158,231 research outputs found

    Accommodating maintenance in prognostics

    Get PDF
    Error on title page - year of award is 2021Steam turbines are an important asset of nuclear power plants, and are required to operate reliably and efficiently. Unplanned outages have a significant impact on the ability of the plant to generate electricity. Therefore, condition-based maintenance (CBM) can be used for predictive and proactive maintenance to avoid unplanned outages while reducing operating costs and increasing the reliability and availability of the plant. In CBM, the information gathered can be interpreted for prognostics (the prediction of failure time or remaining useful life (RUL)). The aim of this project was to address two areas of challenges in prognostics, the selection of predictive technique and accommodation of post-maintenance effects, to improve the efficacy of prognostics. The selection of an appropriate predictive algorithm is a key activity for an effective development of prognostics. In this research, a formal approach for the evaluation and selection of predictive techniques is developed to facilitate a methodic selection process of predictive techniques by engineering experts. This approach is then implemented for a case study provided by the engineering experts. Therefore, as a result of formal evaluation, a probabilistic technique the Bayesian Linear Regression (BLR) and a non-probabilistic technique the Support Vector Regression (SVR) were selected for prognostics implementation. In this project, the knowledge of prognostics implementation is extended by including post maintenance affects into prognostics. Maintenance aims to restore a machine into a state where it is safe and reliable to operate while recovering the health of the machine. However, such activities result in introduction of uncertainties that are associated with predictions due to deviations in degradation model. Thus, affecting accuracy and efficacy of predictions. Therefore, such vulnerabilities must be addressed by incorporating the information from maintenance events for accurate and reliable predictions. This thesis presents two frameworks which are adapted for probabilistic and non-probabilistic prognostic techniques to accommodate maintenance. Two case studies: a real-world case study from a nuclear power plant in the UK and a synthetic case study which was generated based on the characteristics of a real-world case study are used for the implementation and validation of the frameworks. The results of the implementation hold a promise for predicting remaining useful life while accommodating maintenance repairs. Therefore, ensuring increased asset availability with higher reliability, maintenance cost effectiveness and operational safety.Steam turbines are an important asset of nuclear power plants, and are required to operate reliably and efficiently. Unplanned outages have a significant impact on the ability of the plant to generate electricity. Therefore, condition-based maintenance (CBM) can be used for predictive and proactive maintenance to avoid unplanned outages while reducing operating costs and increasing the reliability and availability of the plant. In CBM, the information gathered can be interpreted for prognostics (the prediction of failure time or remaining useful life (RUL)). The aim of this project was to address two areas of challenges in prognostics, the selection of predictive technique and accommodation of post-maintenance effects, to improve the efficacy of prognostics. The selection of an appropriate predictive algorithm is a key activity for an effective development of prognostics. In this research, a formal approach for the evaluation and selection of predictive techniques is developed to facilitate a methodic selection process of predictive techniques by engineering experts. This approach is then implemented for a case study provided by the engineering experts. Therefore, as a result of formal evaluation, a probabilistic technique the Bayesian Linear Regression (BLR) and a non-probabilistic technique the Support Vector Regression (SVR) were selected for prognostics implementation. In this project, the knowledge of prognostics implementation is extended by including post maintenance affects into prognostics. Maintenance aims to restore a machine into a state where it is safe and reliable to operate while recovering the health of the machine. However, such activities result in introduction of uncertainties that are associated with predictions due to deviations in degradation model. Thus, affecting accuracy and efficacy of predictions. Therefore, such vulnerabilities must be addressed by incorporating the information from maintenance events for accurate and reliable predictions. This thesis presents two frameworks which are adapted for probabilistic and non-probabilistic prognostic techniques to accommodate maintenance. Two case studies: a real-world case study from a nuclear power plant in the UK and a synthetic case study which was generated based on the characteristics of a real-world case study are used for the implementation and validation of the frameworks. The results of the implementation hold a promise for predicting remaining useful life while accommodating maintenance repairs. Therefore, ensuring increased asset availability with higher reliability, maintenance cost effectiveness and operational safety

    On the relevance of preprocessing in predictive maintenance for dynamic systems

    Get PDF
    The complexity involved in the process of real-time data-driven monitoring dynamic systems for predicted maintenance is usually huge. With more or less in-depth any data-driven approach is sensitive to data preprocessing, understood as any data treatment prior to the application of the monitoring model, being sometimes crucial for the final development of the employed monitoring technique. The aim of this work is to quantify the sensitiveness of data-driven predictive maintenance models in dynamic systems in an exhaustive way. We consider a couple of predictive maintenance scenarios, each of them defined by some public available data. For each scenario, we consider its properties and apply several techniques for each of the successive preprocessing steps, e.g. data cleaning, missing values treatment, outlier detection, feature selection, or imbalance compensation. The pretreatment configurations, i.e. sequential combinations of techniques from different preprocessing steps, are considered together with different monitoring approaches, in order to determine the relevance of data preprocessing for predictive maintenance in dynamical systems

    Determining Remaining Lifetime of Wind Turbine Gearbox Using a Health Status Indicator Signal

    Get PDF
    Wind turbine component's failure prognosis allows wind farm owners to apply predictive maintenance techniques to their fleets. This permits optimal scheduling of the maintenance actions considering the best time to stop the turbines and perform those actions. Determining the health status of a turbine's component typically requires verifying a wide number of variables that should be monitored simultaneously. The scope of this study is the investigation and the selection of an effective combination of variables and smoothing and forecasting methodologies for obtaining a wind turbine gearbox health status indicator, in order to interpret clearly the remaining lifetime of the gearbox. The proposed methodology is based on Gaussian Mixture Copula Model (GMCM) models combined with the smoothing treatment and the forecasting model to define the health index of the wind turbine gearbox. Then, the resulting index is tested using various warning and critical thresholds. These thresholds should be chosen adequately in order to indicate appropriate inspection visit and preventive maintenance intervention date. Then, the best combination found, for the studied cases, was 50% and 70% for warning and critical respectively. This combination ensures that the developed procedure is capable of providing long enough time window for maintenance decision making

    Towards Effective Bug Triage with Software Data Reduction Techniques

    Get PDF
    International audienceSoftware companies spend over 45 percent of cost in dealing with software bugs. An inevitable step of fixing bugs is bug triage, which aims to correctly assign a developer to a new bug. To decrease the time cost in manual work, text classification techniques are applied to conduct automatic bug triage. In this paper, we address the problem of data reduction for bug triage, i.e., how to reduce the scale and improve the quality of bug data. We combine instance selection with feature selection to simultaneously reduce data scale on the bug dimension and the word dimension. To determine the order of applying instance selection and feature selection, we extract attributes from historical bug data sets and build a predictive model for a new bug data set. We empirically investigate the performance of data reduction on totally 600,000 bug reports of two large open source projects, namely Eclipse and Mozilla. The results show that our data reduction can effectively reduce the data scale and improve the accuracy of bug triage. Our work provides an approach to leveraging techniques on data processing to form reduced and high-quality bug data in software development and maintenance

    Predictive Maintenance of an External Gear Pump using Machine Learning Algorithms

    Get PDF
    The importance of Predictive Maintenance is critical for engineering industries, such as manufacturing, aerospace and energy. Unexpected failures cause unpredictable downtime, which can be disruptive and high costs due to reduced productivity. This forces industries to ensure the reliability of their equip-ment. In order to increase the reliability of equipment, maintenance actions, such as repairs, replacements, equipment updates, and corrective actions are employed. These actions affect the flexibility, quality of operation and manu-facturing time. It is therefore essential to plan maintenance before failure occurs.Traditional maintenance techniques rely on checks conducted routinely based on running hours of the machine. The drawback of this approach is that maintenance is sometimes performed before it is required. Therefore, conducting maintenance based on the actual condition of the equipment is the optimal solu-tion. This requires collecting real-time data on the condition of the equipment, using sensors (to detect events and send information to computer processor).Predictive Maintenance uses these types of techniques or analytics to inform about the current, and future state of the equipment. In the last decade, with the introduction of the Internet of Things (IoT), Machine Learning (ML), cloud computing and Big Data Analytics, manufacturing industry has moved forward towards implementing Predictive Maintenance, resulting in increased uptime and quality control, optimisation of maintenance routes, improved worker safety and greater productivity.The present thesis describes a novel computational strategy of Predictive Maintenance (fault diagnosis and fault prognosis) with ML and Deep Learning applications for an FG304 series external gear pump, also known as a domino pump. In the absence of a comprehensive set of experimental data, synthetic data generation techniques are implemented for Predictive Maintenance by perturbing the frequency content of time series generated using High-Fidelity computational techniques. In addition, various types of feature extraction methods considered to extract most discriminatory informations from the data. For fault diagnosis, three types of ML classification algorithms are employed, namely Multilayer Perceptron (MLP), Support Vector Machine (SVM) and Naive Bayes (NB) algorithms. For prognosis, ML regression algorithms, such as MLP and SVM, are utilised. Although significant work has been reported by previous authors, it remains difficult to optimise the choice of hyper-parameters (important parameters whose value is used to control the learning process) for each specific ML algorithm. For instance, the type of SVM kernel function or the selection of the MLP activation function and the optimum number of hidden layers (and neurons).It is widely understood that the reliability of ML algorithms is strongly depen-dent upon the existence of a sufficiently large quantity of high-quality training data. In the present thesis, due to the unavailability of experimental data, a novel high-fidelity in-silico dataset is generated via a Computational Fluid Dynamic (CFD) model, which has been used for the training of the underlying ML metamodel. In addition, a large number of scenarios are recreated, ranging from healthy to faulty ones (e.g. clogging, radial gap variations, axial gap variations, viscosity variations, speed variations). Furthermore, the high-fidelity dataset is re-enacted by using degradation functions to predict the remaining useful life (fault prognosis) of an external gear pump.The thesis explores and compares the performance of MLP, SVM and NB algo-rithms for fault diagnosis and MLP and SVM for fault prognosis. In order to enable fast training and reliable testing of the MLP algorithm, some predefined network architectures, like 2n neurons per hidden layer, are used to speed up the identification of the precise number of neurons (shown to be useful when the sample data set is sufficiently large). Finally, a series of benchmark tests are presented, enabling to conclude that for fault diagnosis, the use of wavelet features and a MLP algorithm can provide the best accuracy, and the MLP al-gorithm provides the best prediction results for fault prognosis. In addition, benchmark examples are simulated to demonstrate the mesh convergence for the CFD model whereas, quantification analysis and noise influence on training data are performed for ML algorithms

    Predictive Factors for Delivery within 7 Days after Successful 48-Hour Treatment of Threatened Preterm Labor

    Get PDF
    Objective The aim of this study was to assess which characteristics and results of vaginal examination are predictive for delivery within 7 days, in women with threatened preterm labor after initial treatment.Study Design A secondary analysis of a randomized controlled trial on maintenance nifedipine includes women who remained undelivered after threatened preterm labor for 48 hours. We developed one model for women with premature prelabor rupture of membranes (PPROM) and one without PPROM. The predictors were identified by backward selection. We assessed calibration and discrimination and used bootstrapping techniques to correct for potential overfitting.Results For women with PPROM (model 1), nulliparity, history of preterm birth, and vaginal bleeding were included in the multivariable analysis. For women without PPROM (model 2), maternal age, vaginal bleeding, cervical length, and fetal fibronectin (fFN) status were in the multivariable analysis. Discriminative capability was moderate to good (c-statistic 0.68; 95% confidence interval [CI] 0.60-0.77 formodel 1 and 0.89; 95% CI, 0.84-0.93 for model 2).Conclusion PPROM and vaginal bleeding in the current pregnancy are relevant predictive factors in all women, as are maternal age, cervical length, and fFN in women without PPROM and nulliparity, history of preterm birth in women with PPROM.</p

    Predictive Factors for Delivery within 7 Days after Successful 48-Hour Treatment of Threatened Preterm Labor

    Get PDF
    Objective The aim of this study was to assess which characteristics and results of vaginal examination are predictive for delivery within 7 days, in women with threatened preterm labor after initial treatment.Study Design A secondary analysis of a randomized controlled trial on maintenance nifedipine includes women who remained undelivered after threatened preterm labor for 48 hours. We developed one model for women with premature prelabor rupture of membranes (PPROM) and one without PPROM. The predictors were identified by backward selection. We assessed calibration and discrimination and used bootstrapping techniques to correct for potential overfitting.Results For women with PPROM (model 1), nulliparity, history of preterm birth, and vaginal bleeding were included in the multivariable analysis. For women without PPROM (model 2), maternal age, vaginal bleeding, cervical length, and fetal fibronectin (fFN) status were in the multivariable analysis. Discriminative capability was moderate to good (c-statistic 0.68; 95% confidence interval [CI] 0.60-0.77 formodel 1 and 0.89; 95% CI, 0.84-0.93 for model 2).Conclusion PPROM and vaginal bleeding in the current pregnancy are relevant predictive factors in all women, as are maternal age, cervical length, and fFN in women without PPROM and nulliparity, history of preterm birth in women with PPROM.</p

    HIGHLY EFFECTIVE BUG TRIAGING WITH SOFTWARE PROGRAM INFORMATION REDUCTION TECHNIQUES

    Get PDF
    To reduce the time taken for bug triage text classification techniques are used. This paper, address the issue of information reduction for bug triage, i.e., how you can lessen the scale and improve the caliber of bug data. Software companies spend over 45 percent of cost in working with software bugs. An unavoidable step of fixing bugs is bug triage, which aims to properly assign a developer to a different bug. Combining instance selection with feature selection is to concurrently reduce data scale around the bug dimension and also the word dimension. To look for the order of using instance selection and feature selection, attributes are extracted from historic bug data sets and a predictive model is made for any new bug data set. Our work provides a technique for leveraging techniques on information systems to create reduced and-quality bug data in software development and maintenance

    Review and Comparison of Intelligent Optimization Modelling Techniques for Energy Forecasting and Condition-Based Maintenance in PV Plants

    Get PDF
    Within the field of soft computing, intelligent optimization modelling techniques include various major techniques in artificial intelligence. These techniques pretend to generate new business knowledge transforming sets of "raw data" into business value. One of the principal applications of these techniques is related to the design of predictive analytics for the improvement of advanced CBM (condition-based maintenance) strategies and energy production forecasting. These advanced techniques can be used to transform control system data, operational data and maintenance event data to failure diagnostic and prognostic knowledge and, ultimately, to derive expected energy generation. One of the systems where these techniques can be applied with massive potential impact are the legacy monitoring systems existing in solar PV energy generation plants. These systems produce a great amount of data over time, while at the same time they demand an important e ort in order to increase their performance through the use of more accurate predictive analytics to reduce production losses having a direct impact on ROI. How to choose the most suitable techniques to apply is one of the problems to address. This paper presents a review and a comparative analysis of six intelligent optimization modelling techniques, which have been applied on a PV plant case study, using the energy production forecast as the decision variable. The methodology proposed not only pretends to elicit the most accurate solution but also validates the results, in comparison with the di erent outputs for the di erent techniques
    corecore