/ε)

g(xi) tanh(ρ̇i(t)g(xi)ei,2(t)/ε)

...

g(xi) tanh(ρ̇i(t)g(xi)ei,m(t)/ε)


∈ Rm,
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µ1,µ2 > 0 are design constants. The updating laws (4.19) and (4.20) incorporate a

leakage term based on a variant of σ modification [77, 78]. By applying the smooth

controller (4.18) with the updating laws (4.19) and (4.20), the convergence property can

be summarized in the following theorem.

Theorem 4.3 For the nonlinear system (4.13), under the Assumptions 4.2, 4.3, the AIL-

C scheme (4.18) with (4.19) and (4.20) guarantees that the tracking error ei(t) will con-

verge to the
√

2ζ -neighborhood of zero asymptotically within finite iterations, where

ζ ,
m
2

λε +
T
2

µ1trace(ηT
η)+

T
2

µ2λ
2. (4.21)

Proof. See Appendix A.4.

Remark 4.6 From the expression of ζ in (4.21), any prespecified non-zero bound of

tracking error can be obtained by tuning the design parameters ε , µ1 and µ2 appropri-

ately. More clearly, since the magnitude of ζ is proportional to ε , µ1 and µ2, a tighter

bound can be achieved by reducing ε , µ1 and µ2, if possible.

4.5 Illustrative Example

To show the effectiveness of the proposed AILC scheme, two examples are consid-

ered.

Example 1: system with time-invariant parameter

Consider the following nonlinear system

dxi

dti
= Θf(xi)+Bvi(ti),
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where

Θ =

 θ1 0

0 θ2

=

 3 0

0 2

 , f(xi) =

 x3
i,1

sin(xi,1 + xi,2)

 , B =

 2 0

0 1

 .
Let the reference trajectory in the ith iteration be

xr
i (ti),

 κi,1(ti) 0

0 κi,2(ti)


 sin(λiti)

1− cos(λiti)

 , ti ∈ [0,2π/λi], (4.22)

where λi = |sin(i)|+1/2, κi,1(ti) = cos(ti)+3/2 and κi,2(ti) = sin(ti)+3/2. Obviously,

xr
i (ti), ti ∈ [0,2π/λi] is proportional to xr(t), [sin(t),1−cos(t)]T , t ∈ [0,2π], as defined

in Definition 4.1, if ti = ρi(t) = t/λi.
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Figure 4.1: Maximal tracking errors for system with time-invariant parameter.

Set the feedback gain Γ = diag(2,1) in the controller (4.5) with (4.6) and xi(0) = 0.

The performance of the maximal tracking errors, |ei, j|s , supt∈[0,2π] |ei, j(t)|, j = 1,2 are

given in Fig. 4.1.

Moreover, Figs. 4.2 and 4.3 give the references and output profiles for the 1st and

100th iterations, respectively. Observing the output tracking profile in the 100th itera-

tion in Figs. 4.2 and 4.3, the difference between x100 and xr
100 is almost invisible.

Example 2: system with time-varying parameters

In order to show effectiveness of our proposed AILC algorithm for system with time-
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Figure 4.2: Output tracking profiles of x1 at the 1st and 100th iterations for system with time-
invariant parameter.
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Figure 4.3: Output tracking profiles of x2 at the 1st and 100th iterations for system with time-
invariant parameter.

varying parameters, we consider the following nonlinear system

dxi

dti
= Θ(ti)f(xi)+Bvi(ti),

where

Θ(ti) =

 θ1(ti) 0

0 θ2(ti)

 , f(xi) =

 xi,1 + sin(xi,2)

sin(xi,1 + xi,2)

 , B =

 2 0

0 1

 ,

θ1(ti) = esin(ti) + 2sin(cos(ti)), and θ2(ti) = sin2(ti). The same as example 1, let the

reference trajectory in the ith iteration be (4.22). Assume

θ1(ti) = η
T
1 Π1(ti)+ ε1(ti),

θ2(ti) = η
T
2 Π2(ti)+ ε2(ti),
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where

Π1(ti) = [1,sin(ti),cos(ti),sin(2ti),cos(2ti)]T ,

Π2(ti) = [1,sin(ti),cos(ti),sin(2ti),cos(2ti)]T ,

η1 = [η1,1,η1,2,η1,3,η1,4,η1,5]
T ,

η2 = [η2,1,η2,2,η2,3,η2,4,η2,5]
T .

Then

Θ(ti) =

 ηT
1 0

0 ηT
2


 Π1(ti) 0

0 Π2(ti)

+
 ε1(ti) 0

0 ε2(ti)
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Figure 4.4: Maximal tracking errors for controller with sign function.
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Figure 4.5: Output tracking profiles of x1 at the 1st and 100th iterations for controller with sign
function.

Set the feedback gain Γ= diag(2,1), g(xi) = 0.5[|xi,1+sin(xi,2)|+2|sin(xi,1+xi,2)|]

and xi(0) = 0 in the controller (4.15) with (4.16) and (4.17). The performance of the
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Figure 4.6: Output tracking profiles of x2 at the 1st and 100th iterations for controller with sign
function.
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Figure 4.7: Input signal u1 at the 100th iteration for controller with sign function.
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Figure 4.8: Input signal u2 at the 100th iteration for controller with sign function.

maximal tracking errors and the tracking performance for 1st and 100th iterations are

presented in Figs. 4.4, 4.5 and 4.6, respectively. In addition, Figs. 4.7 and 4.8 give the

control input signals at the 100th iteration. It can be seen that since the sign function is

used in the controller (4.15), the input signals oscillate at high frequencies.

To avoid the chattering phenomena and demonstrate the effect of the function tanh(•),

we fix the feedback gain K = diag(2,1), g(xi) = 0.5[|xi,1+sin(xi,2)|+2|sin(xi,1+xi,2)|]
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Figure 4.9: Maximal tracking errors for smoothed controller.
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Figure 4.10: Output tracking profiles of x1 at the 1st and 100th iterations for smoothed con-
troller.

and xi(0) = 0 in the controller with tanh(•) and set ε = 0.1. In addition, we choose

µ1 = 10−3, µ2 = 10−2 in the updating laws (4.19) and (4.20). The simulation results

are shown in Figs. 4.9, 4.10, 4.11, 4.12 and 4.13. Although the convergence speed by

applying the controller with tanh(•) is slower than that of the controller with sign(•),

control signals with tanh(•), as shown in Figs. 4.12 and 4.13, are smooth. It implies

that the controller with tanh(•) is more applicable to practical systems.
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Figure 4.11: Output tracking profiles of x2 at the 1st and 100th iterations for smoothed con-
troller.
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Figure 4.12: Input signal u1 at the 100th iteration for smoothed controller.
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Figure 4.13: Input signal u2 at the 100th iteration for smoothed controller.

4.6 Conclusion

This chapter presents the AILC law design and analysis results for trajectories with

different magnitude and time scales. Due to the variation of the magnitude and time

scales, a new AILC scheme is developed by introducing time-scaling transformations

and the convergence of tracking error is derived based on Lyapunov theory. The pro-

posed AILC scheme overcomes the limitation of traditional ILC that the target trajectory

must be identical in all iterations. In addition, the requirement on classic ILC that every

trial must repeat in a fixed time duration is absolutely removed. The design method is

novel and it is shown that the learning control system is capable of fully utilizing all the

learned knowledge despite the iteratively varying tracking tasks.
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Chapter 5

Robust ILC for Systems with

Norm-bounded Uncertainties

5.1 Introduction

In the research field of ILC, two categories of uncertainties are considered, namely,

parametric ones and non-parametric/unstructured ones. For the former class, the system

model is assumed to be linear in parameters, and adaptive ILC scheme is developed to

learn the unknown system parameters pointwisely in the iteration domain [27–30]. For

the latter class, there are mainly three types of unstructured uncertainties [31]: (1) the

uncertainty itself is norm-bounded by a known function ρ(x, t): ‖η(x, t)‖2≤ ρ(x, t), (2)

the variation of uncertainty is norm-bounded by a known function ρ(x1,x2, t): ‖η(x1, t)−

η(x2, t)‖2 ≤ ρ(x1,x2, t)‖x1− x2‖2, and (3) the uncertainty itself is norm-bounded but

with unknown coefficient θ : ‖η(x, t)‖2 ≤ θρ(x, t). Much effort has been made to

address ILC design for the second type of non-parametric uncertainties, which may be

globally Lipschitz continuous (GLC) [5] or locally Lipschitz continuous (LLC) [32, 33].
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When the system is GLC, the popular methodology for convergence analysis is based on

contraction mapping. However, for LLC systems, the contraction mapping methodolo-

gy is not globally applicable any more, and as an alternative, composite energy function

(CEF) based ILC design has been well exploited, e.g., [28], [5, 30, 31]. Except for ILC,

many other control approaches also consider the second type of non-parametric uncer-

tainties, such as adaptive fuzzy output feedback control [79, 80], sliding mode control

[81], etc.

Relatively, there are few works that focus on learning controller design for sys-

tems with the other two types of non-parametric uncertainties. In [82], a robust adap-

tive learning controller is designed for uncertain nonlinear systems, in which the non-

parametric uncertainty is simply bounded by a constant. In [83], a repetitive learning

control scheme is proposed for nonlinear systems with structured periodic and unstruc-

tured aperiodic uncertainties, where the unstructured uncertainties are confined by dif-

ferentiable bounding functions. Further, in [84], a robust ILC (RILC) law is developed

for uncertain systems with the first type unstructured uncertainties. Notice that all the

systems considered in [82–84] are single-input single-output (SISO). It would be mean-

ingful to extend those learning type controllers to more general multi-input multi-output

(MIMO) systems, especially with more general unstructured uncertainties.

In this chapter, a new RILC scheme is developed for a class of nonlinear MIMO

systems under the alignment condition [33]. The involved unstructured uncertainties

include the first type or the third type of unstructured uncertainties as a special case,

and the bounding function ρ(x, t) could be any LLC function. Notice that the two types

of unstructured uncertainties can be unified by setting θ = 1 in the first type. Hence, the

idea behind the proposed controller is to parameterize the bounding functions, and then
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learn those parametric uncertainties pointwisely in the iteration domain. In such sense,

ILC of systems with non-parametric uncertainties is fulfilled by a parametric adapta-

tion method. The main contributions of this chapter can be summarized as follows:

(1) robust iterative learning controller design and analysis are presented for nonlinear

systems that possess the first or third-type of unstructured uncertainties; (2) input distri-

bution uncertainties are addressed in the new controller design; (3) the classical reset-

ting condition of iterative learning control is removed and replaced with more practical

alignment condition; (4) effort is also made to solve the discontinuity issue of control

input profile, and to extend the considered systems to more general scenarios.

The rest of this chapter is organized as follows. In Section 5.2, RILC with the

alignment condition is investigated for MIMO nonlinear system. A more generic for-

mulation of problem is considered in Section 5.3 with uncertainties in input distribution

matrix. At last, an illustrative example is presented in Section 5.4 to demonstrate the

effectiveness of the proposed control scheme. Throughout this chapter, denote R the set

of real numbers. For a given vector x = [x1,x2, . . . ,xn] ∈ Rn, ‖x‖2 denotes the l2 vector

norm. For any matrix A ∈Rn×n, ‖A‖ is the induced matrix norm. For any function h(t),

t ∈ [0,T ],
∫ T

0 ‖h(s)‖2
2ds represents the L2-norm of h(t). Denote | · | the absolute value.

5.2 RILC of systems with non-parametric uncertainties

5.2.1 Problem formulation

Consider the following MIMO nonlinear system

ẋi = fi +wr +Biui(t), (5.1)
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where i is the iteration index; t ∈ [0,T ], T is the trial length; xi , xi(t) ∈ Rn are the

physically measurable vector valued system states; wr ,w(xr, t)∈Rn is a known vector

valued function; Bi ,B(xi, t)∈Rn×n is a known control input distribution matrix, which

is invertible; ui(t) ∈ Rn is the system input; fi , f(xi, t) ∈ Rn is a lumped uncertainty,

which is norm-bounded

‖f(xi, t)‖2 ≤ ρ(xi, t), (5.2)

with ρ(xi, t)> 0 being a known LLC function.

The desired state is generated by the following reference model

ẋr(t) = wr , w(xr, t), t ∈ [0,T ], (5.3)

where xr ∈ Rn is the target trajectory, and wr is continuous with respect to all its ar-

guments. Define the tracking error ei(t) , xi(t)− xr(t). The error dynamics at the ith

iteration is

ėi = fi +Biui(t). (5.4)

The control objective is to track the desired trajectory xr(t), t ∈ [0,T ] by determining a

sequence of control inputs ui(t), such that the tracking converges as the iteration number

i increases.

For a smooth transfer during the update of iterations, the following alignment con-

dition is assumed.

Assumption 5.1 In each iteration of ILC, the initial states of the system (5.1) and its

desired correspondence (5.3) satisfy the alignment condition, namely, xi−1(T ) = xi(0)

and xr(0) = xr(T ). As such, ei−1(T ) = ei(0), ∀i ∈ Z+ 4= {1,2,3, · · ·}.

Remark 5.1 Most practical systems operate continuously in time. Hence, resetting

them to the identical initial condition (i.i.c.) before proceeding to the next iteration, as
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requested in traditional ILC, might be difficult or even impossible. In such case, the

alignment condition would be more rational.

5.2.2 RILC design and convergence analysis

The proposed controller is

I1 : ui(t) = B−1
i [−Γei(t)− θ̂i(t)ρ(xi, t)sgn(ei(t))], t ∈ [0,T ], (5.5)

where Γ ∈ Rn×n is a control gain matrix that is symmetric and positive definite; B−1
i ,

B(xi, t)−1 is the inverse of B(xi, t); and sgn(ei(t)), [sgn(e1,i(t)),sgn(e2,i(t)), . . . ,sgn(en,i(t))]T

with ei(t), [e1,i(t),e2,i(t), . . . ,en,i(t)]T . The updating law for θ̂i(t) ∈ R is

θ̂i(t) = θ̂i−1(t)+ γρ(xi, t)
n

∑
k=1
|ek,i(t)|, (5.6)

θ̂0(t) = 0, t ∈ [0,T ],

where γ > 0 is the learning gain and | · | represents absolute value. It can be seen that

(5.5) consists of a robust feedback part and a parametric learning part.

In order to facilitate the analysis of the proposed RILC, the following CEF is intro-

duced

Ei(t) =
1
2

eT
i (t)ei(t)+

1
2γ

∫ t

0
φ

2
i ds, (5.7)

where φi , θ̂i(t)− 1 is the virtual estimation error. The convergence property of the

proposed RILC scheme is summarized in the following theorem.

Theorem 5.1 For the nonlinear system (5.1) under the alignment condition, the RILC

scheme (5.5)-(5.6) guarantees that the tracking error ei(t), t ∈ [0,T ] converges to zero

asymptotically in the sense of L2-norm as i→ ∞.

Proof. See Appendix A.5.
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In general, the discontinuous control scheme (5.5) should be avoided, since it caus-

es not only the problem of existence and uniqueness of solutions ([73, 74], but also

chattering ([75]) that might excite high-frequency unmodeled dynamics ([76]). This

motivates us to seek an appropriate smooth approximation of (5.5) that can guarantee

the boundedness of the parameter estimation θ̂i(t) as well as the convergence of ei(t) to

a prespecified small neighborhood of the origin.

Let ε > 0 be a constant and consider the following smooth learning scheme

I2 : ui(t) = B−1
i (−Γei(t)− θ̂i(t)ω(xi,ei)), t ∈ [0,T ], (5.8)

with the updating law

θ̂i(t) = θ̂i−1(t)+ γeT
i (t)ω(xi,ei)−µθ̂i(t), (5.9)

θ̂0(t) = 0, t ∈ [0,T ],

where

ω(xi,ei),



ρ(xi, t) tanh(ρ(xi, t)e1,i(t)/ε)

ρ(xi, t) tanh(ρ(xi, t)e2,i(t)/ε)

...

ρ(xi, t) tanh(ρ(xi, t)en,i(t)/ε)


∈ Rn,

and µ > 0 is a constant. From (5.8), it can be seen that the sign function in the control

law (5.5) is smoothed by the hyperbolic tangent function. Based on a variant of σ -

modification [77, 78], the updating law (5.9) incorporates a leakage term −µθ̂i(t) to

increase the robustness of the learning algorithm. By applying the smooth controller

(5.8) with the updating law (5.9), the convergence property is summarized as follows.

Theorem 5.2 For the nonlinear system (5.1) under the alignment condition, the modi-

fied RILC scheme (5.8)-(5.9) guarantees that the tracking error ei(t) will converge to the
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ζ -neighborhood of zero asymptotically in the sense of L2-norm within finite iterations,

where

ζ ,
nε

2λmin
+

µT
2λminγ

+ ε, (5.10)

with λmin,n,T,µ being the minimal eigenvalue of feedback gain Γ, the dimension of

system state x, the trial length of process in each iteration, and the leakage gain, re-

spectively, and ε > 0 being a sufficiently small constant.

Proof. See Appendix A.6.

Remark 5.2 From the expression of ζ in (5.10), any prespecified non-zero bound of

tracking error can be obtained by tuning the design parameters ε , µ,γ , and λmin ap-

propriately. More clearly, since the magnitude of ζ is proportional to µ as well as the

inverses of γ and λmin, a tighter bound can be achieved by using a high-gain feedback,

a high-gain learning, and less robustness concern, if possible.

5.2.3 RILC for systems with the third type of unstructured uncertainties

Note that in Subsection 5.2.2, the bounding function ρ(xi, t) is assumed to be ful-

ly known. If the unstructured uncertainty is the third type one, namely, ‖f(xi, t)‖2 ≤

θρ(xi, t), where θ is an unknown constant or continuous function of t, our approach

still applies and the result is summarized as follows.

Theorem 5.3 For the nonlinear system (5.1) with ‖f(xi, t)‖2≤ θρ(xi, t) under the align-

ment condition, the RILC scheme (5.5)-(5.6) guarantees that the tracking error ei(t),

t ∈ [0,T ] converges to zero asymptotically in the sense of L2-norm as i→ ∞.
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Stimulated by (5.7), the following CEF is built to analyze the convergence of system

tracking,

Ei(t) =
1
2

eT
i (t)ei(t)+

1
2γ

∫ t

0
φ

2
i ds,

where φi , θ̂i(t)−θ is the estimation error of parametric uncertainty embedded in the

bounding function. More details in proving Theorem 5.3 are given in Appendix A.7.

5.3 Extension to more generic systems

To show the generality of the proposed RILC scheme, consider a more general class

of deterministic uncertain dynamic systems,

ẋi = fi +wr +Bi[(I +Hi)ui(t)+di], ∀t ∈ [0,T ], (5.11)

where xi, fi,wr,Bi, and ui are same as in (5.1), while Hi
4
= H(xi, t) ∈ Rn×n represents

the additional uncertainties in the input distribution matrix and di , d(xi, t) ∈ Rn is the

state-dependent input disturbance. In (5.11), I denotes the identity matrix of appropriate

dimension. Further, fi, di and Hi are norm-bounded, namely, for any xi ∈ Rn,

‖f(xi, t)‖2 ≤ αi, ‖d(xi, t)‖2 ≤ βi, ‖H(xi, t)‖ ≤ κi,

where αi , α(xi, t) > 0 and βi , β (xi, t) > 0 are known LLC functions, and κi ,

κ(xi, t) > 0 is a known bounded function. Moreover, it is assumed that a constant

ξ ∈ (0,1) can be found such that xT (ξ I +Hi)x≥ 0, ∀x ∈ Rn, implying that the control

direction is certain.

The dynamics of state tracking error will be

ėi = ẋi− ẋr
i = fi +Bi[(I +Hi)ui(t)+di]. (5.12)
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Under the alignment condition described in Assumption 5.1, there has ei(0) = ei−1(T ).

The new RILC law is proposed as

I3 : ui(t) = B−1
i [−Γei(t)− θ̂i(t)α(xi, t)sgn(ei)]− η̂i(t)β (xi, t)

BT
i ei

‖BT
i ei‖2

− BT
i ei

(1−ξ )‖eT
i Bi‖2

[
κ(xi, t)‖Γ‖‖ei‖2

‖Bi‖
+

√
nκ(xi, t)αi|θ̂i(t)|
‖Bi‖

+κ(xi, t)β (xi, t)|η̂i(t)|] (5.13)

with the updating laws

θ̂i(t) = θ̂i−1(t)+ γ1α(xi, t)
n

∑
k=1
|ek,i|, (5.14)

θ̂0(t) = 0, t ∈ [0,T ],

and

η̂i(t) = η̂i−1(t)+ γ2β (xi, t)‖eT
i Bi‖2, (5.15)

η̂0(t) = 0, t ∈ [0,T ],

where Γ ∈Rn×n,γ1 > 0,γ2 > 0 are the feedback and learning gains respecitvely, θ̂i(t) ∈

R and η̂i(t) ∈ R are two virtual parametric estimations at the ith iteration.

In order to analyze the convergence of tracking error, the following CEF is intro-

duced

Ei(t) =
1
2

eT
i (t)ei(t)+

1
2γ1

∫ t

0
φ

2
i ds+

1
2γ2

∫ t

0
ψ

2
i ds, (5.16)

where φi , θ̂i(t)− 1 and ψi , η̂i(t)− 1. The fourth main result of this chapter is pre-

sented in the following.

Theorem 5.4 For the nonlinear system (5.11) under the alignment condition, the RILC

scheme (5.13)-(5.15) guarantees that the tracking error ei(t), t ∈ [0,T ] converges to

zero asymptotically in the sense of L2-norm as i→ ∞.
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Proof. See Appendix A.8.

Remark 5.3 The RILC law (5.13) consists of four terms: the first term is a robust

feedback term that is same as in I1 and I2, the second and third terms are used to learn

the unstructured uncertainties fi and di respectively, and the last term is an additional

part to compensate for the uncertainties in input distribution.

Remark 5.4 The smoothing procedure proposed in Subsection 2.2 is still applicable

for the RILC law I3 and the smooth control law corresponding to I3 can be given as

follows:

ui(t) = B−1
i [−Γei(t)− θ̂i(t)ω(xi,ei)]− η̂i(t)β (xi, t)

BT
i ei

‖BT
i ei‖2

(5.17)

− BT
i ei

(1−ξ )‖eT
i Bi‖2

[
κ(xi, t)‖Γ‖‖ei‖2

‖Bi‖
+

√
nκ(xi, t)α(xi, t)θ̂i(t) tanh(θ̂i(t))

‖Bi‖

+κ(xi, t)β (xi, t)η̂i(t) tanh(η̂i(t))] .

Moreover, only the first type of unstructured uncertainties is considered here. Parallel

to Subsection 2.3, similar RILC scheme can be designed for system (5.11) when the

third type of unstructured uncertainties is considered.

5.4 An illustrative example

To demonstrate the efficacy of the proposed RILC scheme, the nonlinear system

(5.11) with

fi =

 x1,i + sin(x2,i)

2sin(x1,i + x2,i)

 , wr =

 4π cos(8πt)

4π sin(16πt)

 ,

Bi =

 2+ sin(x1,i)+0.1sin(2πt) 0

0 1+ sin(x2,i)+0.1sin(4πt)
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is considered. Let the target trajectory be

xr(t),

 0.5sin(8πt)+1

−0.25cos(16πt)−0.5

 , t ∈ [0,0.5]. (5.18)

In order to show the effectiveness of the proposed controllers Ii, i = 1, · · · ,3, simula-

tions were performed in two cases: (1) apply the controllers I1 and I2 to the system

by assuming Hi = 0 and di = 0; (2) adopt the controller I3 to the system for non-zero

Hi and di.

Case 1: Hi = 0 and di = 0.

Set the feedback gain Γ = diag(3,2) in the controllers I1 and I2, as well as γ = 1

in the updating laws (5.6) and (5.9) with µ = 0. Moreover, let ε = 0.1, x1(0) =

[1.5,−0.4]T , and θ̂0(t) = 0, t ∈ [0,0.5]. The performance of the maximal tracking

errors, |ei, j|s , supt∈[0,0.5] |ei, j(t)|, j = 1,2 and input signals of the RILC scheme I1

are illustrated in Fig. 5.1 and Fig. 5.2, respectively, and those of I2 are presented in

Fig. 5.3 and Fig. 5.4, respectively. It can be seen from Fig. 5.1 and Fig. 5.3 that the

convergence performance of I1 is superior to that of I2. However, the discontinuity

in the input signals of I1 in Fig. 5.2 is smoothed by the hyperbolic tangent function in

I2, which is shown in Fig. 5.4. These observations are consistent with our analysis in

the controller design parts.
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Figure 5.1: Maximal tracking error profiles when the RILC law I1 is applied, and the tracking
errors will converge to zero asymptotically as i→ ∞.

79



Chapter 5. Robust ILC for Systems with Norm-bounded Uncertainties

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−2

−1

0

1

2

Time (s)

In
pu

t s
ig

na
l

 

 

u
1,50

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−20

−10

0

10

20

Time (s)

In
pu

t s
ig

na
l

 

 

u
2,50

Figure 5.2: Input signals at 50th iteration when the RILC law I1 is applied. Due to the sign
function in I1, the input signals have high amount of chattering phenomenon.
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Figure 5.3: Maximal tracking error profiles when the RILC law I2 is applied. By virtue of the
use of the hyperbolic tangent function, the tracking errors will converge to a neighborhood of
zero asymptotically.
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Figure 5.4: Input signals at 50th iteration when the RILC law I2 is applied. Benefit from the
hyperbolic tangent function, the discontinuity in the input signals of I1 is smoothed.

Case 2: Hi 6= 0 and di 6= 0.

Assume that

Hi =−0.1sin(x1,i), di =

 0.1sin(x1,i)

0.2sin(x2,i)

 .
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The RILC law adopted here is the smoothed I3, namely,

ui(t) = B−1
i [−Γei(t)− θ̂i(t)ω(xi,ei)]− η̂i(t)βi

BT
i ei

‖BT
i ei‖2

(5.19)

− BT
i ei

(1−ξ )‖eT
i Bi‖2

[
κi‖Γ‖‖ei‖2

‖Bi‖
+

√
2κiαiθ̂i(t) tanh(θ̂i(t))

‖Bi‖
+κiβiη̂i(t) tanh(η̂i(t))

]
θ̂i(t) = θ̂i−1(t)+ γ1eT

i (t)ω(xi,ei), (5.20)

η̂i(t) = η̂i−1(t)+ γ2βi‖eT
i Bi‖2, (5.21)

and

ω(xi,ei) =

 αi tanh(αie1,i(t)/ε)

αi tanh(αie2,i(t)/ε)

 ∈ R2,

αi = 2[(x1,i + sin(x2,i))
2 +4sin2(x1,i + x2,i)]

1/2,

βi = 0.2[sin2(x1,i)+4sin4(x2,i)]
1/2,

κi = 0.1|sin(x1,i)|.

Similar to Case 1, the feedback gain is set as Γ= diag(3,2), ε = 0.1, x1(0)= [1.5,−0.4]T ,

and θ̂0(t) = 0, t ∈ [0,0.5]. Furthermore, let γ1 = 1, γ2 = 4, ξ = 0.1, and η̂0(t) = 0,

t ∈ [0,0.5].
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Figure 5.5: Maximal tracking error profile when the RILC law (5.19)-(5.21) is applied. The
tracking errors will converge to a neighborhood of zero asymptotically because of the proposed
smoothing procedure.

The performance of the maximal tracking errors is given in Fig. 5.5. It can be seen

that the errors are decreased dramatically after a few iterations, and ultimately enter into
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the prespecified bound ε after 10 iterations’ learning. In addition, as shown in Fig. 5.6,

the discontinuity of control input is avoided due to the proposed smoothing procedure.
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Figure 5.6: Control input profile when the RILC law (5.19)-(5.21) is applied, and the disconti-
nuity of control input is avoided due to the use of the hyperbolic tangent function.

5.5 Conclusion

A new RILC scheme is developed for a class of nonlinear MIMO systems with non-

parametric uncertainties under the alignment condition. To deal with the norm-bounded

uncertainties, a composite energy function is introduced to prove the asymptotical con-

vergence of the tracking error. In addition, general problem formulation with uncer-

tain input distribution matrix is also investigated. The efficiency of the proposed RILC

scheme is verified by a simulated example. Under the framework of ILC, our idea

could be extended along the following directions: (1) extension to systems with non-

square uncertain input distribution matrix, (2) extension to output tracking control or

state tracking control but with input or state constraints, (3) extension to systems whose

nonlinear part does not belong to any of the three types of uncertainties defined in this

chapter, which would be addressed in the next research phase.
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Chapter 6

ILC for Linear Inhomogeneous

Distributed Parameter Systems

6.1 Introduction

Different from the previous four chapters that focus on ILC design of discrete-time

or ODE systems, this thesis starts to discuss the applicability of ILC approach to PDE

systems in this chapter.

Currently, the vast majority of the work reported on ILC considers finite-dimensional

systems but there has been some work reported on ILC of distributed parameter sys-

tems (DPSs) governed by partial differential equations (PDEs). In [34], an iterative

learning approach is applied for the constrained digital regulation of a class of linear

hyperbolic PDE systems, where the plant model is first reduced to ordinary differen-

tial equation (ODE) systems and then approximated by the discrete-time equivalence.

In [35], ILC scheme is presented for more general spatio-temporal dynamics using nD

discrete linear system models. Without any discretization of system, [36] considers the
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design of P-type and D-Type ILC laws for a class of infinite-dimensional linear sys-

tems using semigroup theory. It is worthy of noticing that the aforementioned three

works all adopt distributed control structure, namely, the number of control actuators

is more than one and they are uniformly distributed along the spatial domain. Further,

to address the application of ILC for some specific DPSs, [37] considers ILC of flow

rate in a center pivot irrigator used in dry-land farming, which can be modeled as a

spatial-temporal diffusion process in three spatial dimensions coupled with flow in one

dimension. In [38], based on Lyapunov theory, differential-difference type ILC is aug-

mented with proportional controller to attenuate the unknown periodic speed variation

for a stretched string system on a transporter. In [39], the similar ILC scheme is com-

bined with proportional-derivative controller to compensate for the unknown periodic

motion on the right end for a class of axially moving material systems. In [38] and

[39], ILC is mainly designed for the stability maintainence of mechanical processes.

Recently, under the framework of ILC, velocity boundary control of a quasi-linear PDE

process is considered in [40], where the convergence of output regulation is guaranteed

in the steady-state stage. In addition, [85–88] extend the idea of ILC to active control

of fluid flows in wind turbine, combustor, etc. Investigating all the available results in

this field, ILC for infinite-dimensional processes demonstrates clear differences to IL-

C for finite-dimensional processes in design and analysis, e.g., the infinite-dimensional

characteristic of system, the interweave of 3D dynamics in the time, space, and iteration

domains, and the absence of universal analysis tools in convergence analysis [20].

The study of this chapter is motivated by the following facts. First, up to the present,

all the references that address ILC of linear and nonlinear PDEs are focusing on some

specific processes, where the controller design highly depends on the properties of sys-
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tem model. Second, many industrial and engineering processes can be described by

linear or linearized PDE models, although nonlinear PDEs would have been of interest

from a practical viewpoint [89]. Meanwhile, the involved system parameters or even

inhomogeneous source terms may change with operating conditions. Third, parametric

or non-parametric uncertainties can be dealt with by ILC easily under repetitive control

environment, owing to the model-free nature in the design process of learning controller

[90]. In association with the above observations, this chapter aims at ILC design and

analysis for general linear inhomogeneous distributed parameter systems (LIDPSs) that

may be hyperbolic, parabolic, or elliptic, and include many important physical process-

es such as diffusion, vibration, heat conduction and wave propagation as special cases.

In order to overcome the difficulties that are associated with ILC of LIDPSs, the system

equations are first reformulated into a matrix form in the Laplace transform domain.

Through determination of a fundamental matrix, the system transfer function is then

precisely evaluated in a closed form. The transfer function of a LIDPS contains all

information required to predict the system spectrum, the system response under any ini-

tial and external disturbances, and the stability of the system response. Meanwhile, the

derived transfer function clearly demonstrates the input-output relationship of system,

and thus facilitates the consequent ILC design and convergence analysis in the frequen-

cy domain. As a result, one can iteratively tune the boundary input condition such that

the output at the concerned position can track the desired reference pointwisely. Owing

to the fact that ILC is a feedforward control, the proposed scheme not only makes antic-

ipatory compensation possible to overcome the time delay in boundary output tracking,

but also eliminates the gain margin limitation encountered in feedback control.

The main contributions of this chapter can be summarized as follows.
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(i) A uniform design and analysis framework is presented for ILC of LIDPSs in the

frequency domain. Nevertheless, [20, 34–40] consider the ILC of LIDPSs or

DPSs all in the time domain.

(ii) Instead of simplifying the infinite-dimensional PDEs to finite-dimensional ODEs

and/or replacing them by the discrete-time equivalences as in [34, 35, 37], the

model approximation problem is avoided in controller design. Thus the often

physically motivated model is advantageously maintained throughout the entire

control design process. In doing so, non-physically motivated parameters, like

discretization parameters are avoided [91].

(iii) Different from [34–36] that use a distributed control structure, LIDPSs with point

(boundary) control is considered, namely, both the input actuator and the output

sensor are unique. Such scenario is more practical and implementable in certain

applications [92–94].

(iv) Instead of considering the stability or set-point problem as in [34, 38–40], more

general output tracking problem is considered.

This chapter is organized as follows. In Section 6.2, problem formulation is first

given. In Section 6.3, the details for calculating the input-output transfer functions for

the considered LIDPSs is presented. In consequence, based on the derivation in Section

6.3, ILC design and convergence analysis are given in Section 6.4. Then, Section 6.5

addresses the robustness problem of the ILC scheme. At last, an illustrative example is

presented in Section 6.6.
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6.2 Problem Formulation

Consider the one-dimensional, nth-order, linear inhomogeneous PDE under a re-

peatable process environment

(
A

∂ 2

∂ t2 +B
∂

∂ t
+C
)

wi(x, t) = f (x, t)+gi(x, t), (6.1)

where the time t ∈ (0,T ] for any fixed T > 0, the spatial coordinate x ∈ (0,1), i ∈Z ,

{0,1,2, · · ·} is the trial or iteration number, and wi(x, t) represents the system state at the

ith iteration that may be interpreted as temperature in a heat transfer process or pollutan-

t concentration in a wastewater treatment process. Meanwhile, the unknown nonlinear

functions f (x, t) and gi(x, t) denote the iteration-independent and iteration-dependent

external disturbances, respectively. Moreover, A, B and C are spatial differential oper-

ators of the form A = ∑
n
k=0 ak

∂ k

∂xk , B = ∑
n
k=0 bk

∂ k

∂xk , C = ∑
n
k=0 ck

∂ k

∂xk with ak, bk and ck

being constants and satisfying |ak|2 + |bk|2 + |ck|2 6= 0 as k = n. For the system (6.1),

the boundary conditions are set as, for t ∈ [0,T ], i ∈Z ,1≤ j ≤ n,
M jwi(0, t)+N jwi(1, t) = γ j(t), j 6= j0,

M jwi(0, t)+N jwi(1, t) = ui(t), j = j0,
(6.2)

where 1 ≤ j0 ≤ n is a fixed integer, and M j,N j are temporal-spatial, linear differen-

tial operators of proper order. The functions γ j(t), j 6= j0 are unknown but iteration-

invariant, while ui is the tunable system control input. Meanwhile, the initial conditions

of system (6.1) for all x ∈ (0,1) are specified as

w(x, t)|t=0 = v0(x),
∂

∂ t
w(x, t)|t=0 = v1(x), (6.3)

where v0(x) and v1(x) are given continuous functions. To validate our consequent ILC

design and analysis, it is assumed that the boundary value problem (6.1)-(6.3) is well

posed, and always has one and only one solution.
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It is worth highlighting that the system (6.1) may be hyperbolic, parabolic, or el-

liptic, and describes many important physical processes such as diffusion, heat transfer,

vibration, wave propagation, etc. For instance, in describing vibration of a continuum,

(6.1) is of hyperbolic type, the operator A∂ 2/∂ t2 is associated with the inertia proper-

ties of the continuum, the operator B∂/∂ t evolves from damping, Coriolis acceleration,

and mass transport, and the operator C is relevant to stiffness, centrifugal forces, and

circulatory effects [95].

Consider a point control problem for the system (6.1), namely, iteratively tuning

the boundary input condition ui(t) such that the output yi(t) = wi(x∗, t), t ∈ [0,T ] can

track the given reference trajectory yd(t), t ∈ [0,T ], where 0≤ x∗ ≤ 1 is the spatial po-

sition of the measurement output. Clearly, when x∗ = 0 or x∗ = 1, the control problem

is a typical boundary-input boundary-output problem. Due to the well posedness of

the boundary value problem (6.1)-(6.3), there must exists a desired control input profile

ud(t), t ∈ [0,T ] such that yi(t) = yd(t) if and only if ui(t) = ud(t). Under the framework

of ILC, exploiting the input-output relationship that has been embedded in the boundary

value problem (6.1)-(6.3) is always crucial, which can be done in the time or frequency

domain. Considering the linear structure of the model in system state and the fact that

the transfer function of the LIDPS contains all information required to predict the sys-

tem spectrum, the system response under any initial and external disturbances, and the

stability of the system response, the ILC design and analysis in the frequency domain

will be addressed in the next section.
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6.3 Input-Output Transfer Function

In terms of determining the input-output transfer function of system (6.1)-(6.3),

classical methods lead to an eigenfunction expansion, i.e., the transfer function ex-

pressed by an infinite series of the system eigenfunctions. The eigenfunction expansion,

while useful in some theoretical analysis, has some disadvantages in control analysis.

On the one hand, the method requires exact eigensolutions, which may be difficult to

obtain particularly for some uncertain systems. On the other hand, in general, trunca-

tion of the series has to be made in deriving the control convergence. Since the series

truncation reduces the order of the system model, which leads to loss of information

about the system dynamics of high-frequency modes, the resultant controller might not

achieve the desirable control performance as expected. Next, following the idea pro-

posed in [95], an evaluation scheme for the input-output transfer function of the LIDPS

(6.1) will be developed.

First, define the Laplace transform of time-varying function m(t) as M (s)
4
= L[m(t)]

=
∫

∞

0 m(t)e−stdt, where s is the complex variable. For the nth order derivative of func-

tion m(t), denoted by m(n)(t), it follows that

L[m(n)(t)] = snM (s)− sn−1m(0)− sn−2m(1)(0)−·· ·−m(n−1)(0).

Using the above property, Laplace transform of system (6.1) renders to

(
s2A+ sB+C

)
W i(x,s)

= F (x,s)+G i(x,s)+(sA+B)v0(x)+Av1(x)

= Θ(x,s)+G i(x,s), (6.4)

where Θ(x,s)
4
=F (x,s)+(sA+B)v0(x)+Av1(x). In (6.4), W i(x,s),F (x,s) and G i(x,s)

are the Laplace transforms of functions wi, f , and gi, respectively. Further, Laplace
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transform of the boundary conditions (6.2) gives for 1≤ j ≤ n,
M jW i(0,s)+N jW i(1,s) = Γ j(s)+S j(s), j 6= j0,

M jW i(0,s)+N jW i(1,s) = U i(s)+S j(s), j = j0,
(6.5)

where M j and N j are the operators M j and N j with the time-derivative operators ∂/∂ t

and ∂ 2/∂ t2 replaced by s and s2, respectively, Γ j(s) and U i(s) are the Laplace transform

of γ j(t) and ui(t), respectively, and S j(s) is a polynomial of s representing the initial

conditions at the boundaries x = 0 and x = 1. It is easy to see that S j(s) = 0 when both

M j and N j are time-invariant.

Define

η
i(x,s) =

(
W i ∂

∂x
W i . . .

∂ n−1

∂xn−1 W i
)T

, (6.6)

pi(x,s) =

(
0 0 . . . 0

Θ(x,s)+G i(x,s)
ans2 +bns+ cn

)T

, (6.7)

ri(s) =



Γ1(s)+S1(s)

...

Γ j0−1(s)+S j0−1(s)

U i(s)+S j0(s)

Γ j0+1(s)+S j0+1(s)

...

Γn(s)+Sn(s)



, (6.8)

F(s) =



0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

−d0(s) −d1(s) −d2(s) · · · −dn−1(s)


, (6.9)
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where dk(s) = (aks2 + bks+ ck)/(ans2 + bns+ cn), k = 0,1, . . . ,n− 1, with ak, bk and

ck given in the operators A,B, and C. Note that the matrix F(s) is not a function of x.

By (6.6)-(6.9), equations (6.4)-(6.5) are reformulated into a matrix form in the Laplace

transform domain

∂

∂x
η

i(x,s) = F(s)η i(x,s)+pi(x,s), x ∈ (0,1), (6.10)

M (s)η i(0,s)+N (s)η i(1,s) = ri(s), (6.11)

where M (s) and N (s) are n×n complex matrices, consisting of the coefficients of the

operators M j and N j, j = 1,2, . . . ,n.

System (6.10) with the boundary condition (6.11) defines a one-dimensional bound-

ary value problem. The following lemma, which is directly from [95], gives the struc-

ture of the solution for η i(x,s).

Lemma 6.1 Suppose the system (6.10) with pi = 0 and ri = 0 has only the null solution.

Then there exists a unique solution of system (6.10) with the boundary condition (6.11),

η
i(x,s) =

∫ 1

0
G(x,ξ ,s)pi(ξ ,s)dξ +H(x,s)ri(s), (6.12)

where x ∈ (0,1), the matrix Green’s function is

G(x,ξ ,s)

4
=


eF(s)x

(
M (s)+N (s)eF(s)

)−1
M (s)e−F(s)ξ , ξ < x,

−eF(s)x
(
M (s)+N (s)eF(s)

)−1
N (s)eF(s)(1−ξ ), ξ > x,

and the transfer matrix between ri(s) and η i(x,s) is H(x,s)
4
= eF(s)x

(
M (s)+N (s)eF(s)

)−1
,

with eF(s)x being the fundamental matrix of system (6.10).
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In detail, since the process model (6.1) has order of n, we write

G(x,ξ ,s) =


g11(x,ξ ,s) · · · g1n(x,ξ ,s)

...
. . .

...

gn1(x,ξ ,s) · · · gnn(x,ξ ,s)

 , (6.13)

H(x,s) =


h11(x,s) · · · h1n(x,s)

...
. . .

...

hn1(x,s) · · · hnn(x,s)

 . (6.14)

From (6.12), the unique solution of system (6.10) with the boundary condition (6.11),

it follows that

W i(x,s) = h1 j0(x,s)U
i(s) (6.15)

+
∫ 1

0

g1n(x,ξ ,s)
ans2 +bns+ cn

G i(ξ ,s)dξ +Ξ(x,s),

where

Ξ(x,s) ,
∫ 1

0

g1n(x,ξ ,s)
ans2 +bns+ cn

Θ(ξ ,s)dξ

+
n

∑
j=1, j 6= j0

h1 j(x,s)(Γ j(s)+S j(s))+h1 j0(x,s)S j0(s)

denotes all the iteration-independent terms on the right hand side of (6.15). Considering

the concerned output yi(t) = wi(x∗, t), it follows from (6.15) that

Y i(s) = h1 j0(x
∗,s)U i(s)+

∫ 1

0

g1n(x∗,ξ ,s)
ans2 +bns+ cn

G i(ξ ,s)dξ +Ξ(x∗,s), (6.16)

where Y i(s) is the Laplace transform of yi(t). Noticing the fact that the function G i is

state-independent and Ξ is iteration-independent, the output Y i(s) is only manipulated

by the input U i(s) through the transfer function h1 j0(x
∗,s).

Remark 6.1 For a given LIDPS (6.1), a flowchart has been presented above to cal-

culate (6.16). Although tedious matrix operations might be involved, e.g., performing
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matrix diagonalization to derive eF(s)x, the introduced method still shows some clear ad-

vantages: it is exact, and no approximation has been made; it does not require a knowl-

edge of the system eigensolutions; the system type, differential operators, and boundary

conditions are treated uniformly; and the method can be easily extended to LIDPSs

with parameters as functions of the spatial coordinate x, e.g., ak = ak(x),bk = bk(x),

and ck = ck(x).

Next, ILC design and convergence analysis are addressed based on the input-output

relationship (6.16).

6.4 ILC Design and Convergence Analysis

In order to demonstrate our idea clearly, a simple scenario: there is no iteration-

dependent external disturbance in (6.1), namely, gi(x, t)≡ 0 in (6.1), is first considered.

6.4.1 LIDPSs Without Iteration-dependent External Disturbance

In the absence of iteration-dependent external disturbance (gi(x, t) = 0), (6.16) be-

comes

Y i(s) = h1 j0(x
∗,s)U i(s)+Ξ(x∗,s). (6.17)

Denote by Yd(s) and Ud(s) the Laplace transforms of yd(t) and ud(t), respectively. The

uniqueness of solution of LIDPS (6.1) implies that

Y d(s) = h1 j0(x
∗,s)Ud(s)+Ξ(x∗,s). (6.18)

The expressions of (6.17) and (6.18) mean that the dynamics of the LIDPS is absolutely

repeatable, i.e., same control input profiles always lead to identical system outputs. Let

E i(s)
4
= Y d(s)−Y i(s) be the Laplace transform of tracking error in the ith iteration.
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Then, the central task of ILC is to iteratively tune U i(s) such that limi→∞ E i(s) = 0 or

equivalently limi→∞U i(s) =Ud(s) for the concerned frequency range.

Define the ILC updating law as follows,

U i+1(s) =U i(s)+ρ(s)E i(s), i ∈Z , (6.19)

where the learning gain function ρ(s) is to be determined. From (6.19), it can be seen

that the control input in the (i+ 1)th iteration consists of two parts: the first part is

the control input profile in the previous iteration and the second part is relevant to the

tracking error profile in the previous iteration. Since both U i(s) and E i(s) are available

before implementing control in the (i+ 1)th iteration, the ILC law (6.19) is obviously

a feedforward control scheme. It is also worth noticing that different choices of the

learning function ρ(s) will induce different categories of ILC schemes, for instance,

ρ(s) = ρ0 corresponds to a pure P-type ILC, ρ(s) = ρ0s to a D-type ILC, and ρ(s) =

ρ0s2 to a D2-type ILC, where ρ0 is a constant.

Theorem 6.1 Let Ω be the concerned frequency range. If there exists a constant ζ such

that

sup
ω∈Ω

∣∣1−ρ( jω)h1 j0(x
∗, jω)

∣∣≤ ζ < 1, (6.20)

where j =
√
−1 is the imaginary unit, then Ei( jω),ω ∈Ω will converge to zero asymp-

totically when i→ ∞.

Proof. Observing the input-output relationship (6.17), the term Ξ(x∗,s) is iteration-

independent. As such, in any two consecutive iterations,

Y i+1(s)−Y i(s) = h1 j0(x
∗,s)(U i+1(s)−U i(s)).

Further, applying the ILC law (6.19) leads to

Y i+1(s)−Y i(s) = ρ(s)h1 j0(x
∗,s)E i(s). (6.21)
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Now, the relationship between E i+1(s) and E i(s) can be evaluated as follows,

Ei+1(s) = Yd(s)−Yi+1(s) = Yd(s)−Yi(s)− [Yi+1(s)−Yi(s)]

= Ei(s)−ρ(s)h1 j0(x
∗,s)Ei(s)

= [1−ρ(s)h1 j0(x
∗,s)]Ei(s), (6.22)

where the equality (6.21) is used. Then, for any ω ∈Ω, there has

|E i+1( jω)| = |[1−ρ( jω)h1 j0(x
∗, jω)]Ei( jω)|

≤ |1−ρ( jω)h1 j0(x
∗, jω)||E i( jω)|

≤ sup
ω∈Ω

|1−ρ( jω)h1 j0(x
∗, jω)||E i( jω)|

≤ ζ |E i( jω)|. (6.23)

Applying the inequality (6.23) repeatedly yields ∀ω ∈Ω,

|E i+1( jω)| ≤ ζ |E i( jω)| ≤ ζ
2|E i−1( jω)| ≤ · · · ≤ ζ

i+1|E0( jω)|.

Since 0≤ ζ < 1, limi→∞ ζ i+1 = 0, thus limi→∞ |E i+1( jω)|= 0, ∀ω ∈Ω.

Remark 6.2 For any real implementations, the ILC law can be designed as follows.

(1) Calculate the input-output transfer function h1 j0(x
∗,s) from the LIDPS (6.1).

(2) Determine the concerned frequency range Ω, and solve the learning function ρ(s)

from the inequality (6.20).

(3) Perform the inverse Laplace transform for (6.19) and implement the induced ILC

law in the time domain.

Remark 6.3 The convergence condition for the ILC law (6.19) is given in (6.20), where

the pre-determination of the concerned frequency range Ω is obviously crucial. First,
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at least, Ω includes the set of reference frequencies as a subset. Second, since many

other frequency components, e.g., external disturbance and measurement noise, are in-

volved in the system simultaneously, Ω has to be expanded to cover these frequencies.

In practice, (6.20) can be solved numerically, where the transfer function h1 j0 is approx-

imated by sampled-data system. When the reference contains only a finite number of

frequencies up to ωb rad/s that are below the Nyquist frequency ωs rad/s, the concerned

frequency range can be chosen as Ω = [0,ωc], where ωc is a cutoff frequency chosen

for the used Q-filter in the range ωs > ωc > ωb.

Next, the effect of non-repeatable inhomogeneous disturbance to the control perfor-

mance of the proposed method will be considered.

6.4.2 LIDPSs With Iteration-dependent External Disturbance

The main idea of ILC is to compensate for repeatable tracking error via iterative

learning. When nonrepeatable source terms are presented in the process, the ILC per-

formance might be degraded in the sense that the tracking error would not fully vanish

but may be kept within an acceptable error bound.

In this case, we have gi(x, t) 6= 0 in system (6.1), and the main result can be sum-

marized as follows.

Theorem 6.2 Let Ω be the concerned frequency range. If there exist constants ζ and ε

such that (6.20) and

sup
x∈(0,1),ω∈Ω

∣∣G i(x, jω)
∣∣≤ ε < ∞ (6.24)

hold, then Y i( jω), ω ∈ Ω will converge to a neighborhood of Y d( jω) that is given in
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(6.18) asymptotically with maximum possible error ε1/(1−ζ ) when i→ ∞, where

ε1 , 2ε sup
ω∈Ω

∣∣∣∣∫ 1

0

g1n(x∗,ξ , jω)

an( jω)2 +bn( jω)+ cn
dξ

∣∣∣∣ . (6.25)

Proof. In any two consecutive iterations, the inhomogeneous term Ξ(x∗,s) in (6.16)

is iteration-independent or repeatable, thus

Y i+1(s)−Y i(s) = h1 j0(x
∗,s)(U i+1(s)−U i(s)) (6.26)

+
∫ 1

0

g1n(x∗,ξ ,s)
ans2 +bns+ cn

(
G i+1(ξ ,s)−G i(ξ ,s)

)
dξ .

Further, applying the ILC law (6.19) in (6.26) leads to

Y i+1(s)−Y i(s) = ρ(s)h1 j0(x
∗,s)E i(s) (6.27)

+
∫ 1

0

g1n(x∗,ξ ,s)
ans2 +bns+ cn

(
G i+1(ξ ,s)−G i(ξ ,s)

)
dξ .

In consequence, the relationship between E i+1(s) and E i(s) can be evaluated as follows,

Ei+1(s) = Yd(s)−Yi+1(s) = Yd(s)−Yi(s)− [Yi+1(s)−Yi(s)]

= [1−ρ(s)h1 j0(x
∗,s)]Ei(s) (6.28)

−
∫ 1

0

g1n(x∗,ξ ,s)
ans2 +bns+ cn

(
G i+1(ξ ,s)−G i(ξ ,s)

)
dξ

where the equality (6.27) is used. Considering the bound information (6.24), it gives

|E i+1( jω)| ≤ |1−ρ( jω)h1 j0(x
∗, jω)||E i( jω)|

+

∣∣∣∣∫ 1

0

g1n(x∗,ξ , jω)

an( jω)2 +bn( jω)+ cn

(
G i+1−G i)(ξ , jω)dξ

∣∣∣∣
≤ sup

ω∈Ω

|1−ρ( jω)h1 j0(x
∗, jω)||E i( jω)| (6.29)

+2ε sup
ω∈Ω

∣∣∣∣∫ 1

0

g1n(x∗,ξ , jω)

an( jω)2 +bn( jω)+ cn
dξ

∣∣∣∣≤ ζ |E i( jω)|+ ε1,
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where ε1 is defined in (6.25) and the condition (6.20) is used. Applying (6.29) repeat-

edly leads to

|E i+1( jω)| ≤ ζ (ζ |E i−1( jω)|+ ε1)+ ε1

...

≤ ζ
i+1|E0( jω)|+ ε1ζ

i + · · ·+ ε1

= ζ
i+1|E0( jω)|+ 1−ζ i+1

1−ζ
ε1. (6.30)

Due to the boundedness of |E0( jω)|, and the fact 0 ≤ ζ < 1, limi→∞ |E i+1( jω)| ≤

limi→∞ ζ i+1|E0( jω)|+ limi→∞
1−ζ i+1

1−ζ
· ε1 =

ε1
1−ζ

. The proof is complete.

Remark 6.4 Theorem 6.2 reveals that the ultimate bound of tracking error is propor-

tional to the maximum magnitude of nonrepeatable external disturbances, which is

obviously rational. In practice, a possible way to reduce the effect of nonrepeatable

components to ILC performance is to incorporate robust feedback control such as the

proportional-integral controller.

6.5 Robustness Concern

For practical applications, many engineering or industrial systems are nonlinear

distributed parameter systems. Though linearization can be carried out, the linearized

model parameters will change with operating conditions. Fortunately, ILC is a kind of

model-free control method in the sense that it is still efficient in the presence of cer-

tain model uncertainties or modeling error. Denote Pe(s) the estimation of the actual

input-output transfer function model h1 j0(x
∗,s), which is obtained by conducting mod-

el identification from real processes. When Pe(s) is minimum phase and proper, the

learning function ρ(s) can be chosen to be 1/Pe(s) straightforwardly, which leads to the
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fastest possible learning convergence. Taking the condition (6.20) into account for the

proposed ILC scheme, the convergence of ILC is achieved if

sup
ω∈Ω

∣∣1−h1 j0(x
∗, jω)/Pe( jω)

∣∣< 1.

When Pe(s) is proper but nonminimum phase, the learning filter ρ(s) can be designed

accordingly based on pole-zero cancelation [96].

Further, in stand ILC, a low-pass zero-phase Q filter is essentially utilized to en-

hance the system robustness against model uncertainties and modeling error, and to

suppress the noise transmission in the learning process [96]. As such, the ILC law is

revised to

U i+1(s) = Q(s)(U i(s)+ρ(s)E i(s)), i ∈Z . (6.31)

The corresponding convergence result can be summarized as follows.

Theorem 6.3 Let Ω be the concerned frequency range. If there exists a constant ζ such

that

sup
ω∈Ω

∣∣Q( jω)(1−ρ( jω)h1 j0(x
∗, jω))

∣∣≤ ζ < 1, (6.32)

then Ei( jω),ω ∈Ω will converge to a neighborhood of zero asymptotically when i→∞.

The convergence analysis can be performed similarly as Theorem 6.1 and Theorem

6.2 based on contraction mapping method.

The inequality (6.32) means that Nyquist plot of Q(1−ρh1 j0) should be within a

unit circle centered at the origin of the complex plane. This learning condition can be
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satisfied by the proper designs of Q(s) and ρ(s). Noticing that

E i+1(s) = Q(s)(1−ρ(s)h1 j0(x
∗,s))E i(s)+(1−Q(s))(Yd(s)−Ξ(x∗,s))

−
∫ 1

0

g1n(x∗,ξ ,s)
ans2 +bns+ cn

G i+1(ξ ,s)dξ

+Q(s)
∫ 1

0

g1n(x∗,ξ ,s)
ans2 +bns+ cn

G i(ξ ,s)dξ , (6.33)

the tracking error E(s) is also affected by Yd(s)−Ξ(x∗,s) modulated through the factor

1−Q(s), and by
∫ 1

0
g1n(x∗,ξ ,s)

ans2+bns+cn
G i(ξ ,s)dξ modulated through the factor Q(s). Since

Yd(s)−Ξ(x∗,s) is usually much larger than the iteration-dependent factor, the design of

filter Q(s) must take into account that

sup
ω∈Ω

|1−Q( jω)| � 1. (6.34)

Although a steady-state error may occur by using filter Q(s), a remarkable advantage is

that the stability region for certain frequencies can be increased if Q(s) is a filter with a

gain less than one for those frequencies. This can be seen from (6.32) or equivalently,

the condition

∣∣1−ρ( jω)h1 j0(x
∗, jω)

∣∣< 1
|Q( jω)|

, ω ∈Ω.

For the point-tracking control of nonlinear PDE processes, especially those that

cannot be linearized, transfer function based analysis is obviously not applicable. Also,

it is impossible to find a general ILC design framework for them. However, the work

[20] reveals that simple (D-type) ILC scheme still demonstrates its efficacy for some

highly nonlinear systems. The extension of ILC from linear PDEs to nonlinear PDEs

will be addressed in the next chapter.
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6.6 Illustrative Example with Analysis and Design

Consider the parabolic heat conduction equation

Cpν
∂wi

∂ t = K0
∂ 2wi

∂x2 + f (x, t), x ∈ (0,1), t ∈ (0,T ],

∂

∂x wi(0, t) = 0, t ∈ [0,T ],

K0
∂

∂x wi(1, t) = ui(t), t ∈ [0,T ],

wi(x,0) = 0, x ∈ [0,1],

(6.35)

where T > 0 is the time length in each iteration, K0,Cp, and ν are constant ther-

mal conductivity, specific heat, and mass density, respectively [89]. The source ter-

m f (x, t) = 2xt + x2 behaves as the system uncertainty. In addition, the heat flux

ui(t) = K0∂wi(1, t)/∂x is the control input, and the temperature state yi(t)
4
= wi(0, t)

is the system output.

First calculate the input-output transfer function of the system (6.35). Comparing

(6.35) with the general LIDPS (6.1), there has that a0 = a1 = a2 = 0, b0 = Cpν , b1 =

b2 = 0, c0 = c1 = 0,c2 =−K0, and the matrix F in (6.9) is

F(s) =

 0 1

αs 0

 , (6.36)

where α ,Cpν/K0. The eigenvalues of F(s) are λ1,2(s) =±
√

αs. Hence, eF(s)x can be

computed by performing matrix diagonalization,

eF(s)x = Q(s)eJ(s)xQ−1(s)

=

 cosh(
√

αsx) 1√
αs sinh(

√
αsx)

√
αssinh(

√
αsx) sinh(

√
αsx)



where Q(s) =

 1 1

√
αs −

√
αs

 , eJ(s)x =

 e
√

αsx 0

0 e−
√

αsx

 . Meanwhile, it is
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easy to see M (s) =

 0 1

0 0

 , N (s) =

 0 0

0 K0

 . Since both M (s) and N (s)

are constant matrices, S1(s) = S2(s) = 0 in (6.5). Further,

H(x,s) = eF(s)x
(

M(s)+N(s)eF(s)
)−1

=

 h11(x,s) h12(x,s)

0 h22(x,s)

 ,

can be calculated, where h11 = − 1√
αs e−

√
αsx, h12 = cosh(

√
αsx)

K0
√

αssinh(
√

αs) , h22 = sinh(
√

αsx)
K0 sinh(

√
αs) ,

and

G(x,ξ ,s) =



 g11(x,ξ ,s) g12(x,ξ ,s)

0 0

 , ξ < x

 h12(x,s)φ(ξ ,s) h12(x,s)ϕ(ξ ,s)

h22(x,s)φ(ξ ,s) h22(x,s)ϕ(ξ ,s)

 , ξ > x,

where g11 =
√

αsg12(x,ξ ,s),g12 =−h11(x,s)sinh(
√

αsξ ), φ =−K0
√

αssinh(
√

αs(1−

ξ )),ϕ =−K0 sinh(
√

αs(1−ξ )). As such, it immediately gives that

H(0,s) =

 h11(0,s) h12(0,s)

0 h22(0,s)

 , (6.37)

and that

G(0,ξ ,s) =

 h12(0,s)φ(ξ ,s) h12(0,s)ϕ(ξ ,s)

h22(0,s)φ(ξ ,s) h22(0,s)ϕ(ξ ,s)

 . (6.38)

Immediately, from (6.16) the relationship between the input U(s) and the output Y (s)

in the ith iteration can be derived

Y i(s) = h12(0,s)U i(s)+
∫ 1

0

h12(0,s)ϕ(ξ ,s)
−K0

F (ξ ,s)dξ

=
1

K0
√

αssinh(
√

αs)
U i(s)+

∫ 1

0

sinh(
√

αs(1−ξ ))

K0
√

αssinh(
√

αs)
F (ξ ,s)dξ , (6.39)
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where F (x,s) is the Laplace transform of the inhomogeneous function f (x, t) = 2xt +

x2.

The poles of h12(0,s) are the zeros of its denominator and are the real non-positive

numbers −k2π2/α,k ∈ Z , while the zeros are the zeros of the numerator and are the

real negative numbers −(kπ +π/2)2/α . Note that, owing to the pole at 0, h12(0,s) is

not stable, but it is well-posed, and positive real [89]. The considered heat conduction

process demonstrates complicated input-output dynamics in the sense that the infinite

dimensional linear operator
√

s is involved. It is hard to solve the inequality (6.20)

analytically to determine the convergence condition for the learning function ρ(s). Al-

ternatively, it may be solved numerically by adopting some approximation schemes of

transfer functions.

Recall that, in (6.35), the heat flux at the boundary x = 1 is adopted as control input

to perform the temperature output tracking at the other boundary x = 0. This stimulates

us to consider D-type ILC for (6.35), namely, ρ(s) = ρ0s with ρ0 being the constant

learning gain. Then, (6.20) becomes

∣∣∣∣1−ρ0

√
s

K0
√

α sinh(
√

αs)

∣∣∣∣≤ ζ < 1, s = jω, ω ∈Ω. (6.40)

Employing the Oustaloup-Recursive-Approximation method [97], for the prespecified

sampling period Ts = 0.01 s, the operator
√

s in (6.40) can be approximated by

A (z) =
14.14z5−7.07z4 +1.414z3−2.475z2 +0.707z−1.414

z5 +0.5z4 +0.1z3 +0.175z2 +0.05z+0.1
.

Substituting
√

s by A (z) in (6.40), it follows that

∣∣∣∣1−ρ0
A (z)

K0
√

α sinh(
√

αA (z))

∣∣∣∣≤ ζ < 1, z = e jωTs , ω ∈Ω,

from which the feasible range of ρ0 can be solved numerically.
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When the concerned frequency set Ω contains more than one frequency component,

it is rational to address the optimal learning gain design by solving the following min-

max problem:

J = minρ0 maxω∈Ω

∣∣∣1−ρ0
A (e jωTs )

sinh(A (e jωTs ))

∣∣∣ ,
s.t.

∣∣∣1−ρ0
A (e jωTs )

sinh(A (e jωTs ))

∣∣∣< 1, ∀ω ∈Ω, (6.41)

where the constraint comes from the convergence condition of ILC.

Assume that Cp = 1,ν = 1,K0 = 1 in simulation, yielding α =Cpν/K0 = 1. Further,

let the output reference be yd(t) = t3(10− t)3/1000°C, t ∈ [0,10] mins. Then, the

corresponding reference frequency is at ωb = 0.01 rad/s, and ρ0 = 2.839 is optimal

when the single reference frequency is involved in the system. Nevertheless, when

ILC is performed for any LIDPSs, the measured signals are usually corrupted by other

frequency parts and noise. These components may degrade the performance of ILC in

practice, especially when high-order ILC is applied. For the considered D-type ILC, a

Q-filter is then adopted to filter them out from the measured signals, namely,

Q(z) = H(z)H(z−1), H(z) =
1+ z−1 + · · ·+ z−(N0−1)

N0
. (6.42)

Note that, on the one hand, the filter Q(z) given in (6.42) is a zero-phase filter, which

does not incur any phase delay. On the other hand, such a filter is non-causal in the

time domain, which can only be implemented off-line in general. From the ILC law

(6.19), however, it can be seen that causality is not an issue for ILC implementation,

because the current input Ui+1 only uses the signals of previous iteration, namely, Ei

and Ui. For implementation, choose N0 = 20 in (6.42) that yields a cut-off frequency

of ωc = 10 rad/s. As such, the concerned frequency range is Ω = [0,ωc], and solving

(6.41) renders to ρ0 = 0.7444.
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Now, set ρ(s) = 0.7444s, and the initial heat flux input u0(t) = 0 W/m2. The system

(6.35) is simulated using the Matlab solver ‘pdepe’ with sampling period 0.6 s in the

temporal domain and 0.01 m in the spatial domain, respectively. Since ILC is a feed-

forward control scheme, the control input boundary condition can be calculated offline

and updated directly in ‘@pdex1bc’ by defining the input variable as a global variable.

Figs. 6.1 to 6.3 give the simulation results. As can be seen from Fig. 6.1, the maximal

tracking error |ei|s
4
= supt∈[0, 10] mins |e

i(t)| decreases drastically from 13.20 to 0.0371

within 7 iterations. Observing the output tracking profile of the 7th iteration in Fig.

6.2, the difference between y7 and yd is almost invisible. Meanwhile, by inputting the

learned heat flux control profile in the 7th iteration, the induced temperature variation

versus time and space are shown in Fig. 6.3. All the simulation results demonstrate the

efficacy of D-type ILC to the boundary control of system (6.35).

Figure 6.1: Maximal tracking error profile using D-type ILC for the heat conduction
process (6.35).

Remark 6.5 D-type ILC scheme has been considered for the above parabolic example.

In practice, the structure of ILC can be chosen by evaluating the characteristics of con-

trolled LIDPS, the availability of output data, and the complexity of control algorithm,

etc. Probably, low-order ILC takes a relatively simpler structure than high-order ILC,

thus is more implementable. However, since high-order learning filter approximates the
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Figure 6.2: Output temperature tracking profile in the 7th iteration, where the difference
between y7 and yd is almost invisible.

Figure 6.3: Temperature variation versus time and space, generated by the learned input
profile in the 7th iteration of ILC.

inverse of the input-output transfer function of LIDPS more closely, the corresponding

high-order ILC could achieve faster convergence speed.

6.7 Conclusion

This chapter presents the ILC design and analysis result for the boundary control of

LIDPSs. Due to the generality of the structure of LIDPS, many well-known processes,

e.g., the heat conduction and the wave propagation, are integrated together. Noticing the

linear characteristic of systems and that the system transfer function can be derived in

a closed form, the ILC design and convergence analysis are performed in the frequency

domain. The proposed control scheme is simple in structure, able to deal with paramet-

ric and non-parametric uncertainties, and makes full use of the process repetition.
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Chapter 7

ILC for Nonlinear Inhomogeneous

Heat Equations

7.1 Introduction

As an extension of Chapter 6, this chapter investigates ILC design for a class of

nonlinear inhomogeneous heat equations. Because of the nonlinearity of the system,

the techniques based on Laplace transformation in Chapter 6 are no longer applicable

and new analysis methods have to be developed.

Heat control problem has been frequently encountered in many industrial or chemi-

cal processes, e.g., indirect heating of liquids and polymers, single-fluid batch process-

ing, pipeline tracing, energy recovery, low pressure cogeneration, drying and heating

of bulk materials, gas processing, and ebullient cooling. In the control of heat transfer

equations or more general parabolic PDE systems, repetition and correction mecha-

nisms are as common as in lumped parameter systems modelled by ordinary differ-

ential equations (ODEs). Examples include batch heat treatment furnace [98], tubular
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heat exchangers [99], batch thermal sterilization processes [100], temperature control

of tokamak plasmas [36], and many other batch processes. In [101–105], the boundary

control problem for heat processes was studied under strict assumptions on the ad-

mitted uncertainties and perturbations. Moreover, the most important characteristic of

processes, i.e., the repetitiveness, will be ignored, when the control schemes proposed

in [101–105] are applied for batch processes.

In this chapter, a D-type anticipatory ILC scheme is applied to the boundary control

of a class of nonlinear inhomogeneous heat equations, where the nonlinear heat source

is state-independent or state-dependent. Under repeatable process environment, the heat

flux at one side is considered as the control input while the temperature measurement at

the other side is considered as the control output. First, the heat conduction equation is

transformed into its integral form, based on which the input-output error dynamics are

presented clearly. Then, rigorous analysis is performed to exploit the properties of the

embedded Jacobi Theta functions in the error dynamics. With practical assumption on

the uncertainties of heat equations, these properties facilitate the consequent ILC design

and convergence analysis. As a result, by iteratively tune the heat flux boundary condi-

tion on one side, the boundary output at the other side can track the desired reference

pointwisely.

It is worthy of noticing that we neither simplify the infinite-dimensional heat equa-

tions to finite-dimensional ODE systems as in [40] nor replace them by the discrete-time

equivalences as in [35]. On the one hand, in [40], the infinite-dimensional heat equa-

tion is simplified as a finite-dimensional ODE system at steady-state stage, which is

only applicable for set-point control task. If tracking control is considered as in our

work, model simplification has the disadvantage of not taking relevant heat conduction
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issues into account, namely, the distributed parameter characteristic of heat conduction

process is neglected, thus is ineffective here. On the other hand, in [35], explicit dis-

cretization is conducted for a class of linear heat equations to derive a multidimensional

discrete linear system, based on which the ILC law is designed. The models obtained

by the approach are of the local type and hence the state-space dimension is low and

finite. It is obviously necessary to ensure that they adequately capture the dynamics of

the defining PDEs. Since this problem has not been addressed in [35], there is much

further research to be done on this approach to ensure that an adequate discrete model

for design is produced in the most efficient way. Meanwhile, numerical instability must

be prevented by imposing limits on the time and space discretization periods. Although

it can be calculated by means of some numerical analysis methods or software tools,

it also hinders us to apply the proposed ILC scheme conveniently, which might be a

disadvantage of ILC with model discretization. In particular, when the heat equation is

nonlinear and/or possesses some structural uncertainties, the analysis method proposed

for linear systems in [35] will lose its efficacy. In our work, the ILC design and analysis

is performed for the original heat conduction equation, thus a class of “real” distributed

parameter systems. Without checking the numerical stability or the adequate approxi-

mation property of the reduced plant, the proposed control scheme is applicable directly

for the boundary tracking control of nonlinear heat equations.

Moreover, owing to the fact that ILC is a feedforward control, the proposed scheme

not only makes anticipatory compensation possible to overcome the heat conduction

delay in boundary output tracking, but also eliminates the gain margin limitation en-

countered in feedback control.

Throughout this chapter, denote R the set of real numbers, N the set of nonnega-
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tive integers, Q the set of {(x, t)|0 < x < 1,0 < t ≤ T}, Q the closed set of Q, namely,

{(x, t)|0≤ x≤ 1,0≤ t ≤T}, Cn([l1, l2],R) the set of scalar continuous functions as n= 0

or continuously differentiable functions as n = 1 in the interval [l1, l2], and H (E,R) an

infinite-dimensional Hilbert space of scalar functions defined on a domain E. For the

function v(x, t) ∈H (Q,R), vz denotes its partial derivative with respect to variable z,

e.g., vt = ∂v/∂ t and vxx = ∂ 2v/∂x2. For simplicity, sometimes the abbreviation v is

used instead of v(x, t) below. For a time-related function f (t) ∈ R, | f (t)| takes its ab-

solute value, and | f |λ
4
= supτ∈[0,T ] e

−λτ | f (τ)| denotes its λ -norm, where λ is a positive

constant.

7.2 System Description and Problem Statement

Consider the heat flux boundary control of the following one-dimensional inhomo-

geneous heat equation under repeatable environment[106]

vi
t(x, t) = vi

xx(x, t)+F(x, t,vi(x, t),vi
x(x, t)), (x, t) ∈ Q,

vi(x,0) = f (x), x ∈ (0,1),

vi
x(0, t) = ui(t), t ∈ [0,T ],

vi
x(1, t) = g(t), t ∈ [0,T ],

(7.1)

where t ∈ [0,T ] is the time, x ∈ [0,1] is the spatial coordinate, vi(x, t) ∈H (Q,R) is the

temperature measurement at the time t and the position x, and i ∈N is the iteration

number. Moreover, ui ∈ C0([0,T ],R), g ∈ C0([0,T ],R), and f ∈ C1((0,1),R) such

that f and fx are bounded. The unknown function F(x, t,vi,vi
x) is defined on the set

Θ = {(x, t,vi,vi
x) | (x, t) ∈Q,−∞ < vi,vi

x < ∞}. Assuming the finiteness of |vi| and |vi
x|,

the function F(x, t,vi,vi
x) is uniformly Hölder continuous 1 in x and t for each compact

1A real or complex-valued function χ on d-dimensional Euclidean space is Hölder continuous when
there are nonnegative real constants C and α such that |χ(x)− χ(y)| ≤ C|x− y|α for all x and y in the
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subset of Q. In addition, there exists an unknown constant CF such that

|F(x, t, p1,q1)−F(x, t, p2,q2)| ≤CF{|p1− p2|+ |q1−q2|}, (x, t) ∈ Q (7.2)

holds for all (pi,qi), i = 1,2, namely, F(x, t,vi,vi
x) is Lipschitz continuous in the state-

dependent variables vi and vi
x. It is easy to write down examples of such functions, for

example, F(x, t, p,q)= sin(xt)cos(p)+cos(xt)sin(q). In the context of heat conduction

or diffusion, the uncertainty function F can be interpreted as a heat source or sink. For

most applications, the nonlinear source or sink F may be extended linearly for p and q

beyond the range of physical reality [106]. Due to the generality of F , (7.1) denotes a

wide range of heat conduction processes [108]. Further, noticing that the PDE model

(7.1) generally describes the diffusion-convection phenomena in open-loop processes,

many other important industrial processes can also be formulated within this modelling

framework, e.g., industrial chemical reactors [109], biochemical reactors [110], and

biofilters for air and water pollution control [111]. Much effort has been put to solve

the so-called inverse problems for (7.1) to determine the unknown source term or the

boundary heat flux [112].

In this chapter, instead of performing identification for the uncertainties in (7.1),

the ILC of the process is considered directly, where the heat flux condition vi
x(0, t) =

ui(t) ∈C0([0,T ],R) is the control input and the boundary temperature yi(t) = vi(1, t) ∈

C1([0,T ],R) is the controlled output. The control objective is to iteratively tune the heat

flux condition at one side such that the boundary output at the other side can track the

designated continuous differentiable reference yd(t) as i→ ∞. The reference yd(t), t ∈

[0,T ] is generated by (7.1) with the desired unknown control input ud(t), t ∈ [0,T ].

The magnitude of ud is assumed to be always less than the maximum heat flux input

domain of χ [107]. The number α is called the exponent of the Hölder condition. If α = 1, then the
function satisfies a Lipschitz condition. If α = 0, then the function is bounded.
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magnitude that is acceptable in the concerned heat conduction process.

Remark 7.1 To validate our consequent ILC design and analysis, the well-posedness

of heat equation (7.1) is always assumed, i.e., the solution of (7.1) exists, is unique,

and depends continuously on the problem data consisting of the coefficients in (7.1), the

functions appearing in boundary and initial conditions, as well as the region on which

(7.1) is required to hold. Actually, according to Theorem 20.3.4 in [106], under the

above problem setting, there exists a unique, bounded classic solution vi = vi(x, t) for

the system (7.1). Thus, given the desired control output yd , the corresponding control

input ud exists and is unique. It is worthy of highlighting that, by the Banach fixed-

point theorem, without the uniqueness of desired control input profile, any contraction

mapping based ILC is meaningless.

Remark 7.2 For concise presentation, the thermal diffusivity, i.e., the coefficient of the

term vi
xx is set as unity in (7.1). Heat equations with non-unity thermal diffusivities can

be converted to (7.1) via some transformations. For instance, equations of the form

vt = µvxx+F(x, t,v,vx) can be reduced to the form of (7.1) by the time-scaling transfor-

mation τ = µt; and the nonlinear equation µ(v)vt = (µ(v)vx)x +F(x, t,v,vx),µ(·)> 0

can be reduced to (7.1) via the change in dependent variable v1 =
∫ v

0 µ(ζ )dζ .

7.3 ILC for Systems with State-Independent Uncertainties

In order to clearly present the main idea on ILC of the heat equation (7.1), a simple

scenario is first considered in this section, namely, the uncertainty function F is state-
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independent. In consequence, (7.1) is

vi
t(x, t) = vi

xx(x, t)+F(x, t), (x, t) ∈ Q,

vi(x,0) = f (x), x ∈ (0,1),

vi
x(0, t) = ui(t), t ∈ (0,T ],

vi
x(1, t) = g(t), t ∈ (0,T ],

(7.3)

where F is continuous in x and t, respectively. Before presenting the ILC design and

convergence analysis, (7.3) can be written into the following integral form [106],

vi(x, t) =
∫ 1

0
{θ(x−ξ , t)+θ(x+ξ , t)} f (ξ )dξ −2

∫ t

0
θ(x, t− τ)ui(τ)dτ

+2
∫ t

0
θ(x−1, t− τ)g(τ)dτ

+
∫ t

0

∫ 1

0
{θ(x−ξ , t− τ)+θ(x+ξ , t− τ)}×F(ξ ,τ)dξ dτ, (7.4)

where the Jacobi Theta function is defined as [113]

θ(x, t) =
∞

∑
m=−∞

K(x+2m, t), t > 0, (7.5)

with

K(x, t) =
1√
4πt

exp
{
−x2

4t

}
, t > 0. (7.6)

Explicitly, (7.4) gives the unique, bounded continuous solution of the direct problem

(7.3). According to the uniqueness of solution of (7.3), given the desired reference

output yd , ud is also unique and satisfies

yd(t) = lim
x→1

vd(x, t)

4
=

∫ 1

0
{θ(1−ξ , t)+θ(1+ξ , t)} f (ξ )dξ −2

∫ t

0
θ(1, t− τ)ud(τ)dτ

+2
∫ t

0
θ(0, t− τ)g(τ)dτ

+
∫ t

0

∫ 1

0
{θ(1−ξ , t− τ)+θ(1+ξ , t− τ)}×F(ξ ,τ)dξ dτ. (7.7)
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In the ith iteration, similar relation can be derived for yi and ui, which is in the form of

(7.7) with yd and ud replaced by yi and ui, respectively.

Define the boundary output error and input error as ei(t) = yd(t)−yi(t) and ∆ui(t) =

ud(t)−ui(t), respectively. From now onwards, augments of functions may be dropped

for concise presentation, if no confusions occur. Owing to the iteration-independent

properties of functions f , g, and F , it follows that

ei =−2
∫ t

0
θ(1, t− τ)∆ui(τ)dτ. (7.8)

As can be seen from (7.8), ei is expressed as a convolution of ∆ui and the Jacobi Theta

function θ , namely, the tracking error at the time instant t is relevant to the control input

profile from the time instant 0 to t. In principle, when the relative degree of input-output

mapping is zero, P-type ILC is sufficient, and the output error information is directly

used to update input profile of the next iteration pointwisely. When the relative degree

of input-output mapping is non-zero but finite n, D-type ILC should be adopted where

the information on the nth-order derivative of output error is supposed to be available.

In all the scenarios of finite relative degree, due to the existence of direct transmission

term between input and output or its derivative, the additional convolution part is usually

discarded in convergence analysis by introducing λ -norm [5]. Since there is no direct

transmission term between input and output in (7.8), one natural way to circumvent

this difficulty is to produce the direct transmission term by persistent differentiation

[114]. However, it is not hard to prove that θ(1, t) and all its finite-order derivatives

vanish at t ↓ 0, where t ↓ 0 means that t decreases from positive and converges to 0

ultimately. This implies that the relative degree of (7.8) is infinite and the persistent

differentiation is infeasible. Moreover, in such a state-independent case, (7.8) consists

of the convolution part only, thus cannot be discarded using λ -norm. The following
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analysis reveals that the infinite relative degree between input and output in (7.8) is

caused by the spatial heat conduction delay from one boundary to another boundary,

and D-type anticipatory ILC can be selected to achieve the learning convergence under

practical system properties.

To facilitate the consequent ILC design and convergence analysis for the input-

output error dynamics (7.8), some properties of the kernel function θ are first given.

By the definition of θ function, namely, (7.5) and (7.6),

θ(x, t) =
1√
4πt

∞

∑
m=−∞

exp
(
−(x+2m)2

4t

)

=
1

2
√

πt

∞

∑
m=−∞

exp

(
−
( x

2 +m
)2

t

)
, t > 0. (7.9)

Considering the Jacobi Theta function identity [115], it follows from (7.9) that

θ(x, t) =
1
2

∞

∑
n=−∞

cos(nπx)exp
(
−n2

π
2t
)

=
1
2

(
1+2

∞

∑
n=1

cos(nπx)exp
(
−n2

π
2t
))

=
1
2

θ3

(
πx
2
,exp

(
−π

2t
))

,

where θ3(z,q)
4
= 1+2∑

∞
n=1 qn2

cos(2nz) is the third class of Jacobi Theta function [116].

According to the analysis on Jacobi Theta function in [106] and the well-known

results for θ3 [116], several main properties of θ(x, t) are presented in the following,

without any verification.

(1) For t > 0, the series for θ(x, t) and its partial derivatives are uniformly absolutely

convergent and continuous.

(2) For t > 0, θ(x, t) is periodic in x with periodicity of 2. Thus, the initial space for

the involved θ(x, t) is x ∈ (0,2).

(3) The singularities of θ(x, t) occur at t = 0,x =±2n,n ∈N .
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Figure 7.1: Variation of θ(x, t) in the spatiotemporal domain.

(4) For t > 0, limx↓0−2
∫ t

0
∂θ

∂x (x, t− τ)g(τ)dτ = g(t) at each point of continuity of g.

(5) For t > 0, limx↑1
∂θ

∂x (x, t) = 0.

(6) For t > 0, limx↑1−2
∫ t

0
∂θ

∂x (x, t−τ)g(τ)dτ = 0 for any Lebesgue-integrable g. More-

over, this limit is taken on uniformly with respect to t contained in compact sets.

For illustration, Fig. 7.1 shows the variation of θ(x, t) in the spatiotemporal domain.

Observing the expression of solution (7.4), θ(x±ξ , t− τ),0 < ξ < 1,0 < τ < t are

involved, where (x, t)∈Q. Thus, it suffices to consider θ in the domain of {(x, t)|−1≤

x ≤ 2,0 < t ≤ T}. Applying the continuity and periodicity properties of the Jacobi

Theta function θ(x, t) as well as its partial derivatives, the following result is derived

immediately.

Lemma 7.1 For all t ∈ [δ ,T ], 0< δ � T , there exist constants κi, i= 1, · · · ,4 such that

(1) sup−1≤x≤2 |θ(x, t)| ≤ κ1, (2) sup−1≤x≤2 |θt(x, t)| ≤ κ2, (3) sup−1≤x≤2 |θx(x, t)| ≤ κ3,

and (4) sup−1≤x≤2 |θtx(x, t)| ≤ κ4.

More clearly, Fig. 7.2 simulates the varying θ(1, t),0 < t ≤ 1, which clearly shows

that there exists a constant 0 < δ � T such that θ(1, t),0 < t ≤ δ is sufficiently small.

Recalling the convolution relationship (7.8) between input/output errors, it reveals that
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Figure 7.2: Variation of θ(1, t) in the time domain.

at the current time instant t, any bounded control input u(τ),max{0, t−δ} ≤ τ ≤ t has

infinitesimal effect on the current boundary output y(t). In other words, the system (7.3)

is uncontrollable as t ≤ δ . This obviously meets the actual scenario of boundary control

of heat conduction equations, where δ refers to the input reaction delay in the time

domain that is induced by the heat conduction from the input boundary to the output

boundary.

Design a D-type anticipatory ILC law as [117]

ui+1(t) =


ui(t)+ρ ėi(t +δ ), 0≤ t ≤ T −δ ,

ui(T −δ ), T −δ < t ≤ T,

i ∈N , (7.10)

where ė , de/dt and ρ is the learning gain to be determined. In the first iteration, u0

can be set as 0 directly or generated by any prespecified feedback controller that leads

to bounded tracking error e0.

Remark 7.3 When ILC is performed for the heat conduction process (7.3), the mea-

sured signals are usually corrupted by noise. A reasonable estimate of derivative term

ėi(t+δ ) in (7.10) can be obtained by filtered differentiation [76]. For instance, one can
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use a filtered differentiation of the form

αs
α + s

= α

(
1− α

s+α

)
(7.11)

where s is the Laplace variable and α � 1. Clearly, this operation is causal because

ei(t +δ ) is available at the (i+1)th iteration.

Remark 7.4 The ILC law (7.10) is designed without considering any potential input

saturation problem, namely, it is assumed that

|ui| ≤ u, i ∈N , (7.12)

with u being the maximum heat flux input magnitude that is acceptable in the concerned

heat conduction process. Although the control process becomes nonlinear with the

effect of input saturation, the convergence analysis can be performed similarly by taking

[40, Property 2] into account, namely |ud −Proj(ui)| ≤ |ud − ui|, where Proj(·) is a

projection operator and |ud | ≤ u.

The next theorem summarizes the performance of ILC for the system (7.3).

Theorem 7.1 Consider the PDE process (7.3) under the ILC law (7.10). If

−γ−1
2θ(1,δ )

≤ ρ ≤ γ−1
2θ(1,δ )

, 0≤ γ < 1, (7.13)

then ei(t), t ∈ [0,T ] will converge to the ((1 + ρ1)`/(1− γ))-neighborhood of zero

asymptotically in the sense of λ -norm as i→ ∞, where

`
4
= 4u

∫
δ

0
θ(1,τ)dτ, ρ1 = 2|ρ| sup

t∈[0,T ]
|θ(1, t)|. (7.14)

Proof. See Appendix A.9.
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Observing (7.13) and (A.94), ILC achieves the fastest possible convergence speed

when γ = 0 or equivalently ρ =−1/2θ(1,δ ).

A prior evaluation of δ is compulsory when implementing the ILC law (7.10). Be-

fore determining δ , it is worthy to analyze how it is relevant to the ILC performance.

Recall the tracking error bound that is guaranteed in Theorem 7.1,

bmax ,
(1+ρ1)`

1− γ
.

By substituting (7.14),

bmax =

(
1+2|ρ|supt∈[0,T ] |θ(1, t)|

)
4u
∫

δ

0 θ(1,τ)dτ

1− γ
, (7.15)

where the infinite series θ(1, t), t ∈ [0,T ] is involved.

Fig. 7.2 has demonstrated the monotonicity of θ(1, t) with respect to the time t.

Further, it is easy to verify that supt∈[0,T ] |θ(1, t)| ≤ 1/2 numerically. In detail, define

θN(x, t) = ∑
N
m=−N K(x+2m, t), and then θ(x, t) = limN→∞ |θN(1, t)|. Fig. 7.3 simulates

the variation of supt∈[0,T ] |θN(1, t)| in N, from which it has that supt∈[0,T ] |θN(1, t)| ≤ 1/2

when N ≤ 200, and the magnitude change is invisible as N is sufficiently large. Hence,

it is rational to claim that

sup
t∈[0,T ]

|θ(1, t)| = sup
t∈[0,T ]

lim
N→∞
|θN(1, t)|

= lim
N→∞

sup
t∈[0,T ]

|θN(1, t)| ≤
1
2
. (7.16)

As such, there has supt∈[0,δ ] |θ(1, t)|= θ(1,δ )≤ 1/2 and

bmax ≤
4u
(

1+
(1+γ)supt∈[0,T ] |θ(1,t)|

θ(1,δ )

)
supt∈[0,δ ] |θ(1, t)|δ

1− γ

≤
4u
(

1+ 1+γ

2θ(1,δ )

)
θ(1,δ )δ

1− γ

=
2u(2θ(1,δ )+1+ γ)δ

1− γ
≤ 2uδ (2+ γ)

1− γ
. (7.17)
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Figure 7.3: supt∈[0,T ] |θN(1, t)|. To bring the simulation here into correspondence with the
simulations in Section 5, T = 10 minutes is used.

Qualitatively, (7.17) reveals that the utilization of a smaller δ in (7.10) would result in a

higher tracking precision or a smaller maximal tracking error in ILC. Moreover, given

the prespecified tracking accuracy ε > 0, the parameter δ in the anticipatory ILC law

(7.10) can be decided by solving 2uδ (2+ γ)/(1− γ)≤ ε . In the sequel,

δ ≤ 1− γ

2u(2+ γ)
ε. (7.18)

As shown in (7.17), the condition (7.18) is derived by applying the properties of Jacobi

Theta function, namely, (7.16) and

∫
δ

0
θ(1,τ)dτ ≤ sup

t∈[0,δ ]
|θ(1, t)|δ ≤ θ(1,δ )δ .

Due to the amplification of inequalities, the choice of δ in (7.18) is obviously conserva-

tive. As such, ILC with larger δ might also be applicable to achieve the desired tracking

accuracy.

To further investigate how the choice of δ affects the learning rate of the proposed
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ILC scheme, it can be seen from (7.13), (7.14), (7.17), and (A.95) that

|ei+1|λ ≤ γ
i+1|e0|λ +

1− γ i+1

1− γ
(1+ρ1)`

≤ γ
i+1M+

1− γ i+1

1− γ
4ūδθ(1,δ )(1+ |ρ|)

≤ γ
i+1M+

1− γ i+1

1− γ
4ūδθ(1,δ )

(
1+

1+ γ

2θ(1,δ )

)
≤ γ

i+1M+
1− γ i+1

1− γ
2ūδ (2+ γ),

where the constant M > ε is an upper bound estimation for the tracking error e0. Then,

the learning rate can be estimated by solving the iteration index i from the inequality

γ
i+1M+

1− γ i+1

1− γ
2ūδ (2+ γ)< ε,

yielding

i >
log ε(1−γ)−2ūδ (2+γ)

M(1−γ)−2ūδ (2+γ)

logγ
−1. (7.19)

Thus, the output yi will converge to the ε-neighborhood of the desired output yd with a

finite number of iterations no more than

I (δ )
4
=

log ε(1−γ)−2ūδ (2+γ)
M(1−γ)−2ūδ (2+γ)

logγ
,

in the sense of λ -norm. Calculating the derivative of I with respect to δ and noticing

the relationship 2ūδ (2+ γ)/(1− γ)< ε < M give

dI

dδ
=

−2ū(2+ γ)(M− ε)(1− γ)

(2ūδ (2+ γ)− (1− γ)ε)(2ūδ (2+ γ)− (1− γ)M) logγ
> 0. (7.20)

Hence, a smaller δ will lead to a smaller I , thus expedite the learning rate of the

proposed ILC scheme.

Remark 7.5 The iterative convergence derived in Theorem 7.1 is based on the strict

repeatable assumption for processes, such as the same initial condition and iteration-

independent boundary conditions. From the practical point of view, these conditions
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may not be satisfied. In such cases, the convergence and performance of ILC can be

similarly analyzed as in [118] and [119].

7.4 Extension to Systems with State-Dependent Uncertainties

In this section, the proposed ILC scheme in Section 3 will be extended to the bound-

ary control of (7.1), where the nonlinear uncertainty function F is state-dependent but

satisfies the Lipschitz continuous condition (7.2).

The input-to-state equation of (7.1) can be written into the following integral form

[106],

vi =
∫ 1

0
{θ(x−ξ , t)+θ(x+ξ , t)} f (ξ )dξ −2

∫ t

0
θ(x, t− τ)ui(τ)dτ

+2
∫ t

0
θ(x−1, t− τ)g(τ)dτ (7.21)

+
∫ t

0

∫ 1

0
{θ(x−ξ , t− τ)+θ(x+ξ , t− τ)}×F(ξ ,τ,vi(ξ ,τ),vi

ξ
(ξ ,τ))dξ dτ,

where (x, t) ∈ Q. Comparing (7.21) with (7.4), the state-dependent uncertainties in the

heat equation induce more complex expression of temperature state. Since F is state-

dependent and thus iteration-varying, it cannot be compensated or cancelled simply in

the input-output error dynamics by the corresponding term of process equations in two

consecutive iterations. Nevertheless, it will show that the proposed anticipatory D-type

ILC scheme is still effective in such scenario.

Looking into (7.21), the temperature state vi is relevant to the control input ui in

the second and fourth terms only. Analogous to the state-independent scenario, the

infinitesimal effect of control input ui(τ),τ ∈ [max{0, t−δ}, t] to the temperature state

vi at position x > 0 and current time instant t will be first quantified as follows.

Assumption 7.1 For a given δ , there exist two positive constants `1 and `2 such that
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for any input ui satisfying |ui|< u,

|Ξi(x, t)|< `1

2
, |Ξi

x(x, t)|<
`2

2
, i ∈N , (x, t) ∈ Q, (7.22)

where

Ξ
i(x, t) = −2

∫ t

max{0,t−δ}
θ(x, t− τ)ui(τ)dτ

+
∫ t

max{0,t−δ}

∫ 1

0
{θ(x−ξ , t− τ)+θ(x+ξ , t− τ)}×F idξ dτ.(7.23)

Remark 7.6 (7.23) is an improper double integral with singularity at (x, t), owing to

that θ(x− ξ , t − τ)|ξ=x,τ=t = θ(0,0) = ∞. However, the boundedness of solution of

(7.1), which has been addressed in Remark 7.1, implies that Ξi(x, t) is convergent and

bounded. Thus, by (7.23), both Ξi and Ξi
x vanish when δ → 0, and the existence of

`i, i = 1,2 is obvious.

Having (7.21) in mind, the input-output relationship is implicitly given by letting

x→ 1. Considering the uniqueness of solution of (7.1), the output tracking error profile

of the ith iteration can be evaluated as follows,

ei = lim
x→1

(
vd(x, t)− vi(x, t)

)
= −2

∫ t

0
θ(1, t− τ)∆ui(τ)dτ

+
∫ t

0

∫ 1

0
{θ(1−ξ , t− τ)+θ(1+ξ , t− τ)}×

(
Fd−F i

)
dξ dτ, (7.24)

where Fd 4= F(ξ ,τ,vd(ξ ,τ),vd
ξ
(ξ ,τ)),F i 4= F(ξ ,τ,vi(ξ ,τ), vi

ξ
(ξ ,τ)) when no confu-

sions occur. Using (7.24) in two adjacent iterations, there has

ei+1− ei = 2
∫ t−δ

0
θ(1, t− τ)(ui+1(τ)−ui(τ))dτ

−
∫ t−δ

0

∫ 1

0
{θ(1−ξ , t− τ)+θ(1+ξ , t− τ)}× (F i+1−F i)dξ dτ

−Ξ
i+1(1, t)+Ξ

i(1, t), (7.25)
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where Ξi is given in (7.23). Clearly, the output tracking convergence in such scenario

is highly depending on how the involved uncertain term F affects the output tracking.

Noticing the Lipschitz continuous condition for F , it has

|F i+1−F i| ≤CF{|vi+1− vi|+ |vi+1
x − vi

x|}, (x, t) ∈ Q. (7.26)

The right hand side of (7.26) can be further bounded by functions of ei from the above,

as demonstrated in the following.

Lemma 7.2 Applying the ILC law (7.10) in the PDE process (7.1), there exist finite

constants κ j, j = 5, · · · ,7 for all t ∈ [δ , T ] such that

sup
0≤x≤1

{
|vi+1− vi|+ |vi+1

x − vi
x|
}
< κ5|ei(t)|+κ6

∫ t

δ

|ei(τ)|dτ +κ7.

Proof. See Appendix A.10.

By applying Lemma 7.2, the second main result in this chapter is derived.

Theorem 7.2 Consider the PDE process (7.1) under the ILC law (7.10) and Assump-

tion 7.1. If the learning gain ρ is selected such that the inequality (7.13) holds, then

ei(t), t ∈ [0,T ], will converge to the ((1+ρ1)`1/(1− γ))-neighborhood of zero asymp-

totically in the sense of λ -norm as i→ ∞, where γ,ρ1, and `1 are defined in (7.13),

(7.14), and (7.22), respectively.

Proof. See Appendix A.11.

Comparing with the state-independent case, ILC achieves the similar convergence

performance under the same gain condition (7.13) in the state-dependent case. For in-

stance, in the expressions of upper bound of tracking error, the only difference is that the

quantity ` is replaced by `1 in Theorem 7.2. This is owing to the fact that the proposed
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ILC design method is contraction mapping based, thus needs less system structure in-

formation than other design techniques in boundary control of PDE processes, e.g., the

Lyapunov-functional-based method [92].

However, since the state-dependent nonlinearities F are involved in `1, the choice

of anticipatory time δ cannot be confined simply as in the state-independent scenario.

In order to explore how `1 is relevant to δ , we perform a simple time-scaling transfor-

mation in (7.23) and take absolute value on other sides of the induced equation,

|Ξi(x, t)| ≤
∣∣∣∣2∫ δ

0
θ(x,s)ui(t− s)ds

∣∣∣∣
+

∣∣∣∣∫ δ

0

∫ 1

0
{θ(x−ξ ,s)+θ(x+ξ ,s)}

× F(ξ , t− s,vi(ξ , t− s),vi
ξ
(ξ , t− s))dξ ds

∣∣∣ . (7.27)

Recalling the proof of Theorem 7.2, `1 is employed to quantify Ξi at the boundary x= 1.

Thus, substituting x = 1 into (7.27) leads to

|Ξi(1, t)| ≤
∣∣∣∣2∫ δ

0
θ(1,s)ui(t− s)ds

∣∣∣∣
+

∣∣∣∣∫ δ

0

∫ 1

0
{θ(1−ξ ,s)+θ(1+ξ ,s)}

× F(ξ , t− s,vi(ξ , t− s),vi
ξ
(ξ , t− s))dξ ds

∣∣∣
≤ 2u

∫
δ

0
θ(1,s)ds+F

∫
δ

0

∫ 1

0
{θ(1−ξ ,s)+θ(1+ξ ,s)}dξ ds,(7.28)

where the constant F is assumed to satisfy

|F(x, t,v,vx)|< F ,(x, t) ∈ Q (7.29)

for all |u| ≤ u. In practice, the effect of nonlinear source or sink F is always finite

for any bounded heat flux input u. Thus, the existence of F is clear. By the Lipschitz
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continuous property of F ,

|F(x, t,v,vx)| = |F(x, t,0,0)|+ |F(x, t,v,vx)−F(x, t,0,0)|

≤ sup
(x,t)∈Q

|F(x, t,0,0)|+CF sup
(x,t)∈Q

(|v|+ |vx|),

implying that the estimation of F is highly relevant to the prior information on |F(x, t,0,0)|,

the Lipschitz constant CF , and the maximal possible magnitudes of system states |v| and

|vx|, when |u| ≤ u and (x, t) ∈ Q.

Now, by (7.28), set

`1 = 4u
∫

δ

0
θ(1,s)ds+2F

∫
δ

0

∫ 1

0
{θ(1−ξ ,s)+θ(1+ξ ,s)}dξ ds.

Similar to the state-independent case, the ultimate tracking error bound can be estimated

as follows when choosing γ = 0 or ρ =−1/2θ(1,δ ).

b′max ,
(1+ρ1)`1

(1− γ)

≤ 2
(

1+
supt∈[0,T ] |θ(1, t)|

θ(1,δ )

)(
2u
∫

δ

0
θ(1,s)ds

+F
∫

δ

0

∫ 1

0
{θ(1−ξ ,s)+θ(1+ξ ,s)}dξ ds

)
≤ 2

(
1+

1
2θ(1,δ )

)
(2δuθ(1,δ )

+F
∫

δ

0

∫ 1

0
{θ(1−ξ ,s)+θ(1+ξ ,s)}dξ ds

)
4
= Θ(δ ). (7.30)

Given the prespecified tracking accuracy ε > 0, the parameter δ in the anticipatory ILC

law (7.10) can be decided by numerically solving Θ(δ )≤ ε .

Alternatively, in order to simplify the design procedure for δ in (7.10), we still

recommend to initially choose δ as in (7.18), i.e., δ ≤ ε/4u. This is mainly due to

the following two points: (1) since bmax ≤ b′max, a smaller δ is preferable in the state-

dependent scenario than in the state-independent scenario, and (2) the choice of δ that

meets the condition (7.18) is probably conservative for the state-independent scenario.
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Remark 7.7 The proposed ILC is a feedforward control scheme that makes full use

of process repetition. Since it mainly deals with repeatable tracking error, those non-

repeatable components cannot be effectively compensated by ILC. A possible way to

suppress non-repeatable components is to incorporate additional feedback control [120].

Depending on the bandwidth requirement, characteristics of disturbance and noise in

system, etc, feedback loop can be specified using all kinds of feedback controller design

techniques, e.g., PID control, H∞ optimal control, or other robust control. In particular,

the bandwidth of a closed-loop system gives a measure of the transient response proper-

ties, in that a large bandwidth corresponds to a faster response. Conversely, for a small

bandwidth, the time response will generally be slow and sluggish. Together with the

cut-off rate, bandwidth indicates the noise-filtering characteristics and the robustness

of the system. In practice, the bandwidth of the closed-loop system, which may impose

limits on the control signals at each point along the system, can be determined by con-

sidering the control task to be performed, the location of resonant modes in system, and

the precision of hardware components, e.g., system repeatability, resolutions of feed-

back sensor, digital-to-analog converter channel as well as analog-to-digital converter

channel, etc.

7.5 Illustrative Example

In this section, the ILC for the following heat conduction equation will be simulated

vi
t = vi

xx− ς(c(x, t)vi)x +ϕ(vi), t,x ∈ Q, (7.31)

where the constant ς is relevant to advection average velocity, c(x, t)= xt+x2/2 denotes

the variation of flow rate in thermal convection, and the source term ϕ(vi) behaves as

the nonlinear Monod function, namely, ϕ(vi) = −µmaxvi/(Ks + vi) with constant µmax
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and Ks. The distributed parameter structure of (7.31) is also used to depict anaerobic

digestion process for wastewater treatment in [40] and [121]. Writing (7.31) into the

form of (7.1) yields

F(x, t,vi,vi
x) = −ς(c(x, t)vi)x +ϕ(vi)

= −ς(t + x)vi +ϕ(vi)− ς(xt + x2/2)vi
x,

which is assumed to be unknown when designing the ILC law. To check the Lipschitz

continuous property of function F , it is noted that |dϕ(v)/dv|= |−µmaxKs/(Ks+v)2| ≤

µmax/Ks. Then, it follows that

|F(x, t, p1,q1)−F(x, t, p2,q2)|

≤
(

ς(t + x)+
µmax

Ks

)
|p1− p2|+ ς

(
xt +

x2

2

)
|q1−q2|

≤ max
{

ς(t + x)+
µmax

Ks
,ς

(
xt +

x2

2

)}
× (|p1− p2|+ |q1−q2|). (7.32)

Since 0≤ x≤ 1 and 0≤ t ≤ T <∞, the quantity max
{

ς(t + x)+µmax/Ks,ς(xt + x2/2)
}

is finite, implying that the nonlinear source function F is Lipschitz continuous.

In the simulation, let T = 10 min,ς = 2, µmax = 3.2, and Ks = 1. The initial con-

dition is set as vi(x,0) = f (x) = 0°C, the boundary condition at x = 1 m is set as

vi
x(1, t)= g(t)= 1 W/m2, and the initial control input is set as u0(t)= 0 W/m2, t ∈ [0,T ].

The desired boundary output profile is generated by the polynomial t3(1− t/T )3°C,

t = [0,T ]. The acceptable tracking accuracy is within ±1°C, i.e., ε = 1°C. In or-

der to check the effect of anticipatory time δ to the tracking control performance, set

δ = 0.25,0.15,0.10,0.05,0.02 min, respectively, in the ILC law (7.10). Meanwhile, the

learning gain is fixed to be ρ =−1/2θ(1,0.25) =−1.2041, which avoids the utilization

of high gain learning in (7.10) when δ is small.
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Figure 7.4: Maximal tracking error profile, derived by applying (7.10) with δ = 0.25,0.15,
0.10,0.05,0.02 min, respectively.

The heat conduction equation (7.31) is solved using the Matlab solver ‘pdepe’ with

sampling period 0.01 in the temporal and spatial domains, respectively. Since ILC is

a feedforward control scheme, the control input boundary condition can be calculated

offline and updated directly in ‘@pdex1bc’ by defining the input variable as a global

variable.

Define |ei|s = supt∈[0,T ] |ei|. Fig. 7.4 shows the maximal tracking error profiles by

choosing different δ in (7.10). The results reveal that

(i) The desired tracking accuracy is achieved via ILC in all the scenarios, namely,

|ei|s < 1°C after 5 iterations’ learning.

(ii) Although the considered heat conduction process is perturbed by some state-

dependent nonlinearities, smaller δ still renders to better ultimate tracking ac-

curacy.

(iii) For different δ , the tracking error is reduced by at least 96%. More simulations

show that the tracking accuracy can be further improved by reducing the sampling

periods in the time and spatial domains.

Figs. 7.5-7.7 show the input profile, the output profile, and the temperature varia-
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Figure 7.5: The system output profile y5, which is generated by the learned heat flux input
u5(t), t ∈ [0,T ] for δ = 0.02 min. The desired reference output yd is given for comparison.

Figure 7.6: The control input profile in the 5th iteration, derived by the anticipatory D-type
ILC law (7.10) with δ = 0.02 min.

Figure 7.7: Temperature variation versus time and space, generated by the learned input profile
in the 5th iteration of ILC with δ = 0.02 min.
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tion in the spatiotemporal domain, respectively, by applying the learned heat flux input

in the last iteration of ILC with δ = 0.02 min. These simulation results demonstrate

the efficacy of ILC law (7.10) in boundary output tracking of the inhomogeneous heat

equations (7.31).

7.6 Conclusion

This chapter addresses the boundary control problem of heat equations under the

framework of ILC. To the best of our knowledge, this is the first work to extend ILC to

the tracking control of nonlinear parabolic distributed parameter systems, without any

model simplification or discretization. The difficulties are overcome by transforming

the PDE system into its integral form and exploiting the properties of the embedded

Jacobi Theta functions. A class of D-type anticipatory ILC scheme is proposed to it-

eratively tune the heat flux at one side such that the temperature measurement at the

other side can track the designated reference. The advantages of the proposed control

scheme are: (1) it makes full use of process repetition; (2) it can deal with input reaction

delay efficiently; (3) it eliminates the gain margin limitation encountered in feedback

control; and (4) its convergence analysis avoids any simplification or discretization of

the 3D dynamics in the time, space as well as iteration domains. Our next research

phase is to consider iterative boundary control for more distributed parameter systems

and implementation issues, e.g., the initial resetting problem in each iteration.
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Chapter 8

Precise Speed Tracking Control of

A Robotic Fish via ILC

8.1 Introduction

As a real-time application, the objective of this chapter is to apply ILC approach to

precise speed tracking problem of a biomimetic robotic fish.

Currently, there are tremendous interests in the use of autonomous underwater ve-

hicles (AUVs) for ocean exploration, scientific research and commercial missions. A-

mong different kinds of AUVs, robotic fish is generally regarded as the most remarkable

one because of its high efficiency, high maneuverability and low noise. In order to devel-

op robotic fish as agile as real fish, many efforts have been made [122–128]. Although a

lot of impressive results have been achieved, such as the works in propulsion mechanis-

m of fish swimming [129, 130], actuators [131, 132] and mechanical structures [133],

the results are not sufficient to develop an autonomous robotic fish that can swim freely

in an unstructured environment as how a real fish does. One of the main challenges lies
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in the difficulty of robotic fish motion control.

Previous works on motion control of robotic fish mainly concern two aspects: (1)

generate fish-like swimming gait in a robot; (2) drive a robotic fish to achieve a desired

motion. The former explores producing coordinated movements of actuation compo-

nents of a robotic fish, and the latter focuses on controlling the motion of whole body

of a robot. From the perspective of cybernetics, approaches for swimming gait gener-

ation can be categorized as: kinematics-based and bio-inspired. The kinematics-based

approach aims to replicate body motion of swimming fish with discrete mechanical mul-

tiple links connected by rotating joints [47–50], and the bio-inspired approach adopts

the central pattern generator (CPG) to translate fish undulatory body motion into robot-

ic joint movement [51–55]. Although the swimming gait generation approaches can

be used to generate fish-like swimming locomotion in robotic fish, these approaches are

not able to help the robots to achieve a desired motion since they are open-loop method-

s. To control a robotic fish to achieve a given target, several feedback control algorithms

have been developed [56–60, 134, 135].

In [56], to implement a point-to-point (PTP) control of a four-link biomimetic robot-

ic fish, a classic proportional-integral-derivative (PID) controller and a fuzzy logic con-

troller (FLC) are designed for speed and orientation control respectively, where a vision-

based feedback system is employed. In [134], the author develops several fuzzy control

laws for a pectoral-fin-driven robotic fish. The proposed fuzzy control not only works

well to deal with the complexity of swimming hydrodynamics, but also enables the fish

robot to perform rendezvous and docking with an underwater post in water currents.

Different from [56, 134] that focus on set-point or PTP control, [57] investigates ef-

ficient swimming control of a Carangiform robotic fish under the framework of fuzzy
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logic control. By comparing the thrust performance of the robotic fish with different

control methods via simulations, it turns out that the fuzzy controller is able to achieve

faster acceleration and smaller steady-state error than what could be achieved by an

open-loop and classic PID controller. Furthermore, there are some works addressing

trajectory tracking problems of robotic fish. In [58], a neural-network-based sliding

mode control algorithm is developed for cooperative trajectory tracking task of multi-

ple biomimetic robotic fish. In [59], a target-tracking and collision-avoidance task for

two autonomous robotic fish is designed and implemented by a situated-behavior-based

decentralized control approach. According to the quasi-steady fluid flow theory, [60]

presents a mathematical model for a Carangiform robotic fish. Based on the construct-

ed model, nonlinear control methods are applied to generate forward propulsion and

turning gaits for the robotic fish, and trajectory tracking tasks are implemented in ex-

periments simultaneously. In addition, authors in [135] develop a local control law for

coordinating joint angles in Carangiform swimming and a global control law for solving

the waypoint tracking problem of biomimetic AUVs.

The objective of this chapter is to address a precise speed tracking problem of a

biomimetic robotic fish via ILC, which is essential to both motion control and motion

planning. In fact, due to the appealing features and its simplicity in implementation,

ILC has been widely applied in practice, such as robotic manipulators, chemical batch

reactors, electric motors, as well as motion control of robotic fish. For instance, in

[136, 137] an ILC-approach-based motion control is proposed to improve the present

propulsion performance of the the bionic undulating fin-RoboGnilos, in which a de-

noising filter and the curve fitting component are incorporated into the anticipant ILC

algorithm for satisfying undulatory propulsion. Besides, to tackle the phase lagging
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problem, a modified ILC algorithm is presented for the RoboGnilos in [138], where a

memory clearing operator is also introduced to guarantee the Lipschitz condition. The

experimental results in [138] show that the developed ILC scheme enables the undu-

lating fish robot to perform the fin-ray undulation kinematics similar to that of real

fish. However, one common characteristic of the above works involving ILC is that

they only focus on fish-like swimming gait generation of the robot. Different from the

above works, this chapter mainly considers the precise speed tracking control problem

of robotic fish via ILC, which belongs to the scenario of driving a robotic fish to achieve

a desired motion. In practice, many applications might require robotic fish to swim a-

long prespecified speed trajectories and perform the tasks repeatedly. For instance, a

robotic fish, used for transportation between two wharfs, is expected to swim with a

pre-determined speed trajectory. The task is repeatable, and the formation fits perfectly

in the ILC framework. Another example is rendezvous and docking of a robotic fish

with an underwater post. In such kind of task implementations, the robot has to move

with a given speed trajectory. Besides, pipe cleaning or pipeline leakage detection per-

formed by robotic fish also falls in this category. These observations motivate the study

of speed tracking of robotic fish from the perspective of ILC.

In this chapter, an ILC method is applied to a two-link Carangiform robotic fish

in real time and achieves precise speed tracking performance. The main contributions

of this chapter can be summarized as follows: (1) A dynamical model for the two-

link Carangiform robotic fish is constructed by utilizing Newton’s second law. The

robotic fish model is highly nonlinear and non-affine in control input, which hinders

the applicability of most control methods that require affine-in-input. (2) A P-type

ILC scheme with input saturation is proposed for speed tracking of the robotic fish. It
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is worth noting that the controller can be designed without using the accurate model

and only the bounded gradient information of the system is required for convergence

analysis. (3) The rigorous convergence analysis of the developed ILC scheme is derived

by applying composite energy function (CEF). (4) Both simulations and experiments are

conducted to illustrate the effectiveness of ILC, and excellent speed tracking is achieved

for the robotic fish.

This chapter is organized as follows. Section 8.2 introduces the biomimetic robotic

fish prototype and hardware configuration. In Section 8.3, the dynamical model of the

robotic fish is established by using Lagrangian mechanics method. Section 8.4 presents

the ILC law design and its convergence analysis. Further, the efficiency of the proposed

ILC scheme is verified by both simulations and experiments in Section 8.5. Section 8.6

gives a brief conclusion.

8.2 Robotic Fish Prototype and Hardware Configuration

Most of fish in nature generate thrust principally via body and/or caudal fin, namely,

body and caudal fin (BCF) swimmers, and some of the most impressive BCF swimmer-

s, such as carps or trout, propel themselves by Carangiform swimming mode. Since

Carangiform movement is easy to be replicated from the mechanical design perspective,

this chapter focus on Carangiform fish. In Carangiform swimming, the front two-thirds

of the fish’s body moves in a largely rigid way, and the propulsive body movements are

confined to the rear third of the body - primarily the tail. According to the morphology

of Carangiform fish, many multi-link robotic fish have been developed [56, 139, 140],

which are able to generate various swimming modes via undulating their tails as a re-

al Carangiform fish does. Generally, the more links the robotic fish have, the more
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complex fish-like maneuvers they are able to generate. However, it is extremely hard

to construct a dynamical model for a multi-joint robotic fish due to the complexity of

hydrodynamics and interactions between the fish body and water. For the benefit of

mathematical modelling, many researchers try to simplify robotic fish into two-link

models, such as [141–143]. In this chapter, since the speed tracking of the robotic fish

swimming at “cruise” will be explored which is a basic Carangiform swimming mode,

a two-link one-joint robotic fish prototype is thus developed for investigation.

Figure 8.1: Schematic structure of the robotic fish.

Figure 1 shows the schematic structure of the robotic fish. The length of the robotic

fish is approximately 36 cm. It consists of two links which are connected by a high-

torque servo motor (JR DS R8801). Due to mechanical restriction, the angle range for

the servomotor is about −60◦ to 60◦. Basically, the shape of the middle part of the fish

body is a cylinder, and the shape of the fish head is a cone with a round nose for the pur-

pose of reducing drag force. The lunate tail is made of perspex with chord length 12 cm

and span 17 cm. The first link of the robotic body has a sealed compartment composed

of plastic side or top panel wrapped with waterproof tap. The compartment contains

a micro controller (ATMEL ATSAM3X8E), an inertial measurement unit (VN-100), a

Bluetooth wireless communication module and a lithium battery. The micro controller

is responsible for controlling the servo motors, transferring diagnostic information via
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the wireless link, processing sensor data and making decisions. The wireless commu-

nication module is used to receive command from a host computer. The lithium battery

is applied to provide power for the servomotors, and a toggle switch is used to switch

on/off the battery. The frequency of the control signal is 1Hz in this chapter. In addition,

in this chapter, an overhead camera is used to record the trajectories of the robotic fish,

and the frame rate of the camera is 25 frames per second. After processing a series of

images at different time instants, the average speed of the robot with respect to time can

be obtained.

8.3 Modelling

Figure 8.2: The top-view geometry of the two-link robotic fish.

Figure 8.2 shows the top-view geometry of the two-link robotic fish. Without loss

of generality, it is assumed that both the body center of mass and the central line locate

at the center of the fish body. The length of the robotic fish is l and that of the tail is l/3.

8.3.1 Caudal Fin Thrust Modelling

As shown in Fig. 8.2, the robotic fish prototype in this chapter has two links. The

front two-thirds of the robotic fish is rigid and the rear third moves symmetrically to its
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central line. The displacement h(x, t) at the position x can be calculated as follows

h(x, t) = x tan(θ), (8.1)

where θ in radians is the angle between the tail and the central line of the robotic fish.

The angle θ is directly proportional to the motor rotation, and it is used as the driving

term as a function of time. If θ(t) is driven sinusoidally, i.e., θ(t) = θm sin(2π f t), as

used in [141], the displacement h(x, t) can be written as

h(x, t) = x tan(θm sin(2π f t)), (8.2)

where θm is the amplitude and f is the frequency of the sinusoidal motion. Now, taking

the derivative with respect to time t on both side of (8.2), it follows that

(
∂h(x, t)

∂ t

)
x= l

3

=
2
3

π f θml sec2(θm sin(2π f t))cos(2π f t). (8.3)

In addition, the spatial derivative of h(x, t) at x = l/3 is

(
∂h(x, t)

∂x

)
x= l

3

= tan(θm sin(2π f t)). (8.4)

According to the small displacement model developed in [129], the average thrust F

generated by the fish is given as follows

F =
ρA(l)

2

[(
∂h
∂ t

)2

− v2
(

∂h
∂x

)2
]
, (8.5)

where ρ is the density of water, v is the velocity of fish, A(l) is the area of a circle

computed by using the overall dimension of the tail as a diameter, and the squares of

the derivative values are averages over a typical cycle, namely,

(
∂h
∂ t

)2

,
1
T

∫ T

0

(
∂h
∂ t

)2

x= l
3

dt, (8.6)(
∂h
∂x

)2

,
1
T

∫ T

0

(
∂h
∂x

)2

x= l
3

dt, (8.7)
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where T = 1/ f is the period of sinusoidal motion. Further, the time-averaged values

for these derivatives can be found numerically for various amplitudes and frequencies,

and the results are shown in Figs. 8.3 and 8.4, respectively. The values f = 1Hz and

θm = π/6 in Figs. 8.3 and 8.4 are only illustrative examples. If other values for f and

θm are adopted in the simulation, similar variation tendencies for
(

∂h
∂ t

)2
and

(
∂h
∂x

)2
will

be presented.
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Figure 8.3: The integrated square of the slope and velocity of the tail over one cycle vs. Am-
plitude.
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Figure 8.4: The integrated square of the slope and velocity of the tail over one cycle vs. Fre-
quency.

Let H1(θm, f ) and H2(θm, f ,v) be defined as follows

H1(θm, f ) ,
ρA(l)

2

(
∂h
∂ t

)2

(8.8)

and

H2(θm, f ,v) ,
ρA(l)v2

2

(
∂h
∂x

)2

. (8.9)
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The thrust F can be rewritten as

F = H1(θm, f )−H2(θm, f ,v). (8.10)

8.3.2 Drag Force

Besides the thrust generated by caudal fin undulations, the robot body also expe-

riences drag force. Similar as [133, 143, 144], the drag on the body of the robot is

assumed to be generated in steady or quasi-steady flow, and it takes the form

D = αv2 (8.11)

where α , 1
2 ρSCD is a positive constant. ρ is the density of water, S is a suitably defined

reference surface area for the robot body, and CD is the drag coefficient. The coefficient

α will be estimated numerically later. In addition, the drag acts parallel to the direction

of motion.

8.3.3 Dynamical Model

By applying Newton’s second law, the dynamics model of the two-link robotic fish

at “cruise” swimming mode can be given as follows

Mv̇ = F−D, (8.12)

where M is the mass of the robotic fish, and F is highly nonlinear with respect to the

amplitude θm and the frequency f .

8.4 Controller Design and Convergence Analysis

From the view of biomimetics, present works and progresses in robotic fish are still

located at shape-similarity mechanism design, namely, fish-like swimming gait gener-

ation. However, few works investigate the speed tracking problem for the robotic fish,
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which is an indispensable research step in motion control and motion planning of the

robotic fish.

There is substantial evidence from ichthyology suggesting that symmetric body and

fin kinematics usually lead to powered translational maneuvers, whereas asymmetrical

kinematics may bring on rotational maneuvers [145, 146]. Hence at “cruise” swimming

mode, the caudal fin of the robotic fish should undulate symmetrically. Therefore, if the

undulatory frequency or amplitude of the caudal fin is fixed, the speed of the robotic fish

can be adjusted by the other one. Without loss of generality, this chapter fixes the un-

dulatory frequency as 1Hz, and the amplitude of undulation will be used to manipulate

the speed of the robotic fish.

Due to the hardware limitation, the magnitude of the tail motion is bounded. That is,

there exists an input saturation. Assume that the amplitude satisfies 0≤ θm≤ θ ∗m < π/2.

Consider system

Mv̇i =−αv2
i +Fi, (8.13)

where i∈Z+ is the experiment or iteration number, and Fi = H1(θ̃m,i,1)−H2(θ̃m,i,1,vi)

with

θ̃m,i , sat(θm,i,θ
∗
m) =



0, θm,i ≤ 0,

θm,i, 0 < θm,i < θ ∗m,

θ ∗m, θm,i > θ ∗m.

Let the target speed trajectory be vd(t) ∈C1[0,T ]. For any given vd(t) to be realizable,

it is assumed that there exists θ d
m such that the following dynamics holds,

Mv̇d =−αv2
d +Fd , (8.14)

where Fd , H1(θ
d
m,1)−H2(θ

d
m,1,vd), and 0 ≤ θ d

m ≤ θ ∗m. Denote ei(t) , vd(t)− vi(t)

the tracking error at the ith iteration. From (8.13) and (8.14), the error dynamics can be
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written as

ėi =−
α

M
(v2

d− v2
i )+

1
M
(Fd−Fi). (8.15)

The control objective is to tune θm,i such that the tracking error ei(t) converges to zero

as the iteration number increases.

Considering the constraints of hardware, a P-type ILC scheme with a saturator is

designed as follows

θm,i+1 = θ̃m,i + γei(t), (8.16a)

θ̃m,i = sat(θm,i,θ
∗
m), (8.16b)

where γ > 0 is the learning gain to be determined.

Remark 8.1 The initial input θm,0 can be set to zero directly or generated by any pre-

specified feedback controller that leads to bounded tracking error e0.

As common in ILC theory, the following assumption is made.

Assumption 8.1 The initial state is reset to the desired initial state at each iteration,

i.e., ei(0) = 0.

The main result of this chapter can be summarized as follows.

Theorem 8.1 For system (8.13), under the Assumption 8.1, the proposed ILC law (8.16)

guarantees that the tracking error ei(t), t ∈ [0,T ] converges to zero uniformly as i→∞.

To facilitate the proof of Theorem 8.1, a lemma for the thrust F and a property

regarding to the saturation function given in [147] are first presented.
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Lemma 8.1 For system (8.12), ∂F
∂v is non-positive, and there exists a constant ϑ > 0

such that 0 < ∂F
∂θm
≤ ϑ .

Proof. See Appendix A.12.

Property 1. For a given θ d
m(t) satisfying supt∈[0,T ] |θ d

m(t)| ≤ θ ∗m, the following in-

equality holds:

[θ d
m− sat(θm,i,θ

∗
m)]

2 ≤ [θ d
m−θm,i]

2.

Proof of Theorem 8.1. Let ∆θm,i = θ d
m−θm,i. Consider the CEF at the ith iteration

Ei(t) =
1
2

e−λ te2
i +

1
2γM

∫ t

0
e−λ s ∂F

∂θm
∆θ

2
m,i+1ds,

where λ > γϑ

M , ∂F
∂θm

, ∂F
∂θm

(v̂i, θ̂m,i), v̂i , vi +µ(vd− vi), θ̂m,i , θ̃m,i +µ(θ d
m− θ̃m,i) and

µ ∈ (0,1). The proof consists of two parts, which address the non-increasing property

of the CEF along the iteration axis and the uniform convergence of the tracking error,

respectively.

Part I. Difference of Ei(t). Let δθ 2
m,i+1 , ∆θ 2

m,i+1−∆θ 2
m,i. Then the difference of

Ei(t) is

∆Ei(t) , Ei(t)−Ei−1(t) (8.17)

=
1
2

e−λ te2
i+

1
2γM

∫ t

0
e−λ s ∂F

∂θm
δθ

2
m,i+1ds−1

2
e−λ te2

i−1.

The first term on the right-hand side of (8.17), with the identical initial condition, can

be expressed as

1
2

e−λ te2
i =−

λ

2

∫ t

0
e−λ se2

i ds+
∫ t

0
e−λ seiėids. (8.18)
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According to the error dynamics (8.15), (8.18) can be rewritten as

1
2

e−λ te2
i = −λ

2

∫ t

0
e−λ se2

i ds

+
∫ t

0
e−λ sei[−

α

M
(v2

d− v2
i )+

1
M
(Fd−Fi)]ds

= −λ

2

∫ t

0
e−λ se2

i ds− α

M

∫ t

0
e−λ s(vd + vi)e2

i ds+
1
M

∫ t

0
e−λ sei(Fd−Fi)ds

≤ −λ

2

∫ t

0
e−λ se2

i ds+
1
M

∫ t

0
e−λ sei(Fd−Fi)ds (8.19)

where α
∫ t

0 e−λ s(vd + vi)e2
i ds ≥ 0 is applied since both the desired speed vd and the

actual speed vi are non-negative, i.e., always moving ahead. By applying the Mean

Value Theorem, there has

Fd−Fi =
∂F
∂v

(vd− vi)+
∂F
∂θm

(θ d
m− θ̃m,i), (8.20)

where ∂F
∂v , ∂F

∂v (v̂i, θ̂m,i). By combining (8.19) and (8.20), it is obvious that

1
2

e−λ te2
i ≤ −λ

2

∫ t

0
e−λ se2

i ds+
1
M

∫ t

0
e−λ s ∂F

∂v
e2

i ds

+
1
M

∫ t

0
e−λ s ∂F

∂θm
(θ d

m− θ̃m,i)eids

≤ −λ

2

∫ t

0
e−λ se2

i ds+
1
M

∫ t

0
e−λ s ∂F

∂θm
(θ d

m− θ̃m,i)eids (8.21)

where the property ∂F
∂v ≤ 0 in Lemma 8.1 is used.

Now looking into the second term on the right-hand side of (8.17), it follows that

1
2γM

∫ t

0
e−λ s ∂F

∂θm
δθ

2
m,i+1ds (8.22)

=
1

2γM

∫ t

0
e−λ s ∂F

∂θm
[(θ d

m−θm,i+1)
2− (θ d

m−θm,i)
2]ds

≤ 1
2γM

∫ t

0
e−λ s ∂F

∂θm
[(θ d

m−θm,i+1)
2− (θ d

m− θ̃m,i)
2]ds

=
1

2γM

∫ t

0
e−λ s ∂F

∂θm
[(θm,i+1−θ̃m,i)(θm,i+1+θ̃m,i−2θ

d
m)]ds,
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where Property 1 is applied. Substitute the ILC law (8.16) into (8.22), it gives

1
2γM

∫ t

0
e−λ s ∂F

∂θm
δθ

2
m,i+1ds (8.23)

≤ 1
2γM

∫ t

0
e−λ s ∂F

∂θm
γei(2θm,i+1− γei−2θ

d
m)ds

= − 1
M

∫ t

0
e−λ s ∂F

∂θm
(θ d

m−θm,i+1)eids− γ

2M

∫ t

0
e−λ s ∂F

∂θm
e2

i ds

Then combining (8.21) and (8.23) with (8.17) yields

∆Ei(t) ≤ −λ

2

∫ t

0
e−λ se2

i ds− γ

2M

∫ t

0
e−λ s ∂F

∂θm
e2

i ds

−1
2

e−λ te2
i−1 +

1
M

∫ t

0
e−λ s ∂F

∂θm
(θm,i+1− θ̃m,i)eids

= −λ

2

∫ t

0
e−λ se2

i ds− γ

2M

∫ t

0
e−λ s ∂F

∂θm
e2

i ds

−1
2

e−λ te2
i−1 +

γ

M

∫ t

0
e−λ s ∂F

∂θm
e2

i ds

= −λ

2

∫ t

0
e−λ se2

i ds+
γ

2M

∫ t

0
e−λ s ∂F

∂θm
e2

i ds− 1
2

e−λ te2
i−1. (8.24)

By using the property 0 < ∂F
∂θm
≤ ϑ in Lemma 8.1, (8.24) yields that

∆Ei(t) ≤ −1
2
(λ − γϑ

M
)
∫ t

0
e−λ se2

i ds− 1
2

e−λ te2
i−1. (8.25)

Since λ > γϑ

M , the term −1
2(λ −

γϑ

M ) is negative. Consequently, from (8.25) it follows

that

∆Ei(t)≤−
1
2

e−λ te2
i−1 < 0. (8.26)

Part II. Convergence property. From (8.26), there has

i

∑
j=1

∆E j(t)≤−
1
2

e−λ t
i

∑
j=1

e2
j−1 ≤−

1
2

e−λT
i

∑
j=1

e2
j−1. (8.27)

Then it follows that

Ei(t)≤ E0(t)−
1
2

e−λT
i

∑
j=1

e2
j−1. (8.28)
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Note that Ei(t) is positive, and E0(t) is finite since both e0(t) and θm,1 are finite. There-

fore, we can obtain from (8.28) that the tracking error ei(t) converges to zero pointwise-

ly as i→ ∞.

Further, from (8.3)-(8.4) and (8.6)-(8.7), it follows that

(
∂h
∂ t

)2

≤ 4
9

π
2 f 2l2

θ
∗2
m sec4(θ ∗m), (8.29)(

∂h
∂x

)2

≤ tan2(θ ∗m). (8.30)

Therefore, the boundedness of Fi can be obtained from (8.10), which implies that v̇i is

bounded by (8.13). Consequently, since both vd ∈C1[0,T ] and v̇d ∈C[0,T ] are bounded,

it obtains the boundedness of ėi(t), which guarantees the uniform continuity of ei(t) in

the interval [0,T ]. In the sequel, by applying Barbalat lemma, the uniform convergence

of ei(t) can be obtained.

Remark 8.2 In the updating law (8.16), the convergence of tracking error can be guar-

anteed as long as the learning gain γ is positive. Generally, an appropriate learning

gain is desired for practical applications. With a small learning gain, more iterations

may be needed before reaching a preset accuracy. With an overly large learning gain,

overshoot may occur, leading to an oscillatory response along the iteration axis.

8.5 Simulation and Experiment

In order to illustrate the efficiency of the proposed ILC scheme, both simulations

and experiments are conducted in this section.
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8.5.1 Parametric Estimations

The parameters used in the simulation have been selected based on the two-link

robotic fish prototype: M = 0.4kg, l = 0.36m, ρ = 1000kg/m3, A(l) = 0.1652π/4m2

and θ ∗m = π/4. Furthermore, in order to estimate the water resistance coefficient three

experiments are conducted firstly. In the experiments, the robotic fish swims at “cruise”

swimming mode and the overhead camera is used to record the trajectories of the fish,

by which the speed of the robot can be estimated. The undulatory amplitudes of the tail,

and the corresponding average speeds are presented in the following table.

Table 8.1: Experimental Results for Parameter Estimations

Amplitude (rad) π

4
7

36 π
5

36 π

Speed (m/s) 0.12762 0.09282 0.05117

By utilizing Least Square Method, the water resistance coefficient α can be estimat-

ed as α = 165.7056 kg/m, which will be utilized for simulation.

8.5.2 Simulations

Consider the dynamical model (8.13), and let the target speed trajectory be

vd(t) =


2.25t2(t−40)2/404, t ∈ [0,10]

⋃
[30,40]s,

0.0791, t ∈ (10,30)s,
(8.31)

which is shown in Fig. 8.5.

In such desired motion, it is expected that the robotic fish should accelerate from 0

m/s to 0.0791 m/s within 10 seconds and holds the speed for the next 20 seconds. After

that, it begins to decelerate to 0 m/s within 10 seconds.

Set the input signal at the zeroth iteration as θm,0(t) = 0 for simplicity, and thus
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Figure 8.5: The target speed trajectory.

the corresponding speed of the robot is v0(t) = 0. As such, the control input at the

first iteration is generated by the product of the target and the learning gain. In such

case, if the selected learning gain is too small, the learning process will be very slow.

If the learning gain is too large, overshot will occur, and thus the convergence rate

will be adversely affected. In this part, three different learning gains are implemented,

namely, γ = 4, γ = 7, and γ = 10. Figure 8.6 presents the maximal tracking errors,

|ei|s , supt∈[0,40] |ei(t)|, in three cases. It shows numerically that γ = 7 leads to the

fastest convergence rate. For the learning gain γ = 4, more iterations are needed to

reach the same convergence accuracy as γ = 7, and the learning gain γ = 10 slows the

learning process down due to the occurrence of overshot which is shown in Fig. 8.7.

To show the effect of saturation function, the input signals at different iterations for the

learning gain γ = 10 is presented in Fig. 8.8, where the input signal at the first iteration

is saturated by θ ∗m = π/4, and those at the 2nd, 4th, 6th iterations do not reach the

saturation value θ ∗m = π/4. Moreover, Fig. 8.9 gives the reference and output profiles

for γ = 4 at the 1st, 2nd, 4th, 6th iterations, respectively. Observing the output profiles

in Fig. 8.9, the speed trajectories approach the target gradually as the iteration number

increases, and the difference between v6 and vd is almost invisible.

150



Chapter 8. Precise Speed Tracking Control of A Robotic Fish via ILC

0 1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

Iteration number

M
ax

im
al

 tr
ac

ki
ng

 e
rr

or
s

 

 

γ=4
γ=7
γ=10

Figure 8.6: Maximal tracking error profiles for different learning gains.
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Figure 8.7: Speed profiles at different iterations for γ = 10.
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Figure 8.8: Control input signals at different iterations for γ = 10.

8.5.3 Experiments

To verify the feasibility and reliability of the proposed P-type ILC algorithm, exper-

iments for speed tracking are conducted in a water tank of the size about 3×1.8 m2 with

still water of 0.5m in depth. The frequency of the tail undulation is fixed at 1 Hz and

the amplitude signals is sent to the robotic fish from the host computer. After receiving
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Figure 8.9: Speed profiles at different iterations for γ = 4.

the signals of amplitude through the wireless module, the processor transform them to

pulse width modulation (PWM) signals to drive the servomotor. Then, the motor begins

to work and the corresponding swimming gait will be performed by the fish according

to the received signals. In these experiments, the amplitude signals are symmetric and

the robotic fish swims at the “cruise” swimming mode, which is shown in Fig. 8.10.

Figure 8.10: The robotic fish swims at “cruise” swimming mode in experiments.

Similar as the simulation part, the desired speed trajectory is given as (8.31), namely,

the robot performs acceleration, constant speed and deceleration process in sequence.

It is worthwhile to note that the reset condition in Assumption 8.1 can be met since it

only requires a zero initial speed. To ensure the stability of experiments, the modest

learning gain γ = 4 is selected. The control input at the first iteration is the same as that

in simulation.

Figure 8.11 gives the variation of the maximal tracking error |ei|s. It shows that

|ei|s has been decreased by more than 80% within 6 iterations. Figure 8.12 presents the
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Figure 8.11: Maximal tracking error profile in experiments.
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Figure 8.12: Speed profiles in different experiments.

learning performance in each experiment. At the 1st experiment, the speed trajectory

has very large deviations from the desired one. The maximal tracking error is gradually

reduced by the learning controller, and is almost eliminated at 6th iteration. It is noted

that in Fig. 8.12, the speed of the robotic fish is actually not 0 m/s when t = 40s, which

is due to the inertia of the robot and the fluid characteristics. Furthermore, since the

feedback information providing by ILC is off-line, it is difficult for the robot to achieve

a steady state within a short time. Therefore, oscillations in the speed trajectory during

the time interval [10,30]s are unavoidable but acceptable. The results reveal that the

proposed ILC scheme is an effective control approach for the speed tracking of robotic

fish.
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8.6 Conclusion

This chapter presents an ILC approach for precise speed tracking control of a two-

link robotic fish. ILC can significantly improve the tracking performance by iteratively

learning the desired control profile from previous control executions despite the high

nonlinearity in fish model. It is shown, from both theoretical analysis and real-time ex-

periments, that ILC is an appropriate and powerful motion control method for robotic

fish because of its almost model-free property and the simplicity of the control algorith-

m. Motivated by its effectiveness in the speed tracking control, the applicability of ILC

in turning control of robotic fish will be investigated in the next research phase.
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Chapter 9

Conclusion and Future Works

9.1 Conclusion

This thesis aims to apply ILC to solve new control problems. The main contribution

of this research work is to extend learning control theory and then facilitate the real-time

applications of learning control. The summary of the thesis is as follows.

In Chapter 2, ILC design for discrete-time linear systems with randomly varying

trial lengths is presented. By introducing a stochastic variable and an iteration-average

operator, a unified expression of ILC scheme for systems with non-unified trial lengths

is proposed. Because of the stochastic property of trial lengths, the convergence of

tracking error is derived in the sense of mathematical expectation.

In Chapter 3, a class of continuous-time nonlinear dynamical systems with random-

ly varying trial lengths is considered under the framework of ILC. Different from Chap-

ter 2, an iteratively-moving-average operator is adopted in the ILC law due to the fact

that the latest trials could provide more accurate control information than those ’older’

trials. Based on the contraction mapping methodology, it is shown that the proposed

learning algorithm works effectively to nullify the tracking error for both nonlinear
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affine and non-affine systems.

In Chapter 4, an AILC scheme with a scaling function is proposed for control tasks

with different magnitude and time scales. The major advantage of the proposed AILC

algorithm is the ability to utilize all the learned knowledge despite the iteratively varying

tracking tasks for nonlinear systems with time-invariant and time-varying parametric

uncertainties. The convergence is derived through Lyapunov-like theory.

In Chapter 5, a RILC scheme is presented for state tracking control of nonlinear

MIMO systems with non-parametric uncertainties under the alignment condition. To

deal with the norm-bounded uncertainties, a CEF is introduced to prove the asymptoti-

cal convergence of the tracking error. In addition, the proposed RILC approach is also

extended to systems with uncertain input distribution matrix.

In Chapters 6 and 7, the ILC approaches are extended from ODE systems to PDE

systems, where ILC for linear and nonlinear PDE systems are investigated, respectively.

In Chapter 6, owning to the linear property of the system model, the LIDPSs are first

reformulated into a matrix form in the frequency domain. Then, through the determi-

nation of a fundamental matrix, the transfer function of LIDPS from input to output

is precisely evaluated, which thus facilitates the consequent ILC design and conver-

gence analysis in the frequency domain. The proposed control design scheme is able

to deal with parametric and non-parametric uncertainties and make full use of the pro-

cess repetition, while avoid any simplification or discretization for the 3D dynamics

of LIDPS in the time, space, and iteration domains. In Chapter 7, a D-type anticipa-

tory ILC scheme is applied to the boundary control of nonlinear inhomogeneous heat

equations. By transforming the inhomogeneous heat equation into its integral form and

exploiting the properties of the embedded Jacobi Theta function, the learning conver-
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gence of ILC is guaranteed based on contraction mapping methodology. Meanwhile,

due to the feedforward characteristic of ILC, the proposed scheme not only makes an-

ticipatory compensation possible to overcome the heat conduction delay in boundary

output tracking, but also eliminates the gain margin limitation encountered in feedback

control.

At last, Chapter 8 considers a real-time application of ILC, that is, ILC for precise

speed tracking of a robotic fish. The mathematical model for the robotic fish is first con-

structed by virtue of Newton’s second law, which is highly nonlinear and non-affine in

control input. Then based on the constructed model, a P-type ILC algorithm is proposed

for speed tracking tasks of the robotic fish, and the convergence analysis is conducted

under the framework of CEF method. Due to its partial model-free property, ILC is

shown to be an appropriate and powerful motion control method for robotic fish from

both theoretical analysis and real-time experiments.

9.2 Future Works

This section provides potential future research directions in continuation of this

research.

1. In Chapters 2 and 3, ILC for systems with randomly varying trial lengths are

investigated based on contraction mapping methodology, where the global Lip-

schitz continuous property of the systems is required. For local Lipschitz con-

tinuous systems, how to formulate and deal with non-uniform trial lengths under

the framework of CEF-based ILC is of interest and challenge. Besides, the nov-

el formulation of ILC with non-uniform trial lengths could be extended to more

control problems that are perturbed by random factors.
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2. In Chapter 5, a RILC scheme is developed for nonlinear MIMO systems with

non-parametric uncertainties under alignment condition. Under the framework

of ILC, our idea could be extended along the following directions: (1) extension

to systems with non-square uncertain input distribution matrix, (2) extension to

output tracking control or state tracking control but with input or state constraints,

(3) extension to systems whose nonlinear part does not belong to any of the three

types of uncertainties defined in the chapter.

3. Chapters 6 and 7 address ILC design problems for boundary tracking control

of some particular PDE systems. In the future work, extensions should be done

for more general systems, such as PDE systems with nonlinear uncertainties, high

order PDE systems, etc. Meanwhile, it is also desirable to explore more advanced

ILC schemes for PDE processes.

4. Many control issues in traditional ILC, such as initial resetting problem, non-

uniform trial length problem, iteration-varying target trajectories, etc, should be

considered correspondingly in ILC design of PDE systems.

5. In Chapter 8, a P-type ILC algorithm is developed for precise speed tracking con-

trol of a two-link robotic fish. Because of its almost model-free property and the

simplicity of the control algorithm, ILC is proved to be an powerful motion con-

trol method for robotic fish. Motivated by its effectiveness in the speed tracking

control, the applicability of ILC in turning control of robotic fish will be inves-

tigated in the near future. In addition, applicability of ILC to other real-time

systems with repetitiveness is worthy of study.

6. The convergence of ILC in the thesis is based on L2-norm or λ -norm. Whether

158



Chapter 9. Conclusion and Future Works

the monotonic convergence of ILC in vector norm can be guaranteed for generic

systems is still an open and challenging problem.
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Appendix A

Detailed Proofs

A.1 Convergence Analysis of ILC law (2.3)

Let4ui(t), ud(t)−ui(t) and4xi(t), xd(t)−xi(t) be the input and state errors,

respectively. From the reference system (2.2) and the system (2.1), there have


4xi(t +1) = A4xi(t)+B4ui(t),

ei(t) =C4xi(t).
(A.1)

According to the ILC law (2.3) and the error dynamics (A.1), we can obtain that

4ui+1(t) = 4ui(t)−Lei(t +1)

= (I−LCB)4ui(t)−LCA4xi(t). (A.2)

In addition, the solution of (A.1) can be expressed as

4xi(t) =
t−1

∑
k=0

At−1−kB4ui(k), (A.3)
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where the identical initial condition xd(0) = xi(0) is applied. By substituting (A.3) into

(A.2), it gives

4ui+1(t) = 4ui(t)−Lei(t +1)

= (I−LCB)4ui(t)−LC
t−1

∑
k=0

At−kB4ui(k). (A.4)

Taking the norm ‖ · ‖ on both sides of (A.4) leads to

‖4ui+1(t)‖ ≤ ‖I−LCB‖‖4ui(t)‖+β

t−1

∑
k=0

α
t−k‖4ui(k)‖, (A.5)

where the parameter α satisfies α ≥ ‖A‖ and β , supt∈[0,T ] ‖LC‖‖B‖. Multiplying both

sides of (A.5) by α−λ t , and taking the supremum over [0,T ], there have

sup
t∈[0,T ]

α
−λ t‖4ui+1(t)‖ ≤ ρ sup

t∈[0,T ]
α
−λ t‖4ui(t)‖+β sup

t∈[0,T ]
α
−λ t

t−1

∑
k=0

α
t−k‖4ui(k)‖(A.6)

where the constant ρ is chosen such that ‖I−LCB‖ ≤ ρ < 1. From the definition of

λ -norm, it follows that

sup
t∈[0,T ]

α
−λ t

t−1

∑
k=0

α
t−k‖4ui(k)‖ = sup

t∈[0,T ]
α
−(λ−1)t

t−1

∑
k=0

α
−λk‖4ui(k)‖α(λ−1)k

≤ ‖4ui(t)‖λ sup
t∈[0,T ]

α
−(λ−1)t

t−1

∑
k=0

α
(λ−1)k

≤ 1−α−(λ−1)Td

αλ−1−1
‖4ui(t)‖λ . (A.7)

Then, combining (A.6) and (A.7), there finally have

‖E{A{4ui+1(t)}}‖λ ≤ ρ0‖E{A{4ui(t)}}‖λ , (A.8)

where ρ0 , ρ +β
1−α

−(λ−1)Td

αλ−1−1 . Since 0≤ ρ < 1 by the condition (2.11), it is possible to

choose a sufficiently large λ such that ρ0 < 1. Therefore, (A.8) implies that

lim
i→∞
‖4ui(t)}}‖λ = 0. (A.9)

Finally, we can obtain the convergence of4ui(t) from (A.9), which implies that limi→∞ ei(t)=

0 for ∀t ∈ [0,T ].

182



Chapter A. Detailed Proofs

A.2 Proof of Theorem 4.1

Denote Φi , Θ̂i(t)−Θ the estimation error. Define the CEF at the ith iteration

Ei(t) =
1
2

eT
i (t)ei(t)+

1
2

∫ t

0
trace(ΦT

i Φi)ds, i ∈ Z+,

which is composed by tracking error and the estimation error for basis function. The

proof consists of three parts. In the first part, the negative definite difference of CEF is

derived. In the second part, the convergence of ei(t) for i ≥ 2 is proved. In the third

part, the boundedness of E1(t) is derived.

Part I. The difference of Ei: The difference of Ei for i ≥ 2, defined between two

consecutive iterations, is

∆Ei(t) , Ei(t)−Ei−1(t)

=
1
2

eT
i (t)ei(t)+

1
2

∫ t

0
trace(ΦT

i Φi−Φ
T
i−1Φi−1)ds

−1
2

eT
i−1(t)ei−1(t). (A.10)

Substituting the controller (4.5) into the error dynamics (4.4), we have

ėi(t) = ρ̇i(t)Θf(xi)+ ρ̇i(t)B(xi, ti)ui(t)− ẋd
i (t)

= −Γρ̇i(t)ei(t)− ρ̇i(t)(Θ̂i(t)−Θ)f(xi)

= −Γρ̇i(t)ei(t)− ρ̇i(t)Φif(xi). (A.11)

Applying the initial resetting condition and (A.11) yields

1
2

eT
i (t)ei(t) =

∫ t

0
eT

i (s)ėi(s)ds (A.12)

=
∫ t

0
eT

i (s)[−Γρ̇i(s)ei(s)− ρ̇i(s)Φif(xi)]ds

= −
∫ t

0
ρ̇i(s)eT

i (s)Γei(s)ds−
∫ t

0
ρ̇i(s)eT

i (s)Φif(xi)ds.
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Noticing the definition of Φi and the trace property trace((A− B)T (A− B)− (C−

B)T (C−B)) = trace([2(B−A)+(A−C)]T (C−A)), we obtain

1
2

∫ t

0
trace(ΦT

i Φi−Φ
T
i−1Φi−1)ds

=
1
2

∫ t

0
trace([2(Θ− Θ̂i(s))+(Θ̂i(s)− Θ̂i−1(s))]T (Θ̂i−1(s)− Θ̂i(s)))ds.(A.13)

Substituting the parametric updating law (4.6) into (A.13), we have

1
2

∫ t

0
trace(ΦT

i Φi−Φ
T
i−1Φi−1)ds (A.14)

=
∫ t

0
ρ̇i(s)trace(ΦT

i ei(s)fT (xi))ds

−1
2

∫ t

0
trace[(Θ̂i(s)− Θ̂i−1(s))T (Θ̂i(s)− Θ̂i−1(s))]ds

=
∫ t

0
ρ̇i(s)eT

i (s)Φif(xi)ds− 1
2

∫ t

0
trace[(Θ̂i(s)− Θ̂i−1(s))T (Θ̂i(s)− Θ̂i−1(s))]ds,

where

trace(ΦT
i ei(s)fT (xi)) = trace(f(xi)eT

i (s)Φi) = trace(eT
i (s)Φif(xi)) = eT

i (s)Φif(xi)

is applied. Combining (A.12) and (A.15) with (A.10), the difference ∆Ei(t) becomes

∆Ei(t) = −
∫ t

0
ρ̇i(s)eT

i (s)Γei(s)ds− 1
2

eT
i−1(t)ei−1(t)

−1
2

∫ t

0
trace[(Θ̂i(s)− Θ̂i−1(s))T (Θ̂i(s)− Θ̂i−1(s))]ds,

which is negative definite.

Part II. Asymptotical Convergence: Note that the non-increasing property of Ei(t)

in the iteration domain holds for all t ∈ [0,T ]

∆Ei(t)≤−
1
2

eT
i−1(t)ei−1(t), i > 1. (A.15)

Consider a finite sum of ∆Ei(t),

i

∑
j=2

∆E j(t) =
i

∑
j=2

(E j(t)−E j−1(t)) = Ei(t)−E1(t),
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and use the relationship (A.15), we have

Ei(t)≤ E1(t)−
1
2

i

∑
j=2

eT
i−1(t)ei−1(t). (A.16)

Note that Ei(t) is positive. If supt∈[0,T ] E1(t) is finite, the inequality (A.16) implies

asymptotical and pointwise convergence property limi→∞ eT
i (t)ei(t) = 0, ∀t ∈ [0,T ]. So

does ei(t).

Part III. Boundedness of E1(t): The derivative of E1(t) is

Ė1(t) = eT
1 (t)ė1(t)+

1
2

trace(ΦT
1 Φ1)

= eT
1 (t)(−Γρ̇1(t)e1(t)− ρ̇1(t)Φ1f(x1))+

1
2

trace(ΦT
1 Φ1)

= −ρ̇1(t)eT
1 (t)Γe1(t)− ρ̇1(t)eT

1 (t)Φ1f(x1)+
1
2

trace(ΦT
1 Φ1)

= −ρ̇1(t)eT
1 (t)Γe1(t)− trace(ρ̇1(t)ΦT

1 e1(t)fT (x1))

+
1
2

trace(ΦT
1 Φ1) (A.17)

where the error dynamics in the 1st iteration is used. Since Θ̂0(t) = 0, we have

Θ̂1(t) = ρ̇1(t)e1(t)fT (x1). (A.18)

By substituting (A.18) into (A.17), we can get

Ė1(t) = −ρ̇1(t)eT
1 (t)Γe1(t)− trace(ΦT

1 Θ̂1(t))+
1
2

trace(ΦT
1 Φ1)

= −ρ̇1(t)eT
1 (t)Γe1(t)−

1
2

trace(ΦT
1 Φ1)− trace(ΦT

1 Θ).

Since there exists a constant c > 0 such that −ΦT
1 Θ ≤ cΦT

1 Φ1 +
1
4c ΘT Θ, then let 0 <

c < 1
2 , we have

Ė1(t) ≤ −ρ̇1(t)eT
1 (t)Γe1(t)− (

1
2
− c)trace(ΦT

1 Φ1)+
1
4c

trace(ΘT
Θ).

Considering the boundedness of Θ, there exists a finite bound Θm such that ΘT Θ ≤

ΘT
mΘm. As a result, whenever ρ̇1(t)eT

1 (t)Γe1(t)+(1
2−c)trace(ΦT

1 Φ1)≥ 1
4c trace(ΘT

mΘm),

Ė1 becomes negative, which implies the boundedness of E1(t).
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A.3 Proof of Theorem 4.2

The proof can be performed similarly as in the proof of Theorem 4.1. Denote

Ψi , η̂i(t)−η and ψi , λ̂i(t)− λ the estimation errors and consider the CEF at the

ith iteration

Ei(t) =
1
2

eT
i (t)ei(t)+

1
2

∫ t

0
trace(ΨT

i Ψi)ds+
1
2

∫ t

0
ψ

2
i ds. (A.19)

Part I. The difference of Ei: The difference of Ei between two consecutive iterations

is

∆Ei(t) , Ei(t)−Ei−1(t)

=
1
2

eT
i (t)ei(t)+

1
2

∫ t

0
trace(ΨT

i Ψi−Ψ
T
i−1Ψi−1)ds

+
1
2

∫ t

0
(ψ2

i −ψ
2
i−1)ds− 1

2
eT

i−1(t)ei−1(t). (A.20)

The error dynamics is

ėi(t) =
dxi(t)

dt
− dxd

i (t)
dt

= −Γρ̇i(t)ei(t)− ρ̇i(t)ΨT
i Ξi(t)f(xi)+ ρ̇i(t)ξ T

i (t)f(xi)

−ρ̇i(t)λ̂i(t)g(xi)sgn(ei(t)),

where the new AIL law (4.15) is applied. Then it is obvious that

1
2

eT
i (t)ei(t) = −

∫ t

0
ρ̇i(s)eT

i (s)Γei(s)ds−
∫ t

0
ρ̇i(s)eT

i (s)Ψ
T
i Ξi(s)f(xi)ds

+
∫ t

0
ρ̇i(s)eT

i (s)[ξ
T
i (s)f(xi)− λ̂i(t)g(xi)sgn(ei(s))]ds. (A.21)
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In addition, we have

1
2

∫ t

0
trace(ΨT

i Ψi−Ψ
T
i−1Ψi−1)ds (A.22)

=
∫ t

0
ρ̇i(s)trace(ΨT

i Ξi(s)f(xi)eT
i (s))ds

− 1
2

∫ t

0
trace((η̂i(s)− η̂i−1(s))T (η̂i(s)− η̂i−1(s)))ds

=
∫ t

0
ρ̇i(s)eT

i (s)Ψ
T
i Ξi(s)f(xi)ds

− 1
2

∫ t

0
trace((η̂i(s)− η̂i−1(s))T (η̂i(s)− η̂i−1(s)))ds

and

1
2

∫ t

0
(ψ2

i −ψ
2
i−1)ds =

1
2

∫ t

0
[2(λ − λ̂i(s))+(λ̂i(s)− λ̂i−1(s))](λ̂i−1(s)− λ̂i(s))ds

=
∫ t

0
ρ̇i(s)ψig(xi)

m

∑
j=1
|ei, j(s)|ds

−1
2

∫ t

0
(λ̂i(s)− λ̂i−1(s))2ds. (A.23)

Combining (A.20), (A.21), (A.22) and (A.23) yields

∆Ei(t) = −
∫ t

0
ρ̇i(s)eT

i (s)Γei(s)ds− 1
2

eT
i−1(t)ei−1(t)

−1
2

∫ t

0
trace((η̂i(s)− η̂i−1(s))T (η̂i(s)− η̂i−1(s)))ds

−1
2

∫ t

0
(λ̂i(s)− λ̂i−1(s))2ds

+
∫ t

0
ρ̇i[eT

i (s)ξ
T
i (s)f(xi)−λg(xi)

m

∑
j=1
|ei, j(s)|ds≤ 0,

since (4.14) implies |eT
i (s)ξ

T
i (s)f(xi)| ≤ λg(xi)∑

m
j=1 |ei, j(s)|.

Part II. Asymptotical Convergence: Note that the non-increasing property of Ei(t)

in the iteration domain holds for all t ∈ [0,T ]

∆Ei(t)≤−
1
2

eT
i−1(t)ei−1(t), i > 1. (A.24)

Consider a finite sum of ∆Ei(t),

i

∑
j=2

∆E j(t) =
i

∑
j=2

(E j(t)−E j−1(t)) = Ei(t)−E1(t),
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and use the inequality (A.24), we have

Ei(t)≤ E1(t)−
1
2

i

∑
j=2

eT
i−1(t)ei−1(t). (A.25)

Note that Ei(t) is positive. If supt∈[0,T ] E1(t) is finite, the inequality (A.25) implies

asymptotical and pointwise convergence property limi→∞ eT
i (t)ei(t) = 0, ∀t ∈ [0,T ]. So

does ei(t).

Part III. Boundedness of E1(t): The derivative of E1(t) is

Ė1(t) = eT
1 (t)ė1(t)+

1
2

trace(ΨT
1 Ψ1)+

1
2

ψ
2
1

= eT
1 (t)[−Γρ̇1(t)e1(t)− ρ̇1(t)ΨT

1 Ξ1(t)f(x1)+ ρ̇1(t)ξ T
1 (t)f(x1)

−ρ̇1(t)λ̂1(t)g(x1)sgn(e1(t))]+
1
2

trace(ΨT
1 Ψ1)+

1
2

ψ
2
1

= −ρ̇1(t)eT
1 (t)Γe1(t)− ρ̇1(t)eT

1 (t)Ψ
T
1 Ξ1(t)f(x1)+ ρ̇1(t)eT

1 (t)ξ
T
1 (t)f(x1)

−ρ̇1(t)λ̂1(t)g(x1)
m

∑
j=1
|e1, j(t)|+

1
2

trace(ΨT
1 Ψ1)+

1
2

ψ
2
1 ,

where the error dynamics in the 1th iteration is applied. By using eT
1 (t)ξ

T
1 (t)f(x1) ≤

λg(x1)∑
m
j=1 |e1, j(t)|, it is obvious that

Ė1(t) ≤ −ρ̇1(t)eT
1 (t)Γe1(t)− ρ̇1(t)eT

1 (t)Ψ
T
1 Ξ1(t)f(x1)+ ρ̇1(t)λg(x1)

m

∑
j=1
|e1, j(t)|

−ρ̇1(t)λ̂1(t)g(x1)
m

∑
j=1
|e1, j(t)|+

1
2

trace(ΨT
1 Ψ1)+

1
2

ψ
2
1 . (A.26)

Since η̂0(t) = 0 and λ̂0(t) = 0, we have

η̂1(t) = ρ̇1(t)Ξ1(t)f(x1)eT
1 (t) (A.27)

and

λ̂1(t) = ρ̇1(t)g(x1)
m

∑
j=1
|e1, j(t)|. (A.28)
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By substituting (A.27) and (A.28) into (A.26), we can get

Ė1(t) ≤ −ρ̇1(t)eT
1 (t)Γe1(t)− trace(ΨT

1 η̂1(t))+λλ̂1(t)− λ̂
2
1 (t)

+
1
2

trace(ΨT
1 Ψ1)+

1
2

ψ
2
1

= −ρ̇1(t)eT
1 (t)Γe1(t)−

1
2

trace(ΨT
1 Ψ1)− trace(ΨT

1 η)− 1
2

ψ
2
1 −ψ1λ .

Since there exists a constant c1 > 0 such that−ΨT
1 η ≤ c1ΨT

1 Ψ1+
1

4c1
ηT η and−ψ1λ ≤

c1ψ2
1 +

1
4c1

λ 2, then let 0 < c1 <
1
2 , we have

Ė1(t) ≤ −ρ̇1(t)eT
1 (t)Γe1(t)− (

1
2
− c1)trace(ΨT

1 Ψ1)− (
1
2
− c1)ψ

2
1

+
1

4c1
trace(ηT

η)+
1

4c1
λ

2.

Considering the boundedness of η and λ , there exists a finite bound µm such that for

any t ∈ [0,T ], trace(ηT η)+λ 2 ≤ µ2
m. As a result, whenever ρ̇1(t)eT

1 (t)Γe1(t)+ (1
2 −

c1)trace(ΨT
1 Ψ1) + (1

2 − c1)ψ
2
1 ≥ 1

4c1
µ2

m}, Ė1 is negative. Hence, the boundedness of

E1(t) over [0,T ] is obtained.

A.4 Proof of Theorem 4.3

Still consider the CEF (A.19), whose difference in two consecutive iterations is

∆Ei(t) = −
∫ t

0
ρ̇i(s)eT

i (s)Γei(s)ds− 1
2

eT
i−1(t)ei−1(t)

−µ1

∫ t

0
ρ̇i(s)trace(ΨT

i η̂i(s))ds

−1
2

∫ t

0
trace((η̂i(s)− η̂i−1(s))T (η̂i(s)− η̂i−1(s)))ds

−µ2

∫ t

0
ρ̇i(s)ψiλ̂i(s)ds− 1

2

∫ t

0
(λ̂i(s)− λ̂i−1(s))2ds

+
∫ t

0
ρ̇i(s)eT

i (s)[ξ
T
i (s)f(xi)−λω(xi,ei)]ds. (A.29)
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By completing the square, it can be shown that

−µ1Ψ
T
i η̂i(t) = −1

2
µ1Ψ

T
i Ψi−

1
2

µ1η̂i(t)T
η̂i(t)+

1
2

µ1η
T

η , (A.30)

−µ2ψiλ̂i(t) = −1
2

µ2ψ
2
i −

1
2

µ2λ̂
2
i (t)+

1
2

µ2λ
2. (A.31)

Now, combining (A.29), (A.30), (A.31) and |eT
i (t)ξ

T
i (t)f(xi)| ≤ λg(xi)∑

m
j=1 |ei, j(t)|,

t ∈ [0,T ], we can obtain

∆Ei(t) ≤ −
∫ t

0
ρ̇i(s)eT

i (s)Γei(s)ds− 1
2

eT
i−1(t)ei−1(t) (A.32)

−1
2

∫ t

0
trace((η̂i(s)− η̂i−1(s))T (η̂i(s)− η̂i−1(s)))ds

−1
2

µ1

∫ t

0
ρ̇i(s)trace(ΨT

i Ψi)ds− 1
2

µ1

∫ t

0
ρ̇i(s)trace(η̂T

i (s)η̂i(s))ds

−1
2

µ2

∫ t

0
ρ̇i(s)ψ2

i ds− 1
2

µ2

∫ t

0
ρ̇i(s)λ̂ 2

i (s)ds− 1
2

∫ t

0
(λ̂i(s)− λ̂i−1(s))2ds

+
∫ t

0
λρ̇i(s)[g(xi)

m

∑
j=1
|ei, j(s)|− eT

i (s)ω(xi,ei)]ds+
T
2

µ1trace(ηT
η)+

T
2

µ2λ
2.

Claim[74]: The following inequality holds for any ε > 0 and for any u ∈ R

0≤ |u|−u tanh(
u
ε
)≤ δε,

where δ is a constant that satisfies δ = e−(δ+1), i.e., δ = 0.2785.

As stated in Assumption 4.1, ρ̇i(t)> 0 for t ∈ [0,T ]. Now, using the claim, it gives

λ [ρ̇i(t)g(xi)
m

∑
j=1
|ei, j(t)|− ρ̇i(t)ei(t)ω(xi,ei)]

= λ

m

∑
j=1

[ρ̇i(t)g(xi)|ei, j(t)|− ρ̇i(t)ei, j(t)g(xi) tanh(
ρ̇i(t)g(xi)ei, j(t)

ε
)]

≤ mλδε ≤ m
2

λε. (A.33)

Therefore, (A.32) yields

∆Ei(t)≤−
1
2

eT
i−1(t)ei−1(t)+ζ , (A.34)

where

ζ ,
m
2

λε +
T
2

µ1trace(ηT
η)+

T
2

µ2λ
2.
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It can be seen that γ will definitely affect the learning performance. We are not able to

derive a general relation such that ∆Ei(t) is negative definiteness for all iterations, as we

did in the proofs of Theorems 4.1 and 4.2. Instead, we will try to show that the tracking

error ei(t) will enter the specified bound within a finite number of iterations.

Consider a finite sum of ∆Ei(t),

i

∑
j=2

∆E j(t) =
i

∑
j=2

(E j(t)−E j−1(t)) = Ei(t)−E1(t),

and use the inequality (A.34), we have

Ei(t) = E1(t)+
i

∑
j=2

∆E j(t)≤ E1(t)−
1
2

i

∑
j=2

eT
i−1(t)ei−1(t)−2γ). (A.35)

In addition, the boundedness of E1(t), ∀t ∈ [0,T ] can be derived similarly as the proof of

Theorem 4.2. Due to the positive definiteness of Ei(t), we can derive the boundedness

of ei(t) for any finite iteration directly from (A.35). If ei(t) goes to infinity at the ith iter-

ation, since ζ is finite, the right hand of (A.35) will diverge to infinity. This contradicts

the positiveness of Ei(t). For ∀t ∈ [0,T ], if E1(t) is bounded, according to the positive

definiteness of Ei(t), there will exist a finite integer i0 > 0 such that eT
i (t)ei(t) ≤ 2ζ

for i > i0. Otherwise, eT
i (t)ei(t) > 2ζ holds for i→ ∞. Then the right hand side of

(A.35) will approach −∞, which contradicts the positive definiteness of Ei(t). Hence,

the tracking error ei(t) will enter the specified bound within a finite number of iterations.

A.5 Proof of Theorem 5.1

Define φi , θ̂i(t)−1 and consider the CEF at the ith iteration

Ei(t) =
1
2

eT
i (t)ei(t)+

1
2γ

∫ t

0
φ

2
i ds. (A.36)
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The proof consists of three parts. In the first part, the negative definite difference of CEF

is derived. In the second part, the convergence of ei(t) for i ≥ 2 is proved. In the third

part, the boundedness properties of the system state, the parametric estimation, and the

control signal are addressed.

Part I. The difference of Ei: The difference of Ei for i ≥ 2, defined between two

consecutive iterations, is

∆Ei(T ) , Ei(T )−Ei−1(T )

=
1
2

eT
i (T )ei(T )−

1
2

eT
i−1(T )ei−1(T )+

1
2γ

∫ T

0
(φ 2

i −φ
2
i−1)ds. (A.37)

First of all, there has

1
2
(eT

i (T )ei(T )− eT
i−1(T )ei−1(T )) =

1
2
(eT

i (0)ei(0)− eT
i−1(T )ei−1(T )) (A.38)

+
∫ T

0
eT

i (s)ėi(s)ds.

Applying Assumption 5.1, namely, the alignment condition, the first term of the right

hand side (RHS) of (A.39) is zero, which renders to

1
2
(eT

i (T )ei(T )− eT
i−1(T )ei−1(T )) =

∫ T

0
eT

i (s)ėi(s)ds. (A.39)

Substituting the controller (5.5) into the error dynamics (5.4) yields

ėi(t) =−Γei− θ̂i(t)ρ(xi, t)sgn(ei(t))+ f(xi, t). (A.40)

Consequently, the RHS of (A.39) can be further written as

∫ T

0
eT

i (s)ėi(s)ds = −
∫ T

0
eT

i (s)Γei(s)ds−
∫ T

0
θ̂i(s)ρ(xi,s)eT

i sgn(ei(s))ds

+
∫ T

0
eT

i f(xi,s)ds

≤ −
∫ T

0
eT

i (s)Γei(s)ds−
∫ T

0
φiρ(xi,s)

n

∑
k=1
|ek,i(s)|ds, (A.41)
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where the relationship eT
i f(xi, t)≤ ρ(xi, t)∑

n
k=1 |ek,i(t)| is used. In addition,

1
2γ

∫ T

0
(φ 2

i −φ
2
i−1)ds

=
1
2γ

∫ T

0
[2(1− θ̂i(s))+(θ̂i(s)− θ̂i−1(s))]× (θ̂i−1(s)− θ̂i(s))ds (A.42)

=
∫ T

0
φiρ(xi, t)

n

∑
k=1
|ek,i(s)|ds− 1

2γ

∫ T

0
(θ̂i(s)− θ̂i−1(s))2ds.

Combining (A.37), (A.41), and (A.42) yields

∆Ei(T )≤−
∫ T

0
eT

i (s)Γei(s)ds− 1
2γ

∫ T

0
(θ̂i(s)− θ̂i−1(s))2ds.

Part II. Convergence of the Tracking Error: Note that the non-increasing property

of Ei(T ) in the iteration domain holds, namely,

∆Ei(T )≤−
∫ T

0
eT

i (s)Γei(s)ds≤−λmin

∫ T

0
‖ei(s)‖2

2ds, i > 1, (A.43)

where λmin is the minimal eigenvalue of Γ. According to (A.43), it can be derived that

the finiteness of Ei(T ) is ensured for each iteration provided E1(T ) is finite, which will

be verified in the following.

The derivative of E1(t) is

Ė1(t) = eT
1 (t)ė1(t)+

1
2γ

φ
2
1

= eT
1 (t)[−Γe1− θ̂1(t)ρ(x1, t)sgn(e1(t))+ f(x1, t)]+

1
2γ

φ
2
1

= −eT
1 Γe1− θ̂1(t)ρ(x1, t)

n

∑
k=1
|ek,1(t)|+ eT

1 f(x1, t)+
1
2γ

φ
2
1

≤ −eT
1 Γe1− θ̂1(t)ρ(x1, t)

n

∑
k=1
|ek,1(t)|+ρ(x1, t)

n

∑
k=1
|ek,1(t)| (A.44)

+
1
2γ

φ
2
1 ,

where the error dynamics in the first iteration and the relationship

eT
1 f(x1, t)≤ ρ(x1, t)

n

∑
k=1
|ek,1(t)|
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are applied. Since θ̂0(t) = 0, it has

θ̂1(t) = γρ(x1, t)
n

∑
k=1
|ek,1(t)|. (A.45)

By substituting (A.45) into (A.45), there has

Ė1(t) ≤ −eT
1 Γe1−

1
γ

θ̂
2
1 (t)+

1
γ

θ̂1(t)+
1
2γ

φ
2
1

= −eT
1 Γe1−

1
γ

φ1θ̂1(t)+
1
2γ

φ
2
1

= −eT
1 Γe1−

1
γ

φ1−
1
2γ

φ
2
1 .

Since by Young’s inequality−φ1≤ |φ1| ≤ cφ 2
1 +1/(4c),∀c> 0, there exists 0< c< 1/2

such that

Ė1(t)≤−λmin‖e1‖2
2− (

1
2
− c)

1
γ

φ
2
1 +

1
4cγ

.

As a result, whenever the inequality λmin‖e1‖2
2+(1

2−c)1
γ
φ 2

1 ≥ 1
4cγ

holds, Ė1 is negative.

Hence, the boundedness of E1(t) over [0,T ] is obtained. In particular, when t = T ,

E1(T ) is bounded.

By considering a finite sum of ∆Ei(T ),

i

∑
j=2

∆E j(T ) =
i

∑
j=2

(E j(T )−E j−1(T )) = Ei(T )−E1(T ),

and using the inequality (A.43), it follows

Ei(T )≤ E1(T )−λmin

i

∑
j=2

∫ T

0
‖e j(s)‖2

2ds. (A.46)

Note that Ei(T ) is positive and E1(T ) is finite, the inequality (A.46) implies the asymp-

totical convergence of ei in the sense of L2-norm, namely, limi→∞

∫ T
0 ‖ei(s)‖2

2ds = 0.

Part III. Boundedness of the involved quantities:

Now, we are in the position of checking the boundedness property of the system

state xi, the parametric estimation θ̂i, and the control signal ui in each iteration.
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First address xi and θ̂i, whose boundedness is guaranteed by the boundedness of

Ei(t),∀t ∈ [0,T ]. According to the definition of Ei(t) and the finiteness of Ei(T ), the

boundedness of
∫ T

0 φ 2
i ds and eT

i (T )ei(T ) are guaranteed for all iterations. Therefore,

∀i ∈ Z+, there exist finite constant M1 > 0 and M2 > 0 satisfying

eT
i (T )ei(T ) ≤ M1 < ∞, (A.47)∫ t

0
φ

2
i ds ≤

∫ T

0
φ

2
i ds≤M2 < ∞, (A.48)

Hence, from (A.36), it gives

Ei(t)≤
1
2

eT
i (t)ei(t)+

1
2γ

M2. (A.49)

On the other hand, similarly as in (A.37), there has

∆Ei(t) =
1
2

eT
i (t)ei(t)−

1
2

eT
i−1(t)ei−1(t)+

1
2γ

∫ t

0
(φ 2

i −φ
2
i−1)ds. (A.50)

From (A.41) and (A.42), it is obvious that

1
2

eT
i (t)ei(t) =

1
2

eT
i (0)ei(0)+

∫ t

0
eT

i (s)ėi(s)ds

≤ 1
2

eT
i (0)ei(0)−

∫ t

0
eT

i (s)Γei(s)ds

−
∫ t

0
φiρ(xi,s)

n

∑
k=1
|ek,i(s)|ds (A.51)

and

1
2γ

∫ t

0
(φ 2

i −φ
2
i−1)ds =

∫ t

0
φiρ(xi, t)

n

∑
k=1
|ek,i(s)|ds− 1

2γ

∫ t

0
(θ̂i(s)− θ̂i−1(s))2ds.(A.52)

Therefore, (A.50), (A.51) and (A.52) yield

∆Ei(t)≤
1
2

eT
i (0)ei(0)−

1
2

eT
i−1(t)ei−1(t). (A.53)

Then, from (A.53),

∆Ei+1(t) ≤
1
2

eT
i+1(0)ei+1(0)−

1
2

eT
i (t)ei(t)

=
1
2

eT
i (T )ei(T )−

1
2

eT
i (t)ei(t). (A.54)
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Summation of (A.49) and (A.54) leads to

Ei+1(t) = Ei(t)+∆Ei+1(t)

≤ 1
2

eT
i (T )ei(T )+

1
2γ

M2

≤ 1
2

M1 +
1
2γ

M2. (A.55)

As it has shown that E1(t) is bounded, it follows that Ei(t) is finite for ∀i ∈ Z+, and so

are xi as well as
∫ t

0 θ̂ 2
i ds.

At last, the boundedness of input profile will be analyzed. Since ρ(xi, t) is LLC

with respect to xi, the boundedness of xi implies the boundedness of ρ(xi, t). Thus,

according to the control law (5.5), the control signal ui(t) is also bounded in L2-norm.

A.6 Proof of Theorem 5.2

Still consider the CEF (A.36), whose difference in two consecutive iterations is

∆Ei(T ) = −
∫ T

0
eT

i (s)Γei(s)ds−
∫ T

0
eT

i (s)ω(xi,ei)ds+
∫ T

0
eT

i (s)f(xi,s)ds

− 1
2γ

∫ T

0
(θ̂i(s)− θ̂i−1(s))2ds− µ

γ

∫ T

0
φiθ̂i(s)ds. (A.56)

By completing the square,

−φiθ̂i =−
1
2

φ
2
i −

1
2

θ̂
2
i +

1
2
. (A.57)

Now, with the aid of (A.56), (A.57), and the inequality eT
i f(xi, t)≤ ρ(xi, t)∑

n
k=1 |ek,i(t)|,

it gives

∆Ei(T ) = −
∫ T

0
eT

i (s)Γei(s)ds−
∫ T

0
[ρ(xi,s)

n

∑
k=1
|ek,i(s)|− eT

i (s)ω(xi,ei)]ds

− 1
2γ

∫ T

0
(θ̂i(s)− θ̂i−1(s))2ds

− µ

2γ

∫ T

0
φ

2
i ds− µ

2γ

∫ T

0
θ̂

2
i (s)ds+

µT
2γ

. (A.58)
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Claim [148]: The following inequality holds for any ε > 0 and for any u ∈ R

0≤ |u|−u tanh(
u
ε
)≤ δε,

where δ is a constant that satisfies δ = e−(δ+1), i.e., δ = 0.2785.

Now, using the claim, there has

ρ(xi, t)
n

∑
k=1
|ek,i(t)|− eT

i (t)ω(xi,ei)

=
n

∑
k=1

[ρ(xi, t)|ek,i(t)|−ρ(xi, t)ek,i(t) tanh(
ρ(xi, t)e1,i(t)

ε
)]≤ nδε ≤ n

2
ε.

Therefore, (A.58) gives

∆Ei(T ) =−
∫ T

0
eT

i (s)Γei(s)ds+σ ≤−λmin

∫ T

0
‖ei(s)‖2

2ds+σ , (A.59)

where σ , n
2 ε + µT

2γ
> 0. Due to the effect of σ , it is impossible to derive that ∆Ei(T )

will be negative definite for all iterations. Instead, it is shown that the tracking error

ei(t) will enter a neighborhood of zero within finite iterations.

Considering a finite sum of ∆Ei(T ),

i

∑
j=2

∆E j(T ) =
i

∑
j=2

(E j(T )−E j−1(T )) = Ei(T )−E1(T ),

and using the inequality (A.59) imply

Ei(T )≤ E1(T )−λmin

i

∑
j=2

[∫ T

0
‖e j(s)‖2

2ds− σ

λmin

]
. (A.60)

In addition, the boundedness of E1(t),∀t ∈ [0,T ] can be derived similarly as the proof of

Theorem 5.1. Due to the positive definiteness of Ei(T ), the boundedness of
∫ T

0 ‖ei(s)‖2
2ds

for any finite i is obtained immediately from (A.60). If
∫ T

0 ‖ei(s)‖2
2ds goes to infinity at

the ith iteration, then the RHS of (A.60) will diverge to infinity owing to the finiteness of

σ/λmin. This contradicts the positiveness of Ei(T ). Further, for any given ε > 0, there

exists a finite integer i0 > 0 such that
∫ T

0 ‖ei(s)‖2
2ds < σ/λmin +ε for i > i0. Otherwise,
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∫ T
0 ‖ei(s)‖2

2ds ≥ σ/λmin + ε holds for i→ ∞. Then the RHS of (A.60) will approach

−∞, which contradicts the positive definiteness of Ei(T ). Hence, the tracking error

∫ T
0 ‖ei(s)‖2

2ds will enter the specified bound σ/λmin + ε within finite iterations.

A.7 Proof of Theorem 5.3

Considering φi = θ̂i(t)−θ , it is obvious that

1
2γ

∫ T

0
(φ 2

i −φ
2
i−1)ds

=
1
2γ

∫ T

0
[2(θ − θ̂i(s))+(θ̂i(s)− θ̂i−1(s))](θ̂i−1(s)− θ̂i(s))ds (A.61)

=
∫ T

0
φiρ(xi, t)

n

∑
k=1
|ek,i(s)|ds− 1

2γ

∫ T

0
(θ̂i(s)− θ̂i−1(s))2ds.

In addition, from the condition ‖f(xi, t)‖ ≤ θρ(xi, t), it follows

eT
i f(xi, t)≤ θρ(xi, t)

n

∑
k=1
|ek,i(t)|. (A.62)

Now, substituting (A.62) into (A.41) and replacing (A.42) with (A.61) in the proof of

Theorem 5.1, the negative definite difference of CEF can be obtained, i.e.,

∆Ei(T )≤−λmin

∫ T

0
‖ei(s)‖2

2ds, i > 1. (A.63)

Further, by substituting (A.62) at i = 1 into (A.45), there has

Ė1(t) ≤ −eT
1 Γe1−

1
γ

φ1θ − 1
2γ

φ
2
1

≤ −λmin‖e1‖2
2− (

1
2
− c)

1
γ

φ
2
1 +

1
4γc

θ
2,

where 0 < c < 1/2. Considering the boundedness of θ , there exists a finite bound θm

such that θ 2 ≤ θ 2
m. As a result, whenever λmin‖e1‖2

2 +(1
2 −c)1

γ
φ 2

1 ≥ 1
4γc θ 2

m, Ė1 becomes

negative, which implies the boundedness of E1(t). Therefore, by using the boundedness

of E1(T ), the positiveness of Ei(T ), and the following inequality

Ei(T )≤ E1(T )−λmin

i

∑
j=2

∫ T

0
‖e j(s)‖2

2ds, (A.64)
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the convergence of the tracking error is proved. Further, the boundedness of the involved

quantities in each iteration can be obtained similarly as in proof of Theorem 5.1.

A.8 Proof of Theorem 5.4

Denote by φi , θ̂i(t)− 1 and ψi , η̂i(t)− 1 the estimation errors. Define the CEF

at the ith iteration

Ei(t) =
1
2

eT
i (t)ei(t)+

1
2γ1

∫ t

0
φ

2
i ds+

1
2γ2

∫ t

0
ψ

2
i ds.

Again, the proof consists of three parts. Since the third part on deriving the boundedness

of system quantities can be obtained similarly as in the preceding theorems, only the first

two parts are given in the following.

Part I. The difference of Ei: The difference of Ei for i ≥ 2, defined between two

consecutive iterations, is

∆Ei(T ) =
1
2

eT
i (T )ei(T )−

1
2

eT
i−1(T )ei−1(T )

+
1

2γ1

∫ T

0
(φ 2

i −φ
2
i−1)ds+

1
2γ2

∫ t

0
(ψ2

i −ψ
2
i−1)ds. (A.65)

For the first two terms on the RHS of (A.65), there has

1
2

eT
i (T )ei(T )−

1
2

eT
i−1(T )ei−1(T )

=
1
2
(eT

i (0)ei(0)− eT
i−1(T )ei−1(T ))+

∫ T

0
eT

i (s)ėi(s)ds. (A.66)

Applying the alignment condition at t = T , namely (5.1), the first term on the RHS of

(A.66) is zero. Then, (A.66) renders to

1
2

eT
i (T )ei(T )−

1
2

eT
i−1(T )ei−1(T ) =

∫ T

0
eT

i (s)ėi(s)ds. (A.67)
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Therefore, from the error dynamics (5.12), it gives

1
2

eT
i (T )ei(T )−

1
2

eT
i−1(T )ei−1(T )

=
∫ T

0
eT

i {fi +Bi[(I +Hi)ui(s)+di]}ds

=
∫ T

0
[eT

i fi + eT
i Bi(I +Hi)ui(s)+ eT

i Bidi]ds. (A.68)

Due to the relationships I+Hi = (1−ξ )I+(ξ I+Hi) and eT
i Bi(ξ I+Hi)BT

i sgn(ei)≥ 0,

the following inequality can be obtained:

−eT
i Bi(I +Hi)BT

i ei

(1−ξ )‖eT
i Bi‖2

= −eT
i Bi(1−ξ )BT

i ei

(1−ξ )‖eT
i Bi‖2

− eT
i Bi(ξ I +Hi)BT

i ei

(1−ξ )‖eT
i Bi‖2

≤ −eT
i Bi(1−ξ )BT

i ei

(1−ξ )‖eT
i Bi‖2

=−‖eT
i Bi‖2. (A.69)

Hence, for the second term of (A.68), by substituting the control law (5.13) into the

integrand, it follows

eT
i Bi(I +Hi)ui(t) ≤ −eT

i Bi(I +Hi)B−1
i [Γei + θ̂i(t)αisgn(ei)]

−eT
i Bi(I +Hi)BT

i ei

‖eT
i Bi‖2

η̂i(t)βi−
λi‖Γ‖‖ei‖2‖eT

i Bi‖2

‖Bi‖

−
√

nλiαi|θ̂i(t)|‖eT
i Bi‖2

‖Bi‖
−λiβi|η̂i(t)|‖eT

i Bi‖2

= −eT
i Γei− θ̂i(t)αi

n

∑
k=1
|ek,i|− eT

i BiHiB−1
i Γei

−θ̂i(t)αieT
i BiHiB−1

i sgn(ei)− η̂iβi‖eT
i Bi‖2 (A.70)

−η̂i(t)βi
eT

i BiHiBT
i ei

‖eT
i Bi‖2

− λi‖Γ‖‖ei‖2‖eT
i Bi‖2

‖Bi‖

−
√

nλiαi|θ̂i(t)|‖eT
i Bi‖2

‖Bi‖
−λiβi|η̂i(t)|‖eT

i Bi‖2,

where the inequality (A.69) is applied. Further, the following inequalities are clear,

−eT
i BiHiB−1

i Γei ≤
λi‖eT

i Bi‖2‖Γ‖‖ei‖2

‖Bi‖
, (A.71)

−θ̂i(t)αieT
i BiHiB−1

i sgn(ei)≤
√

n|θ̂i(t)|αiλi‖eT
i Bi‖2

‖Bi‖
(A.72)
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and

−η̂i(t)βi
eT

i BiHiBT
i ei

‖eT
i Bi‖2

≤ λiβi|η̂i(t)|‖eT
i Bi‖2. (A.73)

Consequently, (A.71)-(A.73) give

eT
i Bi(I +Hi)ui(t)≤−eT

i Γei− θ̂i(t)αi

n

∑
k=1
|ek,i|− η̂i(t)βi‖eT

i Bi‖2. (A.74)

Thus, combining (A.71) with (A.68) results in

1
2

eT
i (T )ei(T )−

1
2

eT
i−1(T )ei−1(T )

≤
∫ T

0
[eT

i fi− eT
i Γei− θ̂i(s)αi

n

∑
k=1
|ek,i|− η̂i(s)βi‖eT

i Bi‖2 + eT
i Bidi]ds

≤
∫ T

0
[−eT

i Γei− (θ̂i(s)−1)αi

n

∑
k=1
|ek,i|− (η̂i(s)−1)βi‖eT

i Bi‖2]ds, (A.75)

where the relationships eT
i fi ≤ αi ∑

n
k=1 |ek,i| and eT

i Bidi ≤ βi‖eT
i Bi‖2 are applied. In

addition, it has

1
2γ1

∫ T

0
(φ 2

i −φ
2
i−1)ds

=
1

2γ1

∫ T

0
[2(1− θ̂i(s))+(θ̂i(s)− θ̂i−1(s))](θ̂i−1(s)− θ̂i(s))ds (A.76)

=
∫ T

0
(θ̂i(s)−1)αi

n

∑
k=1
|ek,i(s)|ds− 1

2γ1

∫ t

0
(θ̂i(s)− θ̂i−1(s))2ds

and

1
2γ2

∫ T

0
(ψ2

i −ψ
2
i−1)ds

=
1

2γ2

∫ T

0
[2(1− η̂i(s))+(η̂i(s)− η̂i−1(s))](η̂i−1(s)− η̂i(s))ds (A.77)

=
∫ T

0
(η̂i(s)−1)βi‖eT

i Bi‖2ds− 1
2γ2

∫ t

0
(η̂i(s)− η̂i−1(s))2ds.

Combining (A.65), (A.75), (A.76) and (A.77) yields

∆Ei(T )≤−
∫ T

0
eT

i (s)Γei(s)ds≤−λmin

∫ T

0
‖ei(s)‖2

2ds, (A.78)

where λmin is the minimal eigenvalue of Γ.
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Part II. Asymptotical Convergence of tracking error: First derive the boundedness

of E1(T ). The derivative of E1(t) is

Ė1(t) ≤ −eT
1 Γe1− θ̂1(t)α1

n

∑
k=1
|ek,1(t)|+α1

n

∑
k=1
|ek,1(t)|

+η(t)β1‖eT
1 B1‖2− η̂1(t)β1‖eT

1 B1‖2 +
1

2γ1
φ

2
1 +

1
2γ2

ψ
2
1 . (A.79)

Since θ̂0(t) = 0 and η̂0(t) = 0, there has

θ̂1(t) = γ1α1

n

∑
k=1
|ek,1(t)|, (A.80)

η̂1(t) = γ2β1‖eT
1 B1‖2. (A.81)

Thus, (A.79) can be rewritten as

Ė1(t) ≤ −eT
1 Γe1−

1
γ1

θ̂
2
1 (t)+

1
γ1

θ̂1(t)+
1
γ2

η̂1(t)−
1
γ2

η̂
2
1 (t)+

1
2γ1

φ
2
1 +

1
2γ2

ψ
2
1

= −eT
1 Γe1−

1
γ1

φ1−
1

2γ1
φ

2
1 −

1
γ2

ψ1−
1

2γ2
ψ

2
1 .

Since−φ1 ≤ |φ1| ≤ cφ 2
1 +

1
4c and−ψ1 ≤ |ψ1| ≤ cψ2

1 +
1
4c ,∀c > 0, there exists 0 < c < 1

2

such that

Ė1(t)≤−eT
1 Γe1− (

1
2
− c)

1
2γ1

φ
2
1 − (

1
2
− c)

1
2γ2

ψ
2
1 +

1
4c

(
1
γ1

+
1
γ2
).

As a result, whenever the relationship eT
1 Γe1 +(1

2 − c) 1
2γ1

φ 2
1 +(1

2 − c) 1
2γ2

ψ2
1 ≥ 1

4c(
1
γ1
+

1
γ2
) holds, Ė1 is negative. Hence, the boundedness of E1(t) over [0,T ] is obtained. In

particular, when t = T , E1(T ) is bounded.

From (A.78), it follows

Ei(T ) = E1(T )+
i

∑
j=2

∆E j(T )

≤ E1(t)−λmin

i

∑
j=2

∫ T

0
‖e j(s)‖2

2ds. (A.82)

Note that Ei(T ) is positive and E1(T ) is finite, the inequality (A.82) implies that ei(t)

tends to zero asymptotically in the sense of L2-norm as i→ ∞, namely,

lim
i→∞

∫ T

0
‖ei(s)‖2

2ds = 0.
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A.9 Proof of Theorem 7.1

First consider the scenario t > δ . Observing (7.8), it has

ei = −2
∫ t

0
θ(1, t− τ)∆ui(τ)dτ

= −2
∫ t−δ

0
θ(1, t− τ)∆ui(τ)dτ−2

∫ t

t−δ

θ(1, t− τ)ud(τ)dτ−Ξ
i, (A.83)

where

Ξ
i(t) , −2

∫ t

t−δ

θ(1, t− τ)ui(τ)dτ

= −2
∫

δ

0
θ(1,s)ui(t− s)ds.

In the (i+1)th iteration, (A.83) gives

ei+1 = −2
∫ t−δ

0
θ(1, t− τ)∆ui+1(τ)dτ

−2
∫ t

t−δ

θ(1, t− τ)ud(τ)dτ−Ξ
i+1. (A.84)

Then, (A.83) and (A.84) render to

ei+1− ei = 2
∫ t−δ

0
θ(1, t− τ)(ui+1(τ)−ui(τ))dτ−Ξ

i+1 +Ξ
i. (A.85)

By applying the anticipatory ILC law (7.10), (A.85) further gives

ei+1− ei = 2ρ

∫ t−δ

0
θ(1, t− τ)ėi(τ +δ )dτ−Ξ

i+1 +Ξ
i

= 2ρθ(1, t− τ)ei(τ +δ )|t−δ

τ=0

−2ρ

∫ t−δ

0
ei(τ +δ )

dθ(1, t− τ)

dτ
dτ−Ξ

i+1 +Ξ
i

= 2ρθ(1,δ )ei−2ρθ(1, t)ei(δ )−Ξ
i+1 +Ξ

i

−2ρ

∫ t−δ

0
ei(τ +δ )

dθ(1, t− τ)

dτ
dτ. (A.86)
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Thus, the relationship between the tracking errors in two consecutive iterations can be

obtained as follows,

ei+1 = (1+2ρθ(1,δ ))ei−2ρθ(1, t)ei(δ )−Ξ
i+1 +Ξ

i

−2ρ

∫ t−δ

0
ei(τ +δ )

dθ(1, t− τ)

dτ
dτ. (A.87)

Taking absolute value on both sides of (A.87), it gives

|ei+1| ≤ |1+2ρθ(1,δ )| |ei|+ |2ρθ(1, t)ei(δ )|+ |Ξi+1−Ξ
i|

+

∣∣∣∣2ρ

∫ t−δ

0
ei(τ +δ )

dθ(1, t− τ)

dτ
dτ

∣∣∣∣ . (A.88)

Using the relationships (7.12) and (7.14), the second and third terms of (A.88) can be

further evaluated as follows.

|2ρθ(1, t)ei(δ )| ≤ 2|ρ| sup
t∈[0,T ]

|θ(1, t)||ei(δ )|

≤ 2|ρ| sup
t∈[0,T ]

|θ(1, t)|
∣∣∣∣2∫ δ

0
θ(1,δ − τ)∆ui(τ)dτ

∣∣∣∣
≤ 8|ρ| sup

t∈[0,T ]
|θ(1, t)|u

∫
δ

0
θ(1,δ − τ)dτ

= ρ1`, (A.89)

where ρ1 , 2|ρ|supt∈[0,T ] |θ(1, t)|, and

|Ξi+1−Ξ
i| ≤ 2

∫
δ

0
θ(1,s)|ui+1(t− s)−ui(t− s)|ds

≤ 4u
∫

δ

0
θ(1,s)ds = `. (A.90)

For the last term on the right hand side of (A.88), since θt(1, t) is always bounded for

δ ≤ t ≤ T by Lemma 7.1, it follows that∣∣∣∣2ρ

∫ t−δ

0
ei(τ +δ )

dθ(1, t− τ)

dτ
dτ

∣∣∣∣
≤ 2|ρ|κ2

∫ t

0
exp(λτ) max

τ∈[0,T ]
exp(−λτ)|ei(τ)|dτ

=
2|ρ|κ2(exp(λ t)−1)

λ
|ei|λ . (A.91)
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Finally, substituting (A.89)-(A.91) into (A.88) leads to

|ei+1| ≤ |1+2ρθ(1,δ )| |ei|+(1+ρ1)`+
2|ρ|κ2(exp(λ t)−1)

λ
|ei|λ . (A.92)

Consider the other scenario t ∈ [0,δ ]. Noticing the maximal input bound (7.12) and

the monotonicity of θ(1, t), it can be seen from the error dynamics (7.8) that

|ei+1| ≤ 4u
∫ t

0
θ(1, t− τ)dτ

≤ 4u
∫

δ

0
θ(1,δ − τ)dτ = `. (A.93)

Thus, (A.92) still holds when t ∈ [0,δ ].

Now, for any t ∈ [0,T ], taking λ -norm on both sides of (A.92) yields

|ei+1|λ ≤ |1+2ρθ(1,δ )| |ei|λ +(1+ρ1)`+2|ρ|κ2
1− exp(−λT )

λ
|ei|λ .

Considering the fact that 2|ρ|κ2(1− exp(−λT ))/λ can be arbitrarily small by choosing

a sufficiently large λ , it suffices to design ρ as in (7.13) such that

|ei+1|λ ≤ |1+2ρθ(1,δ )| |ei|λ +(1+ρ1)`

≤ γ|ei|λ +(1+ρ1)`, (A.94)

where 0≤ γ < 1. Applying (A.94) repeatedly leads to

|ei+1|λ ≤ γ(γ|ei−1|λ +(1+ρ1)`)+(1+ρ1)`

...

≤ γ
i+1|e0|λ +(1+ρ1)γ

i`+ · · ·+(1+ρ1)`

= γ
i+1|e0|λ +

1− γ i+1

1− γ
· (1+ρ1)`. (A.95)

Due to the boundedness of |e0|λ and the fact 0≤ γ < 1,

lim
i→∞
|ei+1|λ ≤ lim

i→∞
γ

i+1|e0|λ + lim
i→∞

1− γ i+1

1− γ
· (1+ρ1)`

=
(1+ρ1)`

1− γ
.
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The proof is complete.

A.10 Proof of Lemma 7.2

Denote by ui+1 and ui the control inputs in two consecutive iterations for system

(7.1), whose corresponding states are vi+1 and vi, respectively. Then, from (7.21), the

respective integral equations for vi+1 and vi can be differenced to yield

vi+1− vi = −2
∫ t−δ

0
θ(x, t− τ)(ui+1(τ)−ui(τ))dτ

+
∫ t−δ

0

∫ 1

0
{θ(x−ξ , t− τ)+θ(x+ξ , t− τ)}

×(F i+1−F i)dξ dτ +Ξ
i+1−Ξ

i. (A.96)

By substituting the ILC law (7.10), it follows that

vi+1− vi = −2ρ

∫ t−δ

0
θ(x, t− τ)ėi(τ +δ )dτ

+
∫ t−δ

0

∫ 1

0
{θ(x−ξ , t− τ)+θ(x+ξ , t− τ)}

× (F i+1−F i)dξ dτ +Ξ
i+1−Ξ

i

= −2ρθ(x, t− τ)ei(τ +δ )|t−δ

τ=0

+2ρ

∫ t−δ

0
ei(τ +δ )θτ(x, t− τ)dτ

+
∫ t−δ

0

∫ 1

0
{θ(x−ξ , t− τ)+θ(x+ξ , t− τ)}

× (F i+1−F i)dξ dτ +Ξ
i+1−Ξ

i

= −2ρθ(x,δ )ei(t)+2ρθ(x, t)ei(δ )

+2ρ

∫ t−δ

0
ei(τ +δ )θτ(x, t− τ)dτ

+
∫ t−δ

0

∫ 1

0
{θ(x−ξ , t− τ)+θ(x+ξ , t− τ)}

× (F i+1−F i)dξ dτ +Ξ
i+1−Ξ

i. (A.97)
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Differentiating (A.97) with respect to x gives

vi+1
x − vi

x = −2ρθx(x,δ )ei(t)+2ρθx(x, t)ei(δ )

+2ρ

∫ t−δ

0
ei(τ +δ )θτx(x, t− τ)dτ

+
∫ t−δ

0

∫ 1

0
{θx(x−ξ , t− τ)+θx(x+ξ , t− τ)}

× (F i+1−F i)dξ dτ +Ξ
i+1
x −Ξ

i
x. (A.98)

In the sequel, combining (A.97) and (A.98) and applying the Lipschitz continuous con-

dition (7.26) and Assumption 7.1 lead to

sup
0≤x≤1

(
|vi+1− vi|+ |vi+1

x − vi
x|
)

≤ 2ρ sup
0≤x≤1

(|θ(x,δ )|+ |θx(x,δ )|)
∣∣ei
∣∣

+2ρ sup
0≤x≤1

∫ t−δ

0
(|θτ(x, t− τ)|+ |θτx(x, t− τ)|) |ei(τ +δ )|dτ

+CF

∫ t−δ

0
sup

0≤x≤1

∫ 1

0
{|θ(x−ξ , t− τ)+θ(x+ξ , t− τ)|

+ |θx(x−ξ , t− τ)+θx(x+ξ , t− τ)|}

×
(
|vi+1− vi|+ |vi+1,ξ − vi,ξ |

)
dξ dτ

+`1 + `2 +2ρ sup
0≤x≤1

(|θ(x, t)|+ |θx(x, t)|)`1, (A.99)

where the relationship
∣∣ei(δ )

∣∣≤ `1 is used. Now, denote

a(t− τ) = CF sup
0≤x≤1

∫ 1

0
(|θ(x−ξ , t− τ)+θ(x+ξ , t− τ)|

+ |θx(x−ξ , t− τ)+θx(x+ξ , t− τ)|)dξ ,

b(t) = sup
0≤x≤1

(|vi+1(x, t)− vi(x, t)|

+|vi+1,x(x, t)− vi,x(x, t)|) ,

c1(t) = 2ρ sup
0≤x≤1

(|θ(x, t)|+ |θx(x, t)|) ,

c2(t− τ) = 2ρ sup
0≤x≤1

(|θτ(x, t− τ)|+ |θτx(x, t− τ)|) .
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By Lemma 7.1, c1(t), c2(t− τ), and a(t− τ), τ ∈ [0, t− δ ], t ∈ [δ ,T ] are finite. Then,

(A.99) can be rewritten as

b(t) ≤ c1(δ )|ei|+
∫ t−δ

0
c2(t− τ)|ei(τ +δ )|dτ

+`1 + `2 +2c1(t)`1 +
∫ t−δ

0
a(t− τ)b(τ)dτ. (A.100)

Applying the Gronwall’s inequality given in Lemma 1, there has

b ≤ exp
{∫ t−δ

0
a(t− τ)dτ

}
×
(

c1(δ )|ei|+
∫ t−δ

0
c2(t− τ)|ei(τ +δ )|dτ + `1 + `2 +2c1(t)`1

)
≤ κ5|ei|+κ6

∫ t−δ

0
|ei(τ +δ )|dτ +κ7, (A.101)

where κ j, j = 5, · · · ,7 are defined as follows,

κ5 = c1(δ ) sup
δ≤t≤T

exp
{∫ t−δ

0
a(t− τ)dτ

}
,

κ6 = sup
δ≤t≤T

(
exp
{∫ t−δ

0
a(t− τ)dτ

}
sup

0≤τ≤t−δ

c2(t− τ)

)
,

κ7 = sup
δ≤t≤T

(
(`1 + `2 +2c1(t)`1)exp

{∫ t−δ

0
a(t− τ)dτ

})
.

Due to the finiteness of c1, c2(t− τ), and a(t− τ) as τ ∈ [0, t− δ ], κ j, j = 5, · · · ,7 are

finite and the proof is complete.

A.11 Proof of Theorem 7.2

By (7.22) and (7.24), it is easy to see that |ei| ≤ `1, i ∈ N for t ∈ [0,δ ]. Next,

it suffices to consider the scenario t ∈ (δ ,T ]. Similarly as in (A.97) of Appendix B,
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substituting the control law (7.10) into (7.25) renders to

ei+1 = (1+2ρθ(1,δ ))ei−2ρθ(1, t)ei(δ )

−2ρ

∫ t−δ

0
ei(τ +δ )

dθ(1, t− τ)

dτ
dτ

+
∫ t−δ

0

∫ 1

0
{θ(1−ξ , t− τ)+θ(1+ξ , t− τ)}

× (F i−F i+1)dξ dτ−Ξ
i+1(1, t)+Ξ

i(1, t). (A.102)

By taking absolute value on both sides of (A.102) and considering the Lipschitz condi-

tion of F and Assumption 7.1, it follows

|ei+1| ≤ |1+2ρθ(1,δ )||ei|

+2ρ

∫ t−δ

0
|ei(τ +δ )|

∣∣∣∣dθ(1, t− τ)

dτ

∣∣∣∣dτ

+
∫ t−δ

0

∫ 1

0
|θ(1−ξ , t− τ)+θ(1+ξ , t− τ)|

×CF(|vi+1− vi|+ |vi+1
ξ
− vi

ξ
|)dξ dτ +(1+ρ1)`1, (A.103)

where ρ1 = 2|ρ|supt∈[0,T ] |θ(1, t)|. Then, by Lemmas 7.1 and 7.2, (A.103) further gives

|ei+1| ≤ |1+2ρθ(1,δ )||ei|+2ρκ2

∫ t

δ

|ei|dτ +2CFκ1κ5

∫ t−δ

0
|ei|dτ

+2CFκ1κ6

∫ t−δ

0

∫ s−δ

0
|ei(τ +δ )|dτds

+2CFκ1κ7(t−δ )+(1+ρ1)`1

< |1+2ρθ(1,δ )||ei|+2(ρκ2 +CFκ1κ5)
∫ t

0
|ei|dτ

+2CFκ1κ6

∫ t

0

∫ s

0
|ei|dτds+2CFκ1κ7t +(1+ρ1)`1

≤ |1+2ρθ(1,δ )||ei|+ 2(ρκ2 +CFκ1κ5)(exp(λ t)−1)
λ

|ei|λ

+
2CFκ1κ6(exp(λ t)−λ t−1)

λ 2 |ei|λ +2CFκ1κ7t +(1+ρ1)`1.(A.104)
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Since |ei+1| ≤ `1 as t ∈ [0,δ ] has been derived, the inequality (A.104) actually holds for

any t ∈ [0,T ].

Taking λ -norm on both sides of (A.104) and noticing that

|t|λ = sup
τ∈[0,T ]

e−λτ
τ = e−λτ

τ|
τ= 1

λ

=
1

eλ
,

it follows

|ei+1|λ ≤ |1+2ρθ(1,δ )||ei|λ

+
2(ρκ2 +CFκ1κ5)(1− exp(−λT ))

λ
|ei|λ

+
2CFκ1κ6(1− exp(−λT ))

λ 2 |ei|λ +
2CFκ1κ7

eλ
+(1+ρ1)`1.(A.105)

As λ is sufficiently large, it suffices to design ρ such that

|ei+1|λ ≤ |1+2ρθ(1,δ )||ei|λ +(1+ρ1)`1

≤ γ|ei|λ +(1+ρ1)`1, (A.106)

where 0≤ γ < 1. The remaining part of proof is analogous to that of Theorem 1.

A.12 Proof of Lemma 8.1

First of all, from (8.8)-(8.10) the derivative of F with respect to the speed v is

∂F
∂v

(θm, f ,v) =−vρA(l)(
∂h
∂x

)2. (A.107)

According to the positiveness of v, ρ , A(l), ( ∂h
∂x )

2, it is obvious that ∂F
∂v (θm, f ,v)≤ 0.

Furthermore, from the expression of F , its derivative with respect to the amplitude
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θm can be obtained as follows

∂F
∂θm

(θm, f ,v) =
∂H1

∂θm
(θm, f )− ∂H2

∂θm
(θm, f ,v)

=
4ρA(l)π2 f 2l2

9T

∫ T

0
θm sec4(θm sin(2π f t))cos2(2π f t)

×[1+2θm tan(θm sin(2π f t))sin(2π f t)]dt

−ρA(l)v2

T

∫ T

0
tan(θm sin(2π f t))

×sec2(θm sin(2π f t))sin(2π f t)dt. (A.108)

As shown in Fig. A.1, it is numerically found that ∂F
∂θm

> 0. From the point view of

practice, the speed of the robotic fish is bounded, namely, there exists a constant v > 0

such that 0≤ v(t)≤ v. Moreover, according to the boundedness of 0≤ θm ≤ θ ∗m < π/2,

(A.108) implies that there exists a constant ϑ > 0 such that 0 < ∂F
∂θm
≤ ϑ .
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Figure A.1: The gradient ∂F/∂θm vs. Amplitude.
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