2,609 research outputs found

    Model Reduction for Nonlinear Systems by Incremental Balanced Truncation

    Full text link

    Predictive Control for Alleviation of Gust Loads on Very Flexible Aircraft

    No full text
    In this work the dynamics of very flexible aircraft are described by a set of non-linear, multi-disciplinary equations of motion. Primary structural components are represented by a geometrically-exact composite beam model which captures the large dynamic deformations of the aircraft and the interaction between rigid-body and elastic degrees-of-freedom. In addition, an implementation of the unsteady vortex-lattice method capable of handling arbitrary kinematics is used to capture the unsteady, three-dimensional flow-eld around the aircraft as it deforms. Linearization of this coupled nonlinear description, which can in general be about a nonlinear reference state, is performed to yield relatively high-order linear time-invariant state-space models. Subsequent reduction of these models using standard balanced truncation results in low-order models suitable for the synthesis of online, optimization-based control schemes that incorporate actuator constraints. Predictive controllers are synthesized using these reduced-order models and applied to nonlinear simulations of the plant dynamics where they are shown to be superior to equivalent optimal linear controllers (LQR) for problems in which constraints are active

    An error bound for model reduction of Lur'e-type systems

    Get PDF
    In general, existing model reduction techniques for stable nonlinear systems lack a guarantee on stability of the reduced-order model, as well as an error bound. In this paper, a model reduction procedure for absolutely stable Lur’e-type systems is presented, where conditions to ensure absolute stability of the reduced-order model as well as an error bound are given. The proposed model reduction procedure exploits linear model reduction techniques for the reduction of the linear part of the Lur’e-type system. Hence, the proposed model reduction strategy is computationally attractive. Moreover, both stability and the error bound for the obtained reduced-order model hold for an entire class of nonlinearities. The results are illustrated by application to a nonlinear mechanical system

    Time-limited Balanced Truncation for Data Assimilation Problems

    Full text link
    Balanced truncation is a well-established model order reduction method which has been applied to a variety of problems. Recently, a connection between linear Gaussian Bayesian inference problems and the system-theoretic concept of balanced truncation has been drawn. Although this connection is new, the application of balanced truncation to data assimilation is not a novel idea: it has already been used in four-dimensional variational data assimilation (4D-Var). This paper discusses the application of balanced truncation to linear Gaussian Bayesian inference, and, in particular, the 4D-Var method, thereby strengthening the link between systems theory and data assimilation further. Similarities between both types of data assimilation problems enable a generalisation of the state-of-the-art approach to the use of arbitrary prior covariances as reachability Gramians. Furthermore, we propose an enhanced approach using time-limited balanced truncation that allows to balance Bayesian inference for unstable systems and in addition improves the numerical results for short observation periods.Comment: 24 pages, 5 figure

    Model order reduction for large-scale data assimilation problems

    Get PDF

    Model reduction of synchronized homogeneous Lur'e networks with incrementally sector-bounded nonlinearities

    Get PDF
    This paper proposes a model order reduction scheme that reduces the complexity of diffusively coupled homogeneous Lur'e systems. We aim to reduce the dimension of each subsystem and meanwhile preserve the synchronization property of the overall network. Using the Laplacian spectral radius, we characterize the robust synchronization of the Lur'e network by a linear matrix inequality (LMI), whose solutions then are treated as generalized Gramians for the balanced truncation of the linear component of each Lur'e subsystem. It is verified that, with the same communication topology, the resulting reduced-order network system is still robustly synchronized, and an a priori bound on the approximation error is guaranteed to compare the behaviors of the full-order and reduced-order Lur'e subsystems

    Circuit Model Reduction with Scaled Relative Graphs

    Full text link
    Continued fractions are classical representations of complex objects (for example, real numbers) as sums and inverses of simpler objects (for example, integers). The analogy in linear circuit theory is a chain of series/parallel one-ports: the port behavior is a continued fraction containing the port behaviors of its elements. Truncating a continued fraction is a classical method of approximation, which corresponds to deleting the circuit elements furthest from the port. We apply this idea to chains of series/parallel one-ports composed of arbitrary nonlinear relations. This gives a model reduction method which automatically preserves properties such as incremental positivity. The Scaled Relative Graph (SRG) gives a graphical representation of the original and truncated port behaviors. The difference of these SRGs gives a bound on the approximation error, which is shown to be competitive with existing methods.Comment: Submitted to CDC202
    • …
    corecore