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a b s t r a c t 

This paper proposes a model order reduction scheme that reduces the complexity of diffusively coupled 

homogeneous Lur’e systems. We aim to reduce the dimension of each subsystem and meanwhile preserve 

the synchronization property of the overall network. Using the Laplacian spectral radius, we characterize 

the robust synchronization of the Lur’e network by a linear matrix inequality (LMI), whose solutions 

then are treated as generalized Gramians for the balanced truncation of the linear component of each 

Lur’e subsystem. It is verified that, with the same communication topology, the resulting reduced-order 

network system is still robustly synchronized, and an a priori bound on the approximation error is guar- 

anteed to compare the behaviors of the full-order and reduced-order Lur’e subsystems. 

© 2019 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Nowadays, booming technologies such as the Internet of things

re connecting an enormous number of industrial robots, home

ppliances, and electronic products embedded with sensors and

ontrollers. There is a clear trend that future systems are becom-

ng more interconnected and complex. In the system and control

ommunity, the research on network systems, or multi-agent

ystems, has received compelling attention [7,29,33] . Such systems

re composed of multiple interacting dynamical agents, and each

gent is recognized as a subsystem whose input depends on the

utputs of its neighboring agents. Thus, the behavior of a network

ystem is determined not only by individual subsystems but also

y the way how they are interconnected. To capture the overall

ehavior of a complex network, a high-dimensional differential

odel is usually required, which however is difficult for prediction,

ransient analysis, and controller design, etc.. Therefore, this paper

nvestigates a model reduction technique for network systems,
� The work of F. Zhang was partly supported by the State Key Laboratory of Intel- 

igent Control and Decision of Complex Systems, the National Natural Science Foun- 

ation of China (Grant No. 61703099 ), and the China Postdoctoral Science Founda- 

ion (Grant No. 2017M621589 ). 
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hich aims to generate smaller-sized models to approximate the

nput–output relation of the original ones. 

There are a variety of techniques for dimension reduction of

inear or nonlinear systems. These techniques can be roughly clas-

ified into two categories: Krylov-subspace methods (also known

s moment matching) and singular value decomposition (SVD)

ased approaches [1] . The schemes in the first category can be

ound in e.g., [2,3,21,23] . However, these methods generally do not

uarantee the stability of the reduced-order model and the bound

n the approximation error. In contrast, the techniques in the latter

ategory, based on theories of balancing and Hankel operator, are

ell-known for their properties of stability preservation and error

oundedness, see e.g., [1,18,20,27,32] for an overview on stable lin-

ar systems. In the linear case, the controllability and observability

nergy functionals of the system are analyzed, whose concepts

re then extended to nonlinear balancing, see [5,17,35] and the

eferences therein. However, implementing nonlinear balancing is

ather expensive, as it requires the solutions of nonlinear partial

ifferential equations, namely the Hamilton–Jacobi equations. Fur-

hermore, as the other methods for model reduction of nonlinear

ystems, the truncated model from nonlinear balancing lacks an

rror bound on the approximation. 

For a network, the complexity can be cut down from two

irections. The first one is to reduce the number of agents in

he network. Typical methods are based on graph clustering and

eneralized balanced truncation, see e.g., [6,11–13,24,30] . The

ther direction is to reduce the dimension of each subsystem,
rved. 

https://doi.org/10.1016/j.ejcon.2019.06.001
http://www.ScienceDirect.com
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which is of particular interest in this paper. Preliminary results

in [31,34] provide methods to reduce network systems composed

of linear subsystems. Especially, in [31] , the stability and syn-

chronization property of the overall network are preserved after

reducing the dimension of each subsystem. In [12] , networked

passive linear systems are considered, and generalized balanced

truncation is applied to reduce the subsystem dynamics and the

network topology simultaneously. 

In this paper, we consider nonlinear network systems, whose

subsystems are identical and cast in the Lur’e-type form. Note that

Lur’e systems refer to an important class of nonlinear systems that

can be represented as a feedback connection of a linear dynamical

system and a nonlinear element [8,25] . Examples can be found

in e.g., Chua’s circuits, robotic arms with flexible joints, and some

hyper-chaotic systems, where the nonlinearity of the control sys-

tem is in the form of a relay or actuator/sensor nonlinearity. Con-

sensus networked Lur’e systems are modeled when we consider

e.g., interconnected robotic arms or Chua’s circuits, see the appli-

cations in e.g., [14,15,38] . For a Lur’e system, one may apply linear

model reduction techniques to the linear component such that

both stability and the error bound for the reduced-order model are

guaranteed. A pioneering work can be found in [4] , where balanced

truncation is suggested to reduce the linear part of an absolutely

stable Lur’e system. However, for networked Lur’e systems, directly

applying this method to each Lur’e subsystem may lose the prop-

erties of the overall network, such as the robust synchronization

property. In the preliminary version of this work [10] , we provide

a method based on generalized balanced truncation for reducing

Lur’e subsystems with slope-restricted nonlinearity. The current

paper, compared to [10] , provides two major improvements. First,

we consider a more generic nonlinearity, i.e., the incrementally

sector-bounded nonlinear feedback in the Lur’e subsystems. This

extension results in a different synchronization characterization of

Lur’e networks as well as different approximation error analysis

of the Lur’e subsystems. Second, this paper provides a different

strategy for balancing the linear part of the Lur’e subsystems.

Instead of using the minimum and maximum solution of an LMI

as generalized Gramians, we balance the subsystem using only

one solution of the LMI and a standard Gramian. This strategy

potentially provides a lower bound on the approximation error. 

This paper is organized as follows. Section 2 introduces the

necessary preliminaries of the generalized balanced truncation

method and provides a sufficient condition of the robust synchro-

nization of a Lur’e network with incrementally sector-bounded

nonlinearities. Section 3 then presents the main result of the paper,

which describes the method for synchronization preserving model

reduction of Lur’e networks. Section 4 analyzes the approximation

error on each subsystem, and Section 5 illustrates the proposed

method by an example. Finally, Section 6 concludes the paper. 

Notation: The symbol R denotes the set of real numbers, and

R + denotes the set of nonnegative real numbers. I n represents

the identity matrix of size n , and 1 n represents a vector in R 

n 

of all ones. A symmetric matrix A > 0 ( A < 0 ) means it is positive

(negative) definite, while A ≥ 0 ( A ≤ 0 ) means it is positive (neg-

ative) semidefinite. The trace and of A is denoted by trace (A ) .

The Kronecker product of matrices A ∈ R 

m ×n and B ∈ R 

p×q is

denoted by A � B ∈ R 

mp×nq . Furthermore, the L 2 -norm of a signal

u (t) : [0 , ∞ ) �→ R 

n is defined by 

‖ u (t) ‖ 2 = 

(∫ ∞ 

0 

u (t) T u (t) dt 

) 1 
2 

, 

and the H ∞ 

-norm of a transfer function G ( s ) is denoted by 

‖ G (s ) ‖ H ∞ = sup 

ω∈ R 
σ̄ [ G ( jω) ] , 

where σ̄ denotes the largest singular value, and j is the imaginary

unit. 
. Preliminaries 

.1. Generalized balanced truncation 

From [1,16] , we recapitulate some basic facts on model reduc-

ion by using generalized balanced truncation. Consider a linear

ime-invariant system in a state space representation 

: 

{
˙ x = Ax + Bu, 

y = Cx, 
(1)

ith A ∈ R 

n ×n , B ∈ R 

n ×p , and C ∈ R 

q ×n , whose transfer function is

iven by G (s ) := C(sI n − A ) −1 B . Suppose the system � is asymp-

otically stable and minimal, namely, A is Hurwitz, the pair ( A ,

 ) is controllable, and the pair ( C , A ) is observable. Note that for

 system (1) that is not minimal, we can always eliminate the

ncontrollable or unobservable states in the model (1) such that

 minimal state-space realization is achieved with an equivalent

ransfer function as G ( s ). 

For such a system �, a pair of appropriately chosen positive

efinite matrices, P and Q , are called the generalized controllability

nd observability Gramians , respectively, if they satisfy 

P + PA 

T + BB 

T ≤ 0 , (2a)

 

T Q + QA + C T C ≤ 0 . (2b)

Balancing the system in (1) amounts to find a nonsingular ma-

rix T ∈ R 

n ×n such that P and Q are simultaneously diagonalized in

he following way: 

 P T T = T −T QT T = �, (3)

here � := diag ( σ1 , σ2 , . . . , σn ) , and the diagonal entries

1 ≥σ 2 ≥ ��� ≥σ n > 0 are called the generalized Hankel singu-

ar values (GHSVs) of the system �. Using T as a coordinate

ransformation, we obtain the balanced realization of �, in which

he state components corresponding to the smaller GHSVs are

elatively difficult to reach and observe and thus have less influ-

nces on the input–output behavior. Denote ˆ � with dimension r

 r 
 n ) as a reduced-order model, which is acquired by truncating

he states with smallest GHSVs in the balanced system. Then, the

pper bound of the model reduction error can be measured by

he neglected GHSVs, i.e., 

 � − ˆ �‖ H ∞ ≤ 2 

n ∑ 

i = r+1 

σi , (4)

hich is a priori error bound on the approximation. Moreover, the

educed order model ˆ � is also asymptotically stable. 

.2. Graph theory 

The interconnection topology of a network can be represented

y a weighted graph G that consists of a finite and nonempty node

et V := { 1 , 2 , . . . , N} and an edge set E ⊆ V × V . Then, the weighted

djacency matrix W associated with the graph G is defined such

hat the ( i , j )th entry of W, denoted by w i j , is positive if there

xists a directed edge from node j to node i , i.e., ( j, i ) ∈ E, and

 i j = 0 otherwise. The following definitions are provided [19,29] . 

The graph G is undirected if w i j = w i j , ∀ i, j ∈ V . An undirected

raph G is simple , if G does not contain self-loops (i.e., w ii =
 , ∀ i ∈ V), and there exists only one undirected edge between

ny two distinct nodes. Furthermore, an undirected path connect-

ng nodes i 0 and i n is a sequence of undirected edges of the form

(i k −1 , i k ) , k = 1 , . . . , n . Then, an undirected graph G is connected if

here is an undirected path between any pair of distinct nodes. 
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Fig. 1. The illustration of a Lur’e subsystem. 
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The Laplacian matrix L ∈ R 

N×N of the graph G then is intro-

uced, whose ( i , j )th entry is given by 

 i j = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

n ∑ 

j =1 , j  = i 
w i j , i = j 

−w i j , otherwise. 

(5) 

ote that if G is an undirected connected simple graph, the

ssociated Laplacian matrix L is symmetric and positive semidef-

nite, whose nullspace is characterized by span ( 1 N ) . Denote

 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λN as the eigenvalues of L , where the

argest eigenvalue λN is called the Laplacian spectral radius of G. 

.3. Lur’e networks 

In this subsection, we present the dynamical model of a Lur’e

etwork. The nodal dynamics in such a network are described

y identical nonlinear Lur’e-type systems as illustrated in Fig. 1 ,

hich is a feedback connection of a linear dynamical system and a

onlinear element. The state space model of each Lur’e subsystem

s given by 

i : 

{ 

˙ x i = Ax i + B (u i + z i ) 
y i = Cx i 
z i = −φ(y i ) 

, i = 1 , 2 , · · · , N, (6)

here x i ∈ R 

n is the state vector of node i , and u i , y i , z i ∈ R 

m rep-

esent the input, output and internal feedback signal. We denote

he linear part of the Lur’e subsystem as 

lin 
i : 

{
˙ x i = Ax i + B ̃

 u i 

y i = Cx i 
, i = 1 , 2 , . . . , N, (7)

ith ˜ u i := u i + z i . 

ssumption 1. We assume that the linear system �lin 
i 

is asymp-

otically stable and minimal, i.e., the matrix A is Hurwitz, and ( A ,

 ) is controllable, ( A , C ) is observable. 

The uncertain feedback nonlinearity φ(·) : R 

m �→ R 

m in (6) is

emoryless, possibly time-varying, and locally Lipschitz in y i . The

ollowing assumption is made for the nonlinear component φ( ·). 
ssumption 2. The nonlinear function φ( ·) is incrementally sector-

ounded within the sector [ S 1 , S 2 ], with S 1 , S 2 ∈ R 

m ×m and S 2 > S 1 .

ore precisely, φ( ·) satisfies 

 φ(y i ) − φ( ̃  y i ) − S 1 (y i − ˜ y i )] T [ φ(y i ) − φ( ̃  y i ) − S 2 (y i − ˜ y i )] ≤ 0 , 

(8) 

or all y i , ̃  y i ∈ R 

m , where φ(0) = 0 . 

We refer to [9,38] and the references therein for the defini-

ions of incremental sector-boundedness. For the SISO case, i.e.

 i , z i , y i ∈ R , S 1 and S 2 are scalars such that the incremental sector-

oundedness condition in (8) becomes a slope-restrictedness

ondition as in [10] . 

Furthermore, the finite-gain L 2 stability of a nonlinear system

s characterized by the following lemma. 
emma 1 [22,37] . Consider the time-invariant system 

˙ x = f (x ) + g(x ) u, x (0) = x 0 

 = h (x ) , (9) 

here f ( ·) is locally Lipschitz, g ( ·), h ( ·) are continuous, and f (0) = 0 ,

 (0) = 0 . Then, the following statements are equivalent. 

1. The system is finite-gain L 2 stable. 

2. The L 2 gain of the system is less than or equal to γ > 0, i.e., 

‖ y ‖ 2 ≤ γ ‖ u ‖ 2 (10)

3. There is positive scalar γ > 0 and a C 1 , positive semidefinite

function V ( x ) such that the following Hamilton–Jacobi inequality

is satisfied. 

∂V 

∂x 
f (x ) + 

1 

2 γ 2 
g(x ) g(x ) T 

(
∂V 

∂x 

)T 

+ 

1 

2 

h (x ) T h (x ) ≤ 0 . (11)

We make a remark about Lemma 1 in the linear case. Thereby,

he system � in (1) is considered, and we say � is bounded real ,

.e., ‖ y ‖ 2 ≤γ ‖ u ‖ 2 , or equivalently ‖ �‖ H ∞ 

< γ , if and only if there

xists a positive definite matrix P such that the following Riccati

nequality holds. 

 

T Q + QK + 

1 

γ 2 
KBB 

T K + C T C < 0 , (12)

hich can be seen as the Hamilton–Jacobi inequality in the linear

ase. 

All the Lur’e subsystems in the network are interconnected

ccording to the following diffusive coupling protocol. 

 i = 

N ∑ 

j=1 

w i j (y i − y j ) , i = 1 , 2 , . . . , N, (13)

here w i j ∈ R + is the ( i , j )th entry of weighted adjacency matrix

f the underlying graph and stands for the intensity of the cou-

ling between subsystem i and j . Note that the output-feedback

rotocol in (13) means that the underlying weighted graph is

tatic. Combining (13) and (6) leads to a compact form of the Lur’e

ynamical network as 

: 

{
˙ x = ( I N � A − L � BC ) x − ( I N � B ) 	(y ) , 

y = ( I N � C ) x, 
(14) 

here 	(y ) := [ φ(y i ) 
T , φ(y 2 ) 

T , . . . , φ(y N ) 
T ] T , and x := [ x T 

1 
, x T 

2 
, . . . ,

 

T 
N ] 

T , y := [ y T 1 , y 
T 
2 , . . . , y 

T 
N ] 

T are the collections of the states and

utputs of the N subsystems. The matrix L is the graph Laplacian

f the underlying network as defined in (5) . 

ssumption 3. We assume throughout this paper that the Lur’e

etwork is defined on an undirected connected simple graph. 

In the context of networks, synchronization is one of the most

mportant properties, which substantially means that the states of

he subsystems can achieve a common value. For a Lur’e network

ystem in (14) , the definition of robust synchronization is given as

ollows. 

efinition 1 [33,38] . A Lur’e network system in form of (14) is

alled robustly synchronized if 

lim 

→∞ 

(
x i (t) − x j (t) 

)
= 0 , ∀ i, j = 1 , 2 , . . . , N, 

or all initial conditions and all uncertain nonlinearities φ( ·)
atisfying (8) . 

Moreover, a sufficient condition for robust synchronization of

he Lur’e network as in (14) is obtained, where the spectra of the

aplacian matrix L are used. The proof can be found in [38] . 
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Lemma 2. Consider the Lur’e network � as in (14) with an incre-

mentally sector-bounded nonlinear function φ( ·) . If there exists a

matrix K > 0 such that ⎡ 

⎣ 

(A − λi BC) T K + K(A − λi BC) 
−C T (S 1 S 2 + S 2 S 1 ) C 

−KB + C T (S 1 + S 2 ) 

−B 

T K + (S 1 + S 2 ) C −2 I m 

⎤ 

⎦ < 0 , (15)

for all i = 2 , . . . , N, then � robustly synchronizes. In (15) , λi are the

eigenvalues of the Laplacian matrix L. 

Generally, applying the above lemma to verify the synchroniza-

tion of � may be difficult, as one needs to check the feasibility of

N − 1 LMI’s in (15) for all the nonzero eigenvalues of L . Further-

more, when the topology information of the network is uncertain,

e.g., the spectra of the Laplacian matrix is unknown, Lemma 2 is

not applicable. 

3. Synchronization preserving model reduction 

In this section, we exploit a model reduction strategy that

reduces the dimension of each Lur’e subsystem such that the

resulting reduced-order Lur’e network can preserve the robust

synchronization property. 

Before proceeding, we provide a new condition for the robust

synchronization of the original Lur’e network � when only an

upper bound of the Laplacian spectral radius is known. In many

applications, due to the uncertainties and time variations of the

topology and coupling strengths, it may be difficult to acquire

the full knowledge of the interconnection structure in a network.

Instead, some feature values of the graph, such as the Laplacian

spectral radius, may be estimated [26,36] . Thus, in this paper, we

will use an upper bound of the largest eigenvalue of the Laplacian

matrix L to characterize the robust synchronization of nonlinear

Lur’e networks. 

Let ρ > 0 such that ρ ≥λi , ∀ i = 1 , 2 , . . . , N. Then, in the

following lemma, we propose a new synchronization condition. 

Lemma 3. If there exists a scalar τ > 0 and a symmetric matrix

K > 0 such that [ 

A 

T K + KA + C T S τC KB − τC T S � ρKB 

B 

T K − τS �C −2 τ I m 

0 

ρB 

T K 0 −I m 

] 

< 0 , (16)

where S � := S 1 + S 2 , S τ := I m 

− τ (S 1 S 2 + S 2 S 1 ) , and ρ is the upper

bound of the Laplacian spectral radius, then the Lur’e network �
robustly synchronizes. 

Proof. Consider the Schur complement of the matrix in (16) ,

which is equivalent to 

� : = A 

T K + KA + C T S τC + ρ2 KBB 

T K 

+ 

1 

2 τ
(KB − τC T S �)(B 

T K − τS �C) < 0 . (17)

Since (λi B 
T K + C) T (λi B 

T K + C) ≥ 0 holds for all λi , we relax the

above inequality as 

� < (λi B 

T K + C) T (λi B 

T K + C) , (18)

Notice that 

(λi B 

T K + C) T (λi B 

T K + C) 

= λi (C 
T B 

T K + KBC) + λ2 
i KBB 

T K + C T C 

≤ λi (C 
T B 

T K + KBC) + ρ2 KBB 

T K + C T C, (19)

for any λi , i = 2 , 3 , . . . , N, as ρ is an upper bound of the Laplacian

spectral radius. Thus, combining (18) and (19) , we obtain 
 

T K + KA − τC T (S 1 S 2 + S 2 S 1 ) C − λi (B 

T C T K + KBC) 

+ 

1 

2 τ
(KB − τC T S �)(B 

T K − τS �C) 

= τ [(A − λi BC) T K + K(A − λi BC) − C T (S 1 S 2 + S 2 S 1 ) C 

+ 

1 

2 

(KB − C T S �)(KB − C T S �) T ] < 0 , 

here K := τ−1 K with τ > 0. Then, the last inequality is equivalent

o (15) . Consequently, there exist solutions of K > 0 and τ > 0

uch that the LMI in Lemma 2 is feasible, i.e., � is robustly

ynchronized. �

The feasibility of the LMI in (16) can be tested easily using

ome exisiting LMI solvers, such as YALMIP, LMILAB (a toolbox

f MATLAB), etc.. Note that Lemma 3 provides a sufficient con-

ition of Lemma 2 , meaning that it may be more conservative.

owever, it is convenient to apply Lemma 3 to check the robust

ynchronization of the Lur’e network �, especially when the size

f the network is large, since it only verifies the existence of a

ositive definite solution K in (16) rather than the solutions of

15) for all λi with i = 2 , . . . , N. Furthermore, Lemma 3 does not

equire to know all the eigenvalues of the Laplacian matrix but an

pper bound of the Laplacian spectral radius, it thus particularly

seful when the detailed topology of the network is unavailable.

ore importantly, the solution of (16) is suitable for the model

eduction of each subsystem with a guaranteed an a prior error

ound, but the solution of (15) is not. 

emark 1. We observe that the LMI in (16) can be rewrite as 

: = 

(
A − 1 

2 

BS �C 

)T 

K + K 

(
A − 1 

2 

BS �C 

)
+ C T R (τ ) 2 C + 

(
ρ2 + 

1 

2 τ

)
KBB 

T K < 0 , (20)

here the matrix R ( τ ) > 0 is defined as 

 (τ ) 2 = 

τ

2 

(S 2 − S 1 ) 
2 + I m 

= 

τ

2 

S 2 � − 2(S 1 S 2 + S 2 S 1 ) + I m 

. (21)

y (12) , the synchronization condition of the multi-agent system

in Lemma 2 coincides with the bounded realness of the following

uxiliary linear system 

: 

⎧ ⎨ 

⎩ 

˙ ξ = 

(
A − 1 

2 

BS �C 

)
ξ + 

√ 

ρ2 + 

1 

2 τ
Bν, 

η = R (τ ) Cξ , 

(22)

here ξ ∈ R 

n , η, ν ∈ R 

m , and ρ is larger than the spectral radius of

 . More precisely, if ‖ �‖ H ∞ 

< 1 , then the Lur’e network � robustly

ynchronizes. This connection is useful for proving the robust syn-

hronization of the reduced-order Lur’e network, see Theorem 1 . 

Next, we select a pair of generalized Gramians to reduce the

ur’e subsystems such that the resulting reduced-order Lur’e

etwork model preserves the robust synchronization property. 

First, we compute P, which is the solution of the following

ptimization problem. 

min trace (P) 

s.t. τ > 0 , C S τC T > 0 , 

A P + P A 

T + 

2 

ρ2 
P C T S τCP + BB 

T 

+ 

1 

2 τρ2 
(B − τPC T S �)(B 

T − τS �CP) < 0 , 

(23)

here S τ = I m 

− τ (S 1 S 2 + S 2 S 1 ) . Notice that the above inequal-

ty is not linear, but it is equivalent to the LMI in (16) , where

 = ρ2 K 

−1 and max trace (K) is the objective instead. Note that
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n Lemma 3 , the sufficient condition for the robust synchroniza-

ion of the network only requires the existence of K, while to

ompute a generalized Gramian matrix for the subsequent model

eduction, max trace (K) is our objective. Besides, we may also

se a solution of (15) for the later balanced truncation, and the

esulting reduced-order network still guarantees the synchroniza-

ion property. However, such a solution, unlike P in (23) , is not

 generalized controllability Gramian of �lin 
i 

. As a result, an error

ound cannot be obtained. 

Let Q be the observability Gramian of the linear system in (7) ,

.e., the solution of the following Lyapunov equation 

min trace (Q ) 
A 

T Q + Q A + C T C ≤ 0 . 
(24) 

emark 2. Note that we can also use the minimum and maximum

olution of the LMI in (16) as the generalized Gramians [10] , which

re regarded as a kind of symmetric type of balancing. However,

n this paper, we suggest applying the solutions of (23) and (24) as

he generalized Gramians, since (24) is less conservative than the

MI (16) , and consequently we can obtain a smaller error bound

or the approximation of the linear component of each Lur’e

ubsystems. 

We now use the pair P and Q for the balanced truncation

f the linear system �lin 
i 

. Denote T ∈ R 

n ×n as a nonsingular

oordinate transformation matrix such that 

 PT T = T −T Q T −1 = � = diag (σ1 , σ2 , · · · , σn ) , (25)

ith σ 1 ≥σ 2 ≥ ��� ≥σ n > 0 are the corresponding generalized Han-

el singular values. Therefore, we define the parameter matrices

f the balanced system by 

¯
 := T AT −1 , B̄ := T B, and C̄ := CT −1 . (26)

uppose that σk >> σk +1 . We therefore can truncate the n − k

tates corresponding to the smallest σ i of the balanced system.

onsider the following matrix partitions. 

Ā = 

[
A 11 A 12 

A 21 A 22 

]
, B̄ = 

[
B 1 

B 2 

]
, C̄ = 

[
C 1 C 2 

]
, � = 

[
�1 

�2 

]
, 

(27) 

here A 11 ∈ R 

k ×k , B 1 ∈ R 

k ×m , C 1 ∈ R 

m ×k , and �1 := diag (σ1 ,

2 , . . . , σk ) . Hereafter, denote 

ˆ 
 = A 11 , ˆ B = B 1 , and 

ˆ C = C 1 . (28)

Consequently, the reduced matrices of the Lur’e subsystems are

lso obtained. By substituting the truncated matrices ˆ A , ˆ B , and Ĉ 

o the Lur’e form in (6) , we construct the reduced-order dynamics

f each agent as follows. 

ˆ 
i : 

⎧ ⎨ 

⎩ 

˙ ˆ x i = 

ˆ A ̂

 x i + 

ˆ B (u i + ̂

 z i ) 

ˆ y i = 

ˆ C ̂  x i 
ˆ z i = −φ( ̂  y i ) 

, i = 1 , 2 , . . . , N, (29)

ith ˆ x i ∈ R 

k , and ˆ z i , ̂  y i ∈ R 

m . Furthermore, it leads to reduced-order

ur’e network dynamics as 

ˆ : 

{
˙ ˆ x = (I N � ˆ A − L � ˆ B ̂

 C ) ̂  x − (I N � ˆ B )	( ̂  y ) , 

ˆ y = (I N � ˆ C ) ̂  x , 
(30) 

omparing to (14) . In the model (30) , L is an unknown Laplacian

atrix. The following theorem then shows that the robust syn-

hronization property is preserved in the approximation of the

ur’e network. 

heorem 1. Consider the full-order Lur’e network ˆ � in (14) and its

educed-order model ˆ � in (30) . If � is robustly synchronized by the

ondition in Lemma 3 , then ˆ � is also robustly synchronized. 
roof. Recall that the feasibility of (16) in Lemma 3 is equiva-

ent to the auxiliary system � being bounded real, i.e., (23) holds.

herefore, to show the robust synchronization of the reduced-order

ur’e network ˆ �, it is sufficient to prove the bounded realness of

he reduced-order auxiliary system 

ˆ �, which is formulated as 

ˆ : 

⎧ ⎪ ⎨ 

⎪ ⎩ 

˙ ˆ ξ = 

(
ˆ A − 1 

2 

ˆ B S � ˆ C 

)
ˆ ξ + 

√ 

ρ2 + 

1 

2 τ
ˆ B ν, 

ˆ η = R (τ ) ̂  C ̂  ξ . 

(31) 

ultiplying T and T T to the left and right sides of (17) leads to 

Ā − 1 

2 

B̄ S �C̄ 

)T 

�−1 + �−1 
(

Ā − 1 

2 

B̄ S �C̄ 

)
+ C̄ T R (τ ) ̄C 

+ 

(
ρ2 + 

1 

2 τ

)
�−1 B̄ ̄B 

T �−1 < 0 , (32) 

here R ( τ ) is defined in (21) , and � is the diagonal Gramian in

25) . Ā , B̄ , Ē , and C̄ are parameter matrices of the balanced system

n (26) . Consider the partitions as in (27) . Note that the matrix
ˆ 
 − 1 

2 
ˆ E S � ˆ C is the k th order principal submatrix of Ā − 1 

2 Ē S �C̄ in

he balanced system. Thus, for the reduced-order model ˆ �, we

btain 

ˆ A − 1 

2 

ˆ B S � ˆ C 

)T 

�−1 
1 + �−1 

1 

(
ˆ A − 1 

2 

ˆ B S � ˆ C 

)
+ 

ˆ C T R (τ ) ̂  C �1 

+ 

(
ρ2 + 

1 

2 τ

)
�−1 

1 
ˆ B ̂

 B 

T �−1 
1 < 0 , (33) 

hich implies that the reduced auxiliary system in (31) is

ounded real. Therefore, the reduced-order model ˆ � is robustly

ynchronized. �

Theorem 1 implies that using the proposed condition in (16) ,

e can select a piar of generalized Gramians to reduce the order

f Lur’e subsystems, regardless of the number of subsystems and

heir interconnection topology. 

. Error analysis 

In this section, we analyze the input–output approximation

rror caused by the model reduction procedure in the last section.

rom (29) , the linear part of the reduced Lur’e subsystem is given

y 

ˆ lin 
i : 

{
˙ ˆ x i = 

ˆ A ̂

 x i + 

ˆ B ̂

 u 

ˆ y i = 

ˆ C ̂  x i 
, i = 1 , 2 , · · · , N, (34)

here ˆ u := u i + ̂  z i . Denote the transfer functions of �lin 
i 

and 

ˆ �lin 
i 

s 

 (s ) : = C(sI n − A ) −1 B, (35a) 

ˆ 
 (s ) : = 

ˆ C (sI k − ˆ A ) −1 ˆ B . (35b) 

We present the following lemma to guarantee that the de-

cribed model order reduction technique preserves stability

roperties. 

emma 4. Suppose that the original Lur’e network � in

14) satisfies the robust synchronization condition in (16) , and

 τ = I m 

− τ (S 1 S 2 + S 2 S 1 ) > 0 . Then, both the full-order and reduced-

rder nonlinear Lur’e subsystems are finite-gain L 2 stable, i.e., the

ystem 

ˆ �i in (29) preserves the finite-gain L 2 stability, if 

> μ/μτ , (36) 

here μ2 := σ̄
( S 2 

1 
+ S 2 

2 
2 

)
, and μ2 

τ := σ̄ (S τ ) . 
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Proof. First, we show that (36) indicates the input-output stability

of the original Lur’e subsystem. By the assumption that S τ > 0 ,

there exists a scalar μτ > 0 such that S τ ≥μτ I m 

. Here, we choose

μτ = σ̄ (S τ ) to yield 

A 

T K + KA + ρ2 KBB 

T K + μτC T C 

≤ A 

T K + KA + ρ2 KBB 

T K + C T S τC < 0 , (37)

where the latter inequality is given by (17) . Then, by Lemma 1 , we

obtain 

‖ G (s ) ‖ H ∞ < (ρμτ ) −1 (38)

Moreover, we verify that the incremental sector-boundedness of

φ( ·) implies that φ( ·) is globally Lipschitz. From (8) , we have 

(z i − ˜ z i ) 
T (z i − ˜ z i ) + (y i − ˜ y i ) 

T S 1 S 2 (y i − ˜ y i ) 

≤ (z i − ˜ z i ) 
T (S 1 + S 2 )(y i − ˜ y i ) 

≤ 1 

2 

(z i − ˜ z i ) 
T (z i − ˜ z i ) + 

1 

2 

(y i − ˜ y i ) 
T (S 1 + S 2 ) 

2 (y i − ˜ y i ) , 

which yields 

(z i − ˜ z i ) 
T (z i − ˜ z i ) ≤ (y i − ˜ y i ) 

T 

(
S 2 1 + S 2 2 

2 

)
(y i − ˜ y i ) . 

Thus, 

‖ z i − ˜ z i ‖ 2 ≤ μ‖ y i − ˜ y i ‖ 2 . (39)

Taking the Laplace transform of the differential equation in (6) ,

we obtain 

 i (s ) = G (s )[ U i (s ) + Z i (s )] , (40)

where Y ( s ), U i ( s ), and Z i ( s ) are the Laplace transforms of the

signals y ( t ), u i ( t ), and z i ( t ), respectively. Therefore, the following

inequality holds. 

‖ y i (t) ‖ 2 ≤ ‖ G (s ) ‖ H ∞ (‖ u i (t) ‖ 2 + ‖ z i (t) ‖ 2 ) 

≤ (ρμτ ) −1 (‖ u i (t) ‖ 2 + μ‖ y i (t) ‖ 2 ) . (41)

If (36) is satisfied, i.e., ρμτ − μ > 0 , (41) becomes 

‖ y i (t) ‖ 2 ≤ 1 

ρμτ − μ
‖ u i (t) ‖ 2 . (42)

Thus, the Lur’e subsystem �i is finite-gain L 2 stable due to

Lemma 1 . 

Similarly, we have 

ˆ A 

T �−1 
1 + �−1 

1 
ˆ A + ρ2 �−1 

1 
ˆ B ̂

 B 

T �−1 
1 + μτ ˆ C T ˆ C < 0 , (43)

for the reduced-order Lur’e subsystem 

ˆ �i . The following bound

therefore holds for the linear component of ˆ �i : 

‖ ̂

 G (s ) ‖ H ∞ < (ρμτ ) −1 . (44)

Following the same reasoning line, we show that ‖ ̂  y i (t) ‖ 2 ≤
(ρμτ − μ) −1 ‖ u i (t) ‖ 2 , i.e., the reduced-order Lur’e system 

ˆ �i is

finite-gain L 2 stable. �

The physical interpretation of condition (36) is illustrated. Con-

sider a special incrementally sector-bounded nonlinearity, namely,

a slope-restricted nonlinear feedback [10] , with S 1 = 0 , and S 2 = s,

which is a positive scalar. Then, (36) becomes ρ > 

s √ 

2 
. Clearly, this

condition relates the graph Laplacian spectral radius ρ with the

size of the sector s . More precisely, to guarantee the finite-gain

L 2 stability, ρ should be larger as the sector size becomes larger.

If there is more uncertainty on the nonlinearity φ( ·), we then

require the underlying network to be stronger connected, i.e.,

denser interconnections or larger edge weights, in order to achieve

the finite-gain L stability. 
2 
emark 3. The choice of the parameter τ in (16) is discussed.

enerally, τ is selected such that τ > 0 and CS τ C T > 0 hold.

pecifically, to compute the controllability Gramian P in (23) , a

alue of τ satisfying the constraint and the LMI (16) is selected

uch that max trace (K) is achieved and can be regarded as a

eneralized controllability Gramian of �lin 
i 

. To further guarantee

he finite gain L 2 stability of the reduced-order Lur’e subsystem

s in Lemma 4 , we select a τ fulfilling the constraints τ > 0 and

 m 

> τ (S 1 S 2 + S 2 S 1 ) such that max trace (K) of (16) is achieved. 

Now we are ready to explore an a priori error bound for the

eduction of Lur’e subsystems �i . 

heorem 2. Consider a robustly synchronized Lur’e network �, i.e.,

he condition in (16) holds. If (36) is satisfied, then, the error between

he outputs of the full-order and reduced-order Lur’e subsystems, �i 

nd ˆ �i , is bounded by 

 y i (t) − ˆ y i (t) ‖ 2 ≤ ρ2 μ2 
τ ε

(ρμτ − μ) 2 
‖ u i (t) ‖ 2 , (45)

here ε := 2 
∑ n 

k = r+1 σk with σ k the generalized Hankel singular

alues in (25) . ρ is the upper bound of the Laplacian spectral radius,

nd μ, μτ are positive scalars defined in Lemma 4 . 

roof. From (29) , we first obtain 

ˆ 
 i (s ) = 

ˆ G (s )[ U i (s ) + 

ˆ Z i (s )] , (46)

y the Laplace transform, where ˆ Y (s ) and 

ˆ Z i (s ) are the Laplace

ransforms of the signals ˆ y (t) and ˆ z i (t) , respectively. Thus, the

utput error in Laplace domain is presented as 

 i (s ) − ˆ Y i (s ) = 

[
G (s ) − ˆ G (s ) 

]
U i (s ) + G (s ) Z i (s ) − ˆ G (s ) ̂  Z i (s ) , (47)

hich leads to the following inequality 

 y i (t) − ˆ y i (t) ‖ 2 ≤ ‖ G (s ) − ˆ G (s ) ‖ H ∞ (‖ u i (t) ‖ 2 + ‖ z i (t) ‖ 2 ) 

+ ‖ ̂

 G (s ) ‖ H ∞ ‖ z i (t) − ˆ z i (t) ‖ 2 . (48)

ereafter, we analyze the bound for each component in (48) as

ollows. 

Note that P and Q can be regarded as the generalized Grami-

ns of the linear system �lin 
i 

. Therefore, the approximation error

s bounded by 

 G (s ) − ˆ G (s ) ‖ H ∞ ≤ 2 

n ∑ 

k = r+1 

σk := ε. (49)

From (39) , the incremental sector-boundedness of the uncertain

unction φ( ·) leads to 

 z i (t) ‖ 2 ≤ μ‖ y i (t) ‖ 2 ≤ μ

ρμτ − μ
‖ u i (t) ‖ 2 , (50)

here the inequality (42) is used. Furthermore, we have 

 ̂

 G (s ) ‖ H ∞ ‖ z i (t) − ˆ z i (t) ‖ 2 ≤ μ

ρμτ
‖ y i (t) − ˆ y i (t) ‖ 2 . (51)

ow, substitution of (49), (50) and (51) to (48) leads to 

 y i (t) − ˆ y i (t) ‖ 2 

≤ ε
(

1 + 

μ

ρμτ − μ

)
‖ u i (t) ‖ 2 + 

μ

ρμτ
‖ y i (t) − ˆ y i (t) ‖ 2 

= 

ρμτε

ρμτ − μ
‖ u i (t) ‖ 2 + 

μ

ρμτ
‖ y i (t) − ˆ y i (t) ‖ 2 . (52)

ince (36) holds, 1 − μ
ρμτ

> 0 . Thus, (52) gives the explicit bound

s in (45) . �

emark 4. The error bound in (45) may be conservative, which

s determined by several factors. ρ indicates the interconnection

roperty of the network, and the bound may be more conservative
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Fig. 2. (a) The state and output trajectories of the full-order Lur’e network; (b) The trajectories of reduced-order Lur’e network ˆ �1 obtained by the proposed method; (c) 

The trajectories of reduced-order Lur’e network ˆ �2 obtained by the IRKA algorithm. The initial states are set to random values for both systems. It shows that ˆ �1 preserves 

the robust synchronization, while ˆ �2 does not. 
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f we have a larger and denser network. Furthermore, conser-

ativeness of (45) is also affected by the tightness of the error

ound ε on the approximation of the linear part. The denominator

f (45) , i.e., (ρμτ − μ) 2 is strictly positive when the condition

or finite-gain L 2 stability of the reduced-order subsystem 

ˆ �i is

uaranteed. As a result, the error bound is finite. Nevertheless, the

ound in (45) may be conservative if the bound on the L 2 gain in

42) of the original Lur’e subsystems is conservative. 

. Illustrative example 

The feasibility of the proposed method is illustrated through

wo numerical examples. In the first example, we consider a

etwork of 4 Lur’e subsystems, and we compare the result ob-

ained by the proposed method and the IRKA-based algorithm.

n the second example, we validate the proposed method in the

pplication of a networked robotic flexible arms. 

.1. Example 1 

Considers a network consisting of 4 Lur’e subsystems, where

he interconnection topology is characterized by an unknown

nweighted simple graph. From [26] , we know that the Laplacian

pectral radius is greater or equal to 4. Thus, we take ρ = 4 for

he following simulation. Suppose that the dynamics of Lur’e
ubsystems �i in (6) are given by matrices 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 0 1 0 0 0 

0 0 0 0 0 0 . 25 0 0 

0 0 0 0 0 0 0 . 5 0 

0 0 0 0 0 0 0 1 

−1 0 0 0 −3 0 . 25 0 0 

0 −1 0 0 1 −1 1 0 

0 0 −1 0 0 0 . 5 −2 1 

0 0 0 −1 0 0 0 . 5 −2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

B = 

[
0 0 0 0 0 1 −2 2 

]T 
, 

 = 

[
1 0 0 0 1 0 0 0 

]
, 

nd a nonlinearity 

(y ) = | y + 1 | − | y − 1 | . 
ote that φ( y ) is incrementally sector-bounded with S 1 = 0 and

 2 = 2 by the definition in (8) . We use the YALMIP toolbox to

heck that the LMI in (16) is feasible, and a solution is computed

ith the maximal trace of K and τ = 0 . 7044 . Thus, by Lemma 3 ,

he original Lur’e network in form of (14) synchronizes under the

nknown interconnection topology. 

We use (23) and (24) as the generalized controllability and

bservability Gramians, which can be simultaneously diagonalized.

sing the balanced truncation procedure in Section 3 to eliminate

he last four states with the smallest GHSVs in the balanced
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Fig. 3. The trajectories of the states and outputs of the full-order Lur’e network (in the left figure) and reduced-order network (in the right figure). It shows that both the 

full-order and reduced-order Lur’e networks are robustly synchronized over time. 
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t  
system, leading to the following reduced matrices. 

ˆ A = 

⎡ 

⎢ ⎣ 

−0 . 3846 −0 . 2147 0 . 0241 0 . 5101 

0 . 2120 −0 . 0 0 01 0 . 0 0 07 0 . 0054 

0 . 0224 −0 . 0 0 06 −0 . 0020 −0 . 5836 

−0 . 4847 0 . 0030 0 . 5828 −0 . 2972 

⎤ 

⎥ ⎦ 

, 

ˆ B = 

[
−0 . 0985 0 . 0011 0 . 0040 −0 . 0462 

]T 
, 

ˆ 
 = 

[
−0 . 4036 −0 . 00 6 6 0 . 0164 0 . 1926 

]
. 

The approximation error on each Lur’e subsystem is analyzed.

The reduction error of the linear part �lin 
i 

is measured as

‖ G (s ) − ˆ G (s ) ‖ H ∞ 

≈ 0 . 0077 , which indicates that the approxima-

tion error on the linear part of each Lur’e subsystem is small. The

inequality in (49) shows that the approximation error bound for

the linear part is ε = 0 . 0124 . Note that in this example, S τ = I > 0

and μ = 

√ 

2 , and μτ = 1 . Thus, we have ρ > μ/ μτ , which implies

from Lemma 4 that both the original and reduced-order Lur’e

subsystems are finite-gain L 2 bounded. As a result, Theorem 2 can

be applied to provide a priori error bound on the approximation

of each nonlinear subsystem: ‖ y i (t) − ˆ y i (t) ‖ 2 ≤ 0 . 0297 · ‖ u i (t) ‖ 2 . 
Using the reduced matrices, the reduced-order Lur’e subsystems

ˆ �i are constructed and reconnected to form a lower-dimensional

Lur’e network in the form of (30) . Note that both original and

reduced Lur’e network in (14) and (30) are autonomous. To

investigate the synchronization phenomenon in both systems,

we stimulate both systems by assigning random values as their

initial states. The trajectories of the states and outputs of both

networks are then plotted in Fig. 2 a and Fig. 2 b. We can see

that, by the proposed model reduction scheme, the reduced-order

Lur’e network preserves the robust synchronization property. For

comparison, we apply the IRKA algorithm [21] to reduce the

linear component of each Lur’e subsystem. However, the obtained

matrices of the reduced-order subsystem do not preserve the

finite-gain L 2 stability. Furthermore, the obtained reduced-order

Lur’e network model does not preserve the robust synchronization

property. It can be seen from Fig. 2 c, in which the state and output

trajectories diverge over time. 

5.2. Example 2 

In this example, we take the nodal dynamics as the model of

a flexible link robotic arm, whose graphical illustration is shown

in [8,28] . Each controlled robotic arm is a Lur’e subsystem in the
orm of (6) with matrices [28] 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 1 0 0 0 

−α

I −β1 

I 
α

I 0 0 

0 0 0 1 0 

α

J 

− k p −k d − κ

J 

−β2 

J 

k i 

−1 0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, B = 

⎡ 

⎢ ⎢ ⎣ 

0 

1 

0 

0 

0 

⎤ 

⎥ ⎥ ⎦ 

, C T = 

⎡ 

⎢ ⎢ ⎣ 

1 

0 

0 

0 

0 

⎤ 

⎥ ⎥ ⎦ 

, 

nd a nonlinearity 

(y ) = sin y + y. 

he input is a reference signal for the torque induced by an elec-

ric motor, which is used to control the states of the robotic arm,

nd the output is the rotation angle of the robotic arm. The system

arameters are given as follows: J = 0 . 5 kg · m 

2 , I = 25 . 0 kg · m 

2 ,

1 = β2 = 1 . 0 Nm s/rad , κ = 50 . 0 Nm/rad , k p = 120 , k i = 10 and

 d = 70 . Note that φ( y ) is incrementally sector-bounded with

 1 = 0 and S 2 = 2 [8] . We consider a network of 10 flexible robotic

rms, where interconnection topology is characterized by a circle

raph with the weight of each edge to be 0.1. Thus, we take ρ = 4 .

he reduced-order subsystem is obtained with 

ˆ A = 

[ −0 . 3991 1 . 2248 −1 . 0472 

−0 . 9649 −0 . 3443 0 . 5106 

0 . 7675 0 . 4746 −0 . 7458 

] 

, ˆ B = 

[ −0 . 5194 

−0 . 2408 

0 . 3526 

] 

, 

ˆ 
 

T = 

[ −0 . 5781 

0 . 4329 

−0 . 5189 

] 

. 

t is verified that each reduced-order Lur’e subsystem is finite-gain

 2 stable, and the a priori bound on the approximation of subsys-

ems is computed as ‖ y i (t) − ˆ y i (t) ‖ 2 ≤ 0 . 3684 · ‖ u i (t) ‖ 2 . To show

he synchronization property of the reduced-order Lur’e network,

e plot the trajectories of the states and outputs of both full-order

nd reduced-order networks in Fig. 3 . We stimulate both systems

y adding the signals w (t) = 0 . 2 − 0 . 3 cos ( t 
2 π ) as an external

nput to each subsystem. It is shown that the proposed model

eduction scheme preserves the robust synchronization property

n the reduced-order Lur’e network. 

. Conclusion 

In this paper, we have proposed a model order reduction

cheme for uncertain Lur’e networks that are composed of iden-

ical nonlinear Lur’e-type subsystems. Using the incrementally
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ector-bounded uncertain nonlinearity and the upper bound of the

raph Laplacian spectral radius, an LMI condition can be provided

o sufficiently identify the robust synchronization of the Lur’e net-

ork. The solution of the LMI is regarded as generalized Gramians,

hich are employed for the balanced truncation of the linear part

f each Lur’e subsystems. The complexity of the overall network

s reduced as the dimension of each subsystem is lowered. It is

hown that the reduced-order Lur’e network preserves the robust

ynchronization property. Moreover, in the time domain, an a

riori bound on the input-output error between the full-order and

educed-order Lur’e subsystems is acquired. 

For future work, there two interesting directions to extend

he current results. The first is to reduce the Laplacian matrix,

.e., the coupling protocol of the Lur’e network, such that the

ynamics of each subsystem and the network topology can be

imultaneously simplified. The second direction is to investigate

eterogeneous networks, i.e., the networks that are composed of

ifferent nonlinear subsystems. 
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