
D. K. D. B. Rupini* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.4, Issue No.6, October – November 2016, 5030-5034.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 5030

Highly Effective Bug Triaging With Software

Program Information Reduction Techniques
D.K.D.B.RUPINI

M-Tech student, Department of CSE

SRKR Engineering College

Bhimavaram, A.P-534204

G.N.V.G.SIRISHA

Assistant Professor, Department of CSE

SRKR Engineering College

Bhimavaram, A.P-534204

Abstract: To reduce the time taken for bug triage text classification techniques are used. This paper, address

the issue of information reduction for bug triage, i.e., how you can lessen the scale and improve the caliber of

bug data. Software companies spend over 45 percent of cost in working with software bugs. An unavoidable

step of fixing bugs is bug triage, which aims to properly assign a developer to a different bug. Combining

instance selection with feature selection is to concurrently reduce data scale around the bug dimension and

also the word dimension. To look for the order of using instance selection and feature selection, attributes are

extracted from historic bug data sets and a predictive model is made for any new bug data set. Our work

provides a technique for leveraging techniques on information systems to create reduced and-quality bug

data in software development and maintenance.

Keywords: Mining Software Repositories; Data Management In Bug Repositories; Bug Data Reduction; Bug Triage;

I. INTRODUCTION

Data mining refers to extracting or mining knowledge

from large amount of data. It(sometimes called data

or knowledge discovery) is the process of analyzing

data from different perspectives and summarizing it

into useful information i.e, information that can be

used to increase revenue,[1] cuts costs, or both. Data

mining software is one of a number of analytical

tools for analyzing data. It allows users to analyze

data from many different dimensions or angles,

categorize it, and summarize the relationships

identified. Generally, data mining is used for finding

correlations or patterns among dozens of fields in

large relational databases.

A software repository is a collection of RPM

packages and metadata for the available packages.

Mining software repositories is an interdisciplinary

domain, which aims to employ data mining to deal

with software engineering problems. In modern

software development, software repositories are

large-scale databases for storing the output of

software development, e.g., source code, bugs,

emails, and specifications. Traditional software

analysis is not completely suitable for the large-scale

and complex data in software repositories. Data

mining has emerged as a promising means to handle

software data. By leveraging data mining techniques,

mining software repositories can uncover interesting

information in software repositories and solve real

world software problems.

A bug repository (a typical software repository, for

storing details of bugs), plays an important role in

managing software bugs. Software bugs are

inevitable and fixing bugs is expensive in software

development[2]. Software companies spend over 45

percent of cost in fixing bugs. Large software

projects deploy bug repositories (also called bug

tracking systems) to support information collection

and to assist developers to handle bugs. In a bug

repository, a bug is maintained as a bug report, which

records the textual description of reproducing the bug

and updates according to the status of bug fixing. In

this paper, bug reports in a bug repository are called

bug data.

A time-consuming step of handling software bugs is

bug triage, which aims to assign a proper developer

to repair a brand new bug. To prevent the costly price

of manual bug triage, existing work has suggested

computerized bug triage approaches, which apply

text classification strategies to predict designers for

bug reviews. To avoid the expensive cost of manual

bug triage, existing work has proposed an automatic

bug triage approach, which applies text classification

techniques to predict developers for bug reports. In

this approach, a bug report is mapped to a document

and a related developer is mapped to the label of the

document. Then, bug triage is converted to a problem

of text classification and it is instantly solved with

mature text classification techniques. To enhance the

precision of text classification approaches for bug

triage, some additional techniques are investigated.

Classification is a data analysis technique that can be

used to extract models describing important data

classes. For example, a classification model may be

built to categorize bank loan applications either safe

or risky. A classifier is a machine learning tool where

the learned (target) attribute is categorical

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Innovative Technology and Research (IJITR)

https://core.ac.uk/display/228552533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

D. K. D. B. Rupini* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.4, Issue No.6, October – November 2016, 5030-5034.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 5031

("nominal"). It is used after the learning process to

classify new records(data) by giving them the best

target attribute (prediction). The target attribute can

be one of the k class membership.

As discussed earlier automatic bug triage is converted

into a problem of text classification and is

automatically solved with mature text classification

techniques, e.g., Naive Bayes. Based on the results of

text classification, a human triager assigns new bugs

by incorporating his/her expertise. To improve the

accuracy of text classification techniques for bug

triage, some further techniques are investigated, e.g.,

a tossing graph approach and a collaborative filtering

approach. However, large-scale and low-quality bug

data in bug repositories block the techniques of

automatic bug triage. Since software bug data are a

kind of free-form text data (generated by developers),

it is necessary to generate well-processed bug data to

facilitate the application. Classifier accuracy is based

on the quality of data used. For this training data

accuracy should be of high.

Data redundancy is a condition created within a

database or data storage technology in which the

same piece of data is held in two separate places. Bug

data reduction aims to reduce the scale and to

improve the quality of data in bug repositories. Bug

data reduction in our work, which is applied as a

phase in data preparation of bug triage. Combining

existing techniques of instance selection and feature

selection[3] to remove certain bug reports and words.

A problem for reducing the bug data is to determine

the order of applying instance selection and feature

selection, which is denoted as the prediction of

reduction orders.

Data reduction for bug triage aims to construct a

little-scale and-quality group of bug data by getting

rid of bug reviews and words that are redundant or

non-informative. Within our work, Combining

existing techniques of instance selection and feature

selection and try to concurrently lessen the bug

dimension and also the word dimension. The reduced

bug data contain less bug reviews and fewer words

compared to original bug data and supply similar

information within the original bug data.

Instance selection and feature selection are widely

used techniques in data processing. Instance selection

is to select subset of relevant instances i.e., bug

reports in bug data while feature selection aims to

obtain a subset of relevant features i.e., words in bug

data.

II. RELATED WORK

John Anvik et al. presents a study on semi-automated

approach intended to ease one part of debugging

process, the assignment of reports to a developer.

Their approach applies a machine learning algorithm

to the open bug repository to learn the kinds of

reports each developer resolves. When a new report

arrives, the classifier produced by the machine

learning technique suggests a small number of

developers suitable to resolve the report. With this

approach, they have reached precision levels of 57%

and 64% on the Eclipse and Firefox development

projects respectively. They have also applied an

approach to the gcc open source development with

less positive results. They describe the conditions

under which the approach is applicable and also

report on the lessons learned about applying machine

learning to repositories used in open source

development.

Davor C ubranic et al. proposed to apply machine

learning techniques to assist in bug triage by using

text categorization to predict the developer that

should work on the bug based on the bug’s

description. They demonstrate an approach on a

collection of 15,859 bug reports from a large open-

source project. Their evaluation shows that a

prototype, using supervised Bayesian learning, can

correctly predict 30% of the report assignments to

developers.

Gaeul Jeong et al. introduced a graph model based on

Markov chains, which captures bug tossing history.

This model has several desirable qualities. First, it

reveals developer networks which can be used to

discover team structures and to find suitable experts

for a new task. Second, it helps to better assign

developers to bug reports. In their experiments with

445,000 bug reports, a model reduced tossing events,

by up to 72%. In addition, the model increased the

prediction accuracy by up to 23 percentage points

compared to traditional bug triaging approaches.

Sunghun Kim et al. presented a bug finding algorithm

using bug fix memories: a project-specific bug and

fix knowledge base developed by analyzing the

history of bug fixes. A bug finding tool, BugMem,

implements the algorithm. The approach is different

from bug finding tools based on theorem proving or

static model checking such as Bandera, ESC/Java,

FindBugs, JLint, and PMD. Since these tools use pre-

defined common bug patterns to find bugs, they do

not aim to identify project-specific bugs. Bug fix

memories use a learning process, so the bug patterns

are project specific, and project-specific bugs can be

detected. The algorithm and tool are assessed by

evaluating if real bugs and fixes in project histories

can be found in the bug fix memories

Emerson Murphy-Hill et al. investigated alternative

fixes to bugs and present an empirical study of how

D. K. D. B. Rupini* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.4, Issue No.6, October – November 2016, 5030-5034.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 5032

engineers make design choices about how to fix bugs.

Based on qualitative interviews with 40 engineers

working on a variety of products, data from 6 bug

triage meetings, and a survey filled out by 326

engineers, they found a number of factors, many of

them non-technical, that influence how bugs are

fixed, such as how close to release the software is.

They also discuss several implications for research

and practice, including ways to make bug prediction

and localization more accurate.

Xiaoyin Wang et al. presented a new approach that

further involves execution information. In their

approach, when a new bug report arrives, its natural

language information and execution information are

compared with those of the existing bug reports.

Then, a small number of existing bug reports are

suggested to the triager as the most similar bug

reports to the new bug report. Finally, the triager

examines the suggested bug reports to determine

whether the new bug report duplicates an existing

bug report. They calibrated their approach on a subset

of the Eclipse bug repository and evaluated an

approach on a subset of the Firefox bug repository.

Jifeng Xuan et al. proposed a semi-supervised text

classification approach for bug triage to avoid the

deficiency of labeled bug reports in existing

supervised approaches. This new approach combines

naive Bayes classifier and expectation maximization

to take advantage of both labeled and unlabeled bug

reports. This approach trains a classifier with a

fraction of labeled bug reports. Then the approach

iteratively labels numerous unlabeled bug reports and

trains a new classifier with labels of all the bug

reports. They also employ a weighted

recommendation list to boost the performance by

imposing the weights of multiple developers in

training the classifier. Experimental results on bug

reports of Eclipse show that their new approach

outperforms existing supervised approaches in terms

of classification accuracy.

Nicolas Bettenburg et al. designed new bug tracking

tools that guide users at collecting and providing

more helpful information. There CUEZILLA

prototype is such a tool and measures the quality of

new bug reports; it also recommends which elements

should be added to improve the quality. They trained

CUEZILLA on a sample of 289 bug reports, rated by

developers as part of the survey. In their experiments,

CUEZILLA was able to predict the quality of 31–

48% of bug reports accurately.

This paper discuss about improving the results of

data reduction in bug triage to explore how to prepare

a high quality bug data set and tackle a domain-

specific software task, and also proposing a Multi-

Class Classification to incorporate the new domain

dimension within the bug triage assignments.

III. FLOW CHART

The following flow chat describes how to reduce the

scale and improve the accuracy based on time.

IV. IMPLEMENTATION

We advise bug data reduction to reduce the size and

also to improve the quality of data in bug

repositories. Combining existing techniques of

instance selection and feature selection to get rid of

certain bug reviews and words. In order to reduce the

bug information is to look for the order of instance

selection and feature selection that is denoted

because of the conjuction of reduction orders[4].

Firstly present how you can apply instance selection

and feature selection to bug data, i.e., data reduction

for bug triage. Then, list the advantage of the

information reduction. In bug triage, an bug data set

is converted to a text matrix with two dimensions,

namely the bug dimension and also the word

dimension. Within our work, leveraging the mixture

of instance selection and feature selection to develop

a reduced bug data set. Switching the original data set

D. K. D. B. Rupini* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.4, Issue No.6, October – November 2016, 5030-5034.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 5033

using the reduced data looking for bug triage.

Instance selection and feature selection are broadly

used approaches to information systems. Within our

work, we employ the mixture of instance selection

and have feature selection. To differentiate the orders

of using instance selection and feature selection, we

provide the following denotation. Given a case

selection formula IS along with a feature selection

formula FS, we use FS->IS to indicate the bug data

reduction, which first applies FS followed by IS

however, IS->FS denotes first using IS after which

FS. Within our work, FS -> IS and it IS -> FS are

seen as two orders of bug data reduction.

To prevent the bias from one formula, we examine

outcomes of four typical calculations of instance

selection and have selection, correspondingly.

Instance selection is a method to reduce the amount

of instances by getting rid of noisy and redundant

instances. A case selection formula can offer a lower

data set by getting rid of non-representative

instances. Feature selection is a preprocessing way of

choosing a lower group of features for big-scale data

sets. The lower set is recognized as the representative

options that come with the initial set of features.

Since bug triage is changed into text classification,

we concentrate on the feature selection calculations

in text data. Within this paper, we decide four well-

carried out calculations in text data and software data.

 In order to save the labor price of designers, the

information reduction for bug triage has two goals

i.e., lowering the data scale and a pair of enhancing

the precision of bug triage. As opposed to modeling

the text message of bug reviews in existing work, the

goal to enhance the information set to construct a

preprocessing approach, which may be applied before

a current bug triage approach. Precision is a vital

evaluation qualifying criterion for bug triage. Within

our work, data reduction explores and removes noisy

or duplicate information in data sets. Given a case

selection formula IS along with a feature selection

formula FS, FS -> IS and it is -> FS are seen as two

orders for using reducing techniques. Hence,

challenging is how you can determine an order of

reduction techniques, i.e., how to pick one between

FS->IS and it IS -> FS. (Making reference to this

issue because the conjecture for reduction orders.)To

use the information reduction to every new bug data

set, we have to look into the precision of both orders

and select a much better one. To prevent time price of

by hand checking both reduction orders, we consider

predicting the reduction order for any new bug data

set according to historic data sets.

An bug data set is planned for an instance and also

the connected reduction order is planned towards the

label of the type of instances. In the outlook during

software engineering, predicting the reduction order

for bug data sets could be seen like a type of software

metrics, that involves activities for calculating some

property for a bit of software. Within this paper, to

prevent ambiguous denotations, a characteristic

describes a removed feature of the bug data set while

an element describes a thing of the bug report. To

construct a binary classifier to calculate reduction

orders, Extracting 18 characteristics to explain each

bug data set. Such characteristics could be removed

before new bugs are triaged. Dividing these 18

characteristics into two groups, namely the bug report

category and also the developer category and present

the information preparation for using the bug data

reduction. Assessing the bug data reduction[5] on

bug repositories of two large free projects, namely

Eclipse and Mozilla. Eclipse is really a multi-

language software development atmosphere,

including a built-in Development Atmosphere (IDE)

as well as an extensible plug-in system. All of the

binary classification good examples consist of a port

space.

Bug tracking systems plays important part of how

teams in open source interact with their user

communities. This interaction goes beyond users

simply submitting bugs. Many follow-up questions

are posed to the reporters of bugs and often, if a

reporter does not play an active role in the discussion

of the bug, little progress is made. Results highlight

the importance of effectively and efficiently engaging

the user community in bug fixing activities, and

keeping them up-to-date about the status of a bug.

V. CONCLUSION

To look for the order of using instance selection and

feature selection for a brand new bug data set,

Extracting characteristics of every bug data set and

train a predictive model according to historic data

sets. Bug triage is an expensive step of software

maintenance both in labor cost and time cost.

Combining feature selection with instance selection

is helpful to lessen the size of bug data sets in

addition to enhance the data quality. Empirically

investigate data reduction for bug triage in bug

repositories of two large free projects, namely

Eclipse and Mozilla. For predicting reduction orders,

intend to pay efforts to discover the possibility

relationship between your characteristics of bug data

sets and also the reduction orders. This work provides

a technique for leveraging techniques on information

systems to create reduced and quality bug data in

software development and maintenance.

D. K. D. B. Rupini* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.4, Issue No.6, October – November 2016, 5030-5034.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 5034

VI. REFERENCES

[1] Jiawei Han, Micheline Kamber and Simon

Fraser University “Data Mining Concepts and

Techniques”

[2] S. Kim, H. Zhang, R. Wu, and L. Gong,

“Dealing with noise in defect prediction,” in

Proc. 32nd ACM/IEEE Int. Conf. Softw. Eng.,

May 2010, pp. 481–490.

[3] A. E. Hassan, “The road ahead for mining

software repositories,” in Proc. Front. Softw.

Maintenance, Sep. 2008, pp. 48–57.

[4] J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo,

“Automatic bug triage using semi-supervised

text classification,” in Proc. 22nd Int. Conf.

Softw. Eng. Knowl. Eng., Jul. 2010, pp. 209–

214.

[5] P. S. Bishnu and V. Bhattacherjee, “Software

fault prediction using quad tree-based k-means

clustering algorithm,” IEEE Trans. Knowl.

Data Eng., vol. 24, no. 6, pp. 1146–1150, Jun.

2012.

