44,330 research outputs found

    Attend and Interact: Higher-Order Object Interactions for Video Understanding

    Full text link
    Human actions often involve complex interactions across several inter-related objects in the scene. However, existing approaches to fine-grained video understanding or visual relationship detection often rely on single object representation or pairwise object relationships. Furthermore, learning interactions across multiple objects in hundreds of frames for video is computationally infeasible and performance may suffer since a large combinatorial space has to be modeled. In this paper, we propose to efficiently learn higher-order interactions between arbitrary subgroups of objects for fine-grained video understanding. We demonstrate that modeling object interactions significantly improves accuracy for both action recognition and video captioning, while saving more than 3-times the computation over traditional pairwise relationships. The proposed method is validated on two large-scale datasets: Kinetics and ActivityNet Captions. Our SINet and SINet-Caption achieve state-of-the-art performances on both datasets even though the videos are sampled at a maximum of 1 FPS. To the best of our knowledge, this is the first work modeling object interactions on open domain large-scale video datasets, and we additionally model higher-order object interactions which improves the performance with low computational costs.Comment: CVPR 201

    PhysicsGP: A Genetic Programming Approach to Event Selection

    Full text link
    We present a novel multivariate classification technique based on Genetic Programming. The technique is distinct from Genetic Algorithms and offers several advantages compared to Neural Networks and Support Vector Machines. The technique optimizes a set of human-readable classifiers with respect to some user-defined performance measure. We calculate the Vapnik-Chervonenkis dimension of this class of learning machines and consider a practical example: the search for the Standard Model Higgs Boson at the LHC. The resulting classifier is very fast to evaluate, human-readable, and easily portable. The software may be downloaded at: http://cern.ch/~cranmer/PhysicsGP.htmlComment: 16 pages 9 figures, 1 table. Submitted to Comput. Phys. Commu

    Rates of convergence of rho-estimators for sets of densities satisfying shape constraints

    Full text link
    The purpose of this paper is to pursue our study of rho-estimators built from i.i.d. observations that we defined in Baraud et al. (2014). For a \rho-estimator based on some model S (which means that the estimator belongs to S) and a true distribution of the observations that also belongs to S, the risk (with squared Hellinger loss) is bounded by a quantity which can be viewed as a dimension function of the model and is often related to the "metric dimension" of this model, as defined in Birg\'e (2006). This is a minimax point of view and it is well-known that it is pessimistic. Typically, the bound is accurate for most points in the model but may be very pessimistic when the true distribution belongs to some specific part of it. This is the situation that we want to investigate here. For some models, like the set of decreasing densities on [0,1], there exist specific points in the model that we shall call "extremal" and for which the risk is substantially smaller than the typical risk. Moreover, the risk at a non-extremal point of the model can be bounded by the sum of the risk bound at a well-chosen extremal point plus the square of its distance to this point. This implies that if the true density is close enough to an extremal point, the risk at this point may be smaller than the minimax risk on the model and this actually remains true even if the true density does not belong to the model. The result is based on some refined bounds on the suprema of empirical processes that are established in Baraud (2016).Comment: 24 page
    • …
    corecore