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ABSTRACT

Data assimilation is an important method for incorporating data (typically obser-

vations) into a model. In this thesis we consider methods to reduce the size of the

state space within the data assimilation process, focusing on the weak constraint

four dimensional variational data assimilation approach (4D-Var).

The linearised system arising within the minimisation process can be formulated

as a saddle point problem. A disadvantage of this formulation is the large storage

requirements involved in the linear system. We present a low-rank approach which

exploits the structure of the saddle point system using techniques and theory from

solving large scale matrix equations to obtain an approximate solution which has

significantly lower storage requirements. Three preconditioning approaches for the

saddle point formulation of the data assimilation problem are applied to the iter-

ative solving of the saddle point system using GMRES, and the low-rank method

introduced in this thesis which introduces additional considerations.

In addition we present projection methods for reducing the dimension of the

space the state of the system resides in in weak constraint 4D-Var. We apply the

control theoretic balanced truncation model reduction method, and introduce ran-

domised projection methods, sometimes known as sketching methods to the data

assimilation setting.

Numerical experiments with the linear advection-diffusion equation, the shallow

water equations and the nonlinear Lorenz-95 model demonstrate the effectiveness

of applying these methods when compared to solving the data assimilation problem

with standard approaches.
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CHAPTER 1

INTRODUCTION

In the modern world data is everywhere. This data arises from a whole host of

different sources, and is used for a wide range of applications. The prevalence of

computers, modern technology, and the internet has meant it is easier than ever to

create, store, and interpret this data. The speed that data can be created often

outstrips the computers which manipulate it.

Data assimilation is a method for using data in the form of observations to inform

estimates. These observations (typically from a physical system) are combined with

a numerical model of that physical system in order to create more accurate estimates

of the actual state of the system. These estimates may be of the true state of the

system, such as we consider in this thesis, or parameters involved in the model [120].

One example where data assimilation is used is numerical weather prediction,

allowing meteorologists to update their predictions of the upcoming weather based

on observations of the current temperature, pressure, humidity and many other

properties [7, 66]. These observations are taken from a range of different sources

and can be combined with the numerical models which exist for different parts of

the atmosphere through data assimilation to obtain one collective forecast.

Data assimilation is commonly applied throughout the geosciences [22], in areas

such as weather prediction [101, 102, 104], oceanography [59, 100, 138] and glaciol-

ogy [25] to give some examples. With the greater interest in data across different

industries and fields of science and technology, there are growing applications of

data assimilation to these areas too e.g. [76, 139, 142], with further examples in [5].

Performing data assimilation can typically be an expensive process with the

models used in the data assimilation method often arising from physical processes

for many of these applications. The numerical models for these processes are often

1



Chapter 1. Introduction

computationally expensive to evaluate themselves. A further property which the

traditional applications share is the vast dimensionality of the state vectors involved.

In numerical weather prediction for example, the systems can have variables of order

108 and higher [82] to describe the current state of the atmosphere. Whilst the

number of observations taken of the state is often also very large, there are typically

significantly fewer observation points than the size of the state of the system by

several orders of magnitude.

In this thesis we consider methods to reduce the size of the state space within the

data assimilation process. In particular we focus on the weak constraint four dimen-

sional variational data assimilation approach (weak constraint 4D-Var) and achieve

this reduction in two different ways. Our first approach considers approximations to

the vectors within the data assimilation process which when generated using existing

approaches can have as many entries as 108. We propose an alternative low-rank

solver for a saddle point system arising within the data assimilation problem, using

techniques and theory from solving large scale matrix equations to obtain an ap-

proximate solution which has significantly lower storage requirements. The second

approach draws inspiration from more traditional system theoretic model reduction

methods. For this method we apply projection methods to the data assimilation

problem hereby reducing the dimension of the space the state of the system resides

in. We apply the control theoretic balanced truncation model reduction method,

and randomised projection methods, sometimes known as sketching methods, to

weak constraint 4D-Var. The resulting projected system is less computationally ex-

pensive and projecting back to the original space after obtaining a solution in the

smaller dimensional space provides an approximate solution which is obtained in

less computation time than working in the high dimensional space.

We use this chapter to introduce in greater detail some of the methods for ap-

plying data assimilation, before we set out the structure of this thesis.

1.1 | An introduction to data assimila-

tion

There are two primary classes of data assimilation:

• sequential methods, where the assimilation of observations is performed at

each timestep, and

• variational methods, where the assimilation is performed for all timesteps at

once.

2



1.1. An introduction to data assimilation

Prior to considering the application of these classes of methods, let us first describe

the shared setting of data assimilation problems.

As stated above, the aim of data assimilation is to combine observations with a

numerical model, in order to obtain a better estimate of the true state of the system.

We consider the discrete-time nonlinear dynamical system

xk+1 =Mk(xk) + ηk, (1.1)

where xk ∈ Rn is the state of the system at time tk and Mk : Rn → Rn is the

nonlinear model operator which evolves the state from time tk to tk+1 for k =

0, . . . N − 1. The terms ηk ∈ Rn represent the model error at time tk, these are

assumed to be Gaussian with zero mean and a known model error covariance matrix

Qk ∈ Rn×n.

Observations of this system, yk ∈ Rpk at time tk for k = 0, . . . N are obtained

through an observation operator Hk : Rn → Rpk :

yk = Hk(xk) + εk, (1.2)

here εk ∈ Rpk is the observation error at tk, these errors are also assumed to be

Gaussian, with zero mean and an observation error covariance matrix Rk ∈ Rpk×pk .

In general, the number of observations at each timestep satisfies pk � n. The

observation operator Hk may also be nonlinear, and have explicit time dependencies

depending on the application area.

We assume that at the initial time we have an a-priori estimate of the state,

which we refer to as the background state, and denote xb0. This is commonly the

result of a short-range forecast, or a previous assimilation cycle, and is typically

taken to be the first guess during the assimilation process. This background state

has an error associated with it:

x0 − xb0 = e0, (1.3)

and we assume this error is also Gaussian with a zero mean and a background error

covariance matrix B ∈ Rn×n.

We present now two approaches for data assimilation beginning with sequential

methods in the next section.
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Chapter 1. Introduction

1.2 | Sequential data assimilation

In sequential data assimilation methods, one assimilation is performed at each

timestep in the assimilation window, and each is done one after the other. This

is unlike the variational methods in Section 1.3 which we consider for the remainder

of the thesis where all timesteps are assimilated at once.

The most commonly applied form of sequential data assimilation is Kalman

filtering introduced in [75], and it remains one of the most popular approaches for

data assimilation. There have been many modifications to the Kalman filter, some

of which we consider in Chapter 2 when we present a literature review of existing

approaches for applying model reduction methods, or utilising low-rank properties

within data assimilation.

1.2.1 | Kalman filter

The Kalman filter [75] consists of two steps, a forecast step and an update or analysis

step. We consider here the extended Kalman filter [58], an extension allowing for

nonlinear model and observation operatorsMk and Hk as in (1.1) and (1.2). This is

achieved by generating the tangent linear model, and observation operators Mk and

Hk by linearisingMk and Hk about xk, and using these matrices for some elements

of the Kalman filter. To initialise the Kalman filter we consider the background

estimate to the state xb0, and the background error covariance matrix B as described

in (1.3).

The first step of the Kalman filter is the forecast step. Here we evolve the model

forward from our existing forecast to give an estimate of the current state:

xfk =Mk(x
a
k−1), (1.4)

where we take the background estimate to the state to be the initial forecast xa0 = xb0.

In order to give a sense of the current error arising from the forecast, we update

the predicted covariance matrix P f using the (tangent linear) model operator Mk

and model error covariance Qk, giving

P f
k = MkP

a
k−1M

T
k +Qk, (1.5)

taking into account the evolution of the model, and the definition of the model error

covariance. Here P a
k−1 is the corrected covariance matrix obtained in the analysis

step. We take the initial error covariance estimate to be the background error

4



1.2. Sequential data assimilation

covariance matrix P a
0 = B.

In the analysis step, this forecast is corrected, using knowledge of the observa-

tions, and the covariances for the state and observation errors:

xak = xfk +Kk(yk −Hk(x
f
k)), (1.6)

P a
k = (I −KkHk)P

f
k , (1.7)

where Kk is known as the Kalman gain matrix, and is given by

Kk = P f
kH

T
k (HkP

f
kH

T
k +Rk)

−1. (1.8)

This is continued for all timesteps and for each time tk we obtain an estimate

of the state xk. When using linear model and observation operators and Gaussian

errors, this estimate we obtain is the best linear unbiased estimate, however for

the extended Kalman filter [58, 72], an approximation to the best linear unbiased

estimate is obtained.

The computationally expensive steps when applying the Kalman filter are the

inversion when generating the Kalman gain matrix (1.8), and propagating the error

covariance P f
k in (1.5), where at each timestep we must perform a matrix multipli-

cation on the left by Mk and on the right by MT
k . There have been a number of

different methods proposed to alleviate these, some of which we present in Chapter 2

when we consider previous approaches to model reduction within data assimilation.

1.2.2 | Bayesian data assimilation

The Kalman filter assumes Gaussian distributions on the errors. The most general

example of sequential data assimilation is Bayesian data assimilation which allows

for different distributions. This approach determines a probability density function

πak(xk) at time tk for the states xk given the observations yk. As with the Kalman

filter this process consists of forecast and analysis steps.

When forecasting, the prior density πfk (xk) is calculated by propagating the anal-

ysis density πak−1(xk) from time tk−1 to tk using the model operator Mk. As with

the Kalman filter, the initial prior density is taken to be the probability density of

the background estimate.

The analysis step updates this density, calculating the posterior density πak(xk|yk)
using Bayes’ formula:

πak(xk|yk) =
πfk (xk)π(yk|xk)

π(yk)
.

5



Chapter 1. Introduction

Here the probability density of the observations π(yk) acts as a normalising

constant, and the density of the data distribution π(yk|xk) (sometimes referred to

as the measurement model) is given by

π(yk|xk) = φ(yk −Hk(xk)),

using an error density φ for the observation errors.

This approach is the most general, allowing for non-Gaussian prior and posterior

distributions however it is generally very expensive.

It can be shown that when considering linear operators and Gaussian probability

densities, the Bayesian approach is equivalent to the Kalman filter and variational

data assimilation [57, 81].

The following section details the variational data assimilation approach which

we use for the new methodology we introduce in this thesis.

1.3 | Variational data assimilation

Variational data assimilation, initially proposed in [114, 115] finds its roots in opti-

misation, and is the other primary class of data assimilation methods. In variational

data assimilation, all timesteps in the assimilation window are considered at once,

in contrast to sequential methods where each timestep is assimilated one step at a

time.

1.3.1 | Four dimensional variational data assimi-

lation (4D-Var)

Four dimensional variational data assimilation (4D-Var) is so called for three spatial

dimensions, plus time, and to differentiate it from three-dimensional variational data

assimilation (3D-Var), where we do not consider multiple observation times. In 4D-

Var, we find an initial state which minimises both the weighted least squares distance

to the background state xb0 (typically obtained from the previous forecast) and the

observations yk for an assimilation window [t0, tN ]. We can consider 3D-Var as a

special case of 4D-Var where the assimilation window consists of just one timestep.
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1.3. Variational data assimilation

Strong constraint 4D-Var

In strong constraint 4D-Var we assume that the model Mk in (1.1) is perfect, and

apply this as a strong constraint within the minimisation process. This methodology

was used in [115] where variational data assimilation was introduced. Hence when

we find our minimising initial state, we minimise the cost function

J(x0) =
1

2
(x0 − xb0)TB−1(x0 − xb0)︸ ︷︷ ︸

Jb

+
1

2

N∑
k=0

(yk −Hk(xk))
TR−1

k (yk −Hk(xk))︸ ︷︷ ︸
Jo

,

=
1

2
‖x0 − xb0‖2

B−1 +
1

2

N∑
k=0

‖yk −Hk(xk)‖2
R−1

k
,

(1.9)

subject to the strong constraint that xk+1 =Mk(xk).

This cost function consists of two parts, Jb the background term, which penalises

the background error arising from the a priori estimate of the state, weighted by

the background error covariance B and Jo which penalises the observations yk at

all timesteps in the assimilation window, these are weighted accordingly by the

observation error covariance matrices Rk. As in (1.2) and (1.3), we assume that

the observation and background errors are Gaussian. The assumption of a Gaussian

distribution allows us to define the errors by their mean and covariances. We assume

that the background and observation errors have zero mean and covariances B and

Rk respectively. The strong constraint 4D-Var problem is typically solved using the

adjoint method [42, 126].

Weak constraint 4D-Var

The weak constraint formulation of 4D-Var arises from assuming an imperfect model

as in (1.1), with xk+1 =Mk(xk)+ηk where ηk denotes the model error. It is assumed

that ηk is Gaussian with zero mean and covariance Qk. The relaxation of the strong

constraint xk+1 =Mk(xk) is commonly used in sequential data assimilation as seen

in Section 1.2.1, where the covariance matrix Qk is used to update the predicted

covariance in (1.5). For variational data assimilation, applying a weak constraint

was also proposed in [115], however due to the computational cost was not commonly

used until far more recently. In the past couple of decades however, there has been

greater interest in weak constraint variational data assimilation, see for example

[53, 55, 63, 90, 131, 133, 145].

In weak constraint 4D-Var we wish to find a state which minimises the weighted

7



Chapter 1. Introduction

least squares distance to the background state xb0, and the observations yk, but

additionally the weighted least squares distance between the model trajectory of

this initial state xk over the assimilation window [t0, tN ]

Mathematically, we can write this as the minimisation of a cost function,

J(x) =
1

2
(x0 − xb0)TB−1(x0 − xb0)︸ ︷︷ ︸

Jb

+
1

2

N∑
k=0

(yk −Hk(xk))
TR−1

k (yk −Hk(xk))︸ ︷︷ ︸
Jo

+
1

2

N∑
k=1

(xk −Mk(xk−1))TQ−1
k (xk −Mk(xk−1))︸ ︷︷ ︸

Jq

,

=
1

2
‖x0 − xb0‖2

B−1 +
1

2

N∑
k=0

‖yk −Hk(xk)‖2
R−1

k
+

1

2

N∑
k=1

‖xk −Mk(xk−1)‖2
Q−1

k
,

(1.10)

where x = [xT0 , x
T
1 , . . . , x

T
N ]T , and xk is the model state at each timestep tk for k =

0, . . . , N . This formulation is known as the ”state formulation” of weak constraint

4D-Var. We note that here we minimise over x as opposed to x0 in strong constraint

4D-Var to account for the addition of model error. As a result we introduce the

Jq term which penalises the model errors ηk over all timesteps, weighted by the

corresponding model error covariances Qk, thus incorporating the constraint xk+1 =

Mk(xk) + ηk into the objective function.

An equivalent approach, referred to as the ”forcing formulation” [133] is to con-

sider the minimisation in terms of the initial condition x0 and the model errors ηk,

which results in the cost function:

J(p) =
1

2
(x0 − xb0)TB−1(x0 − xb0) +

1

2

N∑
k=0

(yk −Hk(xk))
TR−1

k (yk −Hk(xk))

+
1

2

N∑
k=1

ηTkQ
−1
k ηk, (1.11)

subject to the constraint xk+1 =Mk(xk) + ηk, where p = [xT0 , η
T
1 , . . . , η

T
N ]T .

The additional cost of weak constraint 4D-Var, and the difficulties in computing

Qk mean that it is not widely implemented in real world systems. However, account-

ing for this model error (with suitable covariances) leads to improved accuracy, and

the added potential of longer assimilation windows [52, 53]. The saddle point for-

mulation of (1.10) as used in [51, 53, 55] and Chapter 3 has also seen interest for

the parallelisable nature of the matrix-vector products involved, we refer to [51] for
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1.3. Variational data assimilation

discussion on the parallelisation of this problem.

It is weak constraint 4D-Var which we consider for the majority of this thesis, in

particular the state formulation (1.10).

1.3.2 | Incremental 4D-Var

To implement 4D-Var operationally, an incremental approach [35] is used. This is es-

sentially the Gauss-Newton method, an iterative approach to solving nonlinear least

squares problems, and applying it to the strong constraint 4D-Var problem gener-

ates an approximation to the solution of x0 = argmin J(x0), extending naturally to

weak constraint 4D-Var. (See Chapter 3 for details).

Iterates ` are introduced such that

x
(`+1)
0 = x

(`)
0 + δx

(`)
0 , (1.12)

where x
(`)
0 denotes the `-th approximation to x0, with the initial state x

(0)
0 taken to

be the background estimate xb0, with δx
(0)
0 = 0.

Linearising the cost function (1.9) around the model trajectory forecast from the

estimate x
(`)
0 , we can write it in terms of the increment δx

(`)
0 :

J̃(δx
(`)
0 ) =

1

2
‖δx(`)

0 − b(`)
0 ‖2

B−1 +
1

2

N∑
k=0

‖d(`)
k −Hkδx

(`)
k ‖2

R−1
k
. (1.13)

Here Mk ∈ Rn×n and Hk ∈ Rpk×n, are linearisations of Mk and Hk about the

current state trajectory x(`) obtained from evolving x
(`)
0 forward. The increment δxk

satisfies the linear dynamical equation

δxk+1 = Mkδxk.

Furthermore, we introduce the vectors b
(`)
0 and d

(`)
k :

b
(`)
0 = xb0 − x(`)

0 , (1.14)

d
(`)
k = yk −Hk(x

(`)
k ), (1.15)

the vectors d
(`)
k are referred to as the innovation vectors in some applications.

Minimising the cost function (1.13) is known as the inner loop, whilst the update

of the model trajectory x
(`)
i is the outer loop. The minimisation can be performed

using an iterative method, or through solving the gradient equation at the minimum

(∇J̃ = 0). This minimisation yields a new increment δx
(`)
0 from which we can update

9



Chapter 1. Introduction

the current estimate for x
(`)
0 using (1.12).

This method can be extended naturally to the weak constraint setting for 4D-Var

[131], and is detailed further in Chapter 3.

1.3.3 | Connections between the approaches

Under the assumption of linear model and observation operators, with background

and observations errors arising from a Gaussian distribution, it can be shown that the

Kalman filter and strong constraint 4D-Var are equivalent to Tikhonov regularisation

[57]. Another possibility for considering the data assimilation problem is to consider

probability density functions for the state given observation data. This leads to the

Bayesian approach to data assimilation, where posterior densities for the state at

time tk are calculated. In [57, 81] it is shown that the Bayesian approach is equivalent

to the Kalman filter and strong constraint 4D-Var when considering linear operators

and Gaussian probability densities. The Bayesian approach is the most general,

allowing for non-Gaussian prior and posterior distributions however it is generally

very expensive.

There has been considerable investigation into how sequential and variational

methods relate and compare when extensions, hybrid methods and low-rank ap-

proaches are considered see for example [6, 28, 29, 41, 52, 57] and the references

therein. In the case of weak constraint 4D-Var, it has been shown that it is equiv-

alent to Kalman smoothing [52]. Whilst Kalman filtering assimilates observations

as they become available, using past and present observations to predict the state,

Kalman smoothing [2, 32] aims to estimate the state of the system using past,

present and possibly future observations. Let us assume that tK is the current time,

with 1 ≤ k ≤ K. As described in Section 1.2.1, the Kalman filter estimates the

state xk using observations y1, . . . , yk. In contrast the Kalman smoother allows the

estimation of the state xk using observations y1, . . . , yK . More generally, the Kalman

smoother can estimate all states x1, . . . xK using the observations y1, . . . , yK , which

is precisely the aim in weak constraint 4D-Var.

The focus of this thesis is on reduced order solutions to the weak constraint four

dimensional variational data assimilation problem. As a result, considering how the

methods introduced here would translate to other approaches is beyond the scope

of this work.
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1.4. Structure of the thesis

1.4 | Structure of the thesis

This thesis is arranged as follows. In the following chapter, Chapter 2 we present a

review of the existing methodology for applying some form of model order reduction

to the data assimilation problem. These approaches include applying traditional

model reduction methods such as the control theoretic balanced truncation method,

and nonlinear model reduction methods such as proper orthogonal decomposition to

the data assimilation problem. There have been further methods employing low-rank

approximations of covariance matrices to reduce the complexity of the computations

within the Kalman filter and variational data assimilation. This review allows us to

place the new methods introduced in this thesis in the wider context of the existing

literature.

In Chapter 3 we introduce the saddle point formulation for the weak constraint

4D-Var problem, and consider the relationship between the resulting saddle point

matrix written in terms of Kronecker products and matrix equations. The main

contribution in this chapter is in Section 3.2 where we propose an approach to

solve the saddle point problem exploiting this structure using techniques and theory

from solving large scale matrix equations, allowing us to obtain a low-rank solution.

We present a new low-rank form of inexact GMRES (LR-GMRES) which returns

low-rank solutions requiring considerably less storage than standard GMRES. After

proving the existence of such solutions in Section 3.2.2, this chapter is concluded by

presenting numerical experiments comparing this new low-rank solver with GMRES.

We examine three example problems displaying different characteristics, the one

dimensional advection-diffusion equation, a linearised two-dimensional shallow water

equations example and the nonlinear and chaotic Lorenz system which requires

a small extension to the initially presented method. We observe that the low-

rank approach introduced here is successful using both linear and nonlinear models,

achieving close approximations to the full-rank solutions with storage requirements

as low as 1% of those needed by the full-rank approach, which can be obtained in

less time than through GMRES.

Chapter 4 presents three preconditioning approaches for the saddle point formu-

lation of the data assimilation problem. These preconditioners are applied to the

solution of the saddle point system, and the low-rank method introduced in Chap-

ter 3. In Section 4.2 we introduce approximations to the matrices in the saddle

point problem which must be considered when constructing preconditioners, and

investigate the effect of these approximations and preconditioners on the spectra

of the saddle point system. Truncating the inverse of a matrix in Kronecker form,
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we investigate further approximations which provide faster convergence but require

a greater number of matrix vector products at each iteration. We apply the three

preconditioners with these approximations to the GMRES and LR-GMRES meth-

ods for the three example problems introduced in the previous chapter and consider

the efficacy of these preconditioning approaches. The low-rank method introduces

additional considerations for preconditioners which must be taken into account, and

we observe that the method acts in some sense like a projected preconditioner itself,

with preconditioners being less effective than for GMRES.

In Chapter 5 we consider the application of projection methods to the data as-

similation problem, hereby reducing the dimension of the state space. After setting

the problem for a general projection, we consider two approaches. Firstly we extend

previous work applying the control theoretic balanced truncation method to the

strong constraint 4D-Var problem to the weak constraint scenario, introducing the

necessary concepts from control theory. Furthermore we introduce randomised pro-

jection methods, sometimes known as sketching methods, to the data assimilation

problem. The approximation error obtained by solving the projected problem rather

than the full-size problem is considered in Section 5.5. We finish this chapter with

numerical experiments comparing these projection methods to solving the full-sized

system, using the example systems from previous chapters. A further consideration

which must be made is the variability of the randomised projections, and this is also

addressed in Section 5.6. We observe that projection methods result in close levels of

error to those obtained using the full scale minimisation, despite the reduced space

being significantly smaller.

The thesis concludes with a summary of the results obtained in Chapter 6, and

some outlooks for future research.
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CHAPTER 2

MODEL REDUCTION APPROACHES FOR

DATA ASSIMILATION

In the past decade or two in particular, model reduction methods have started being

used in a number of different applications. Data assimilation is no exception, and

there have been a number of papers applying model reduction techniques and ideas

to both sequential and variational data assimilation. There are a large number of

model order reduction techniques and approaches which have been considered in the

data assimilation setting, for many different applications. As listed in Chapter 1,

there are several approaches for applying data assimilation, and as a result this

literature review may be incomplete. In this chapter we detail some of these existing

approaches which have been considered.

One of the difficulties in applying traditional model reduction techniques from

control theory within data assimilation is that in many applications for data as-

similation, the model operator is nonlinear and time-dependent. Some of the more

popular system theoretic approaches for model reduction such as balanced trunca-

tion and IRKA (iterative rational Krylov algorithm) generally work only for linear

(and stable) models, necessitating linearisation of the model. Due to the linearisa-

tion within incremental 4D-Var this can be accounted for, though these methods

typically require additionally that the system is time-invariant.

This requirement may not be too restrictive in applications depending on the

number of time-steps the assimilation is performed over as it may be a reasonable

assumption that the model does not vary for some range of time.

Alternative methods suited to nonlinear and time dependent systems such as

POD (proper orthogonal decomposition) and POD-DEIM (discrete empirical inter-

polation method) [31] can be applied to generate reduced order systems. Further-
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more there have been extensions to balanced truncation such as [80, 113, 116] to

allow for time varying systems.

When these model reduction approaches are applied in other settings, the offline

cost of producing a reduced model is amortised by reusing the same reduced system

over multiple runnings. However in data assimilation, each assimilation cycle (typi-

cally) leads to a new system which must be then reduced. Hence the cost is freshly

incurred each time, unless a linear time-invariant system is considered. As such

other approaches have been applied which do not consider the model and instead

investigate low-rank covariance matrices, or sampling approaches. An alternative

method is to consider low-rank solution techniques within the minimisation process,

such as we consider in Chapter 3 (and the paper [55]).

In this chapter we review methods applied to the two families of data assimi-

lation methods we introduced in Chapter 1: sequential methods with a focus on

Kalman filters and variational data assimilation methods which are the focus on the

remainder of the thesis. Let us first consider the reduced order modifications made

to Kalman filters.

2.1 | Kalman filters

Of the sequential data assimilation methods, the approach which is most frequently

taken is the Kalman filter, which we introduced in Section 1.2.1. There has been

investigation into low-rank implementations of the Kalman filter, with reduced rank

filters such as reduced rank square root filters in [137] and the singular evolutive ex-

tended Kalman (SEEK) filter [100], considering an ensemble as in [48] or combining

these ideas [129].

In this section we present only a summary of some of these approaches. For

greater detail, we refer the reader to [5] and the references therein.

2.1.1 | Reduced rank filters

Reduced rank filters present a method for overcoming one of the computationally

expensive parts in the Kalman filter, the propagation of the error covariance in (1.5):

P f
k = MkP

a
k−1M

T
k +Qk.

The reduced rank filters were introduced in [33, 137], and work with low-rank

covariance matrices, thereby reducing the computational cost. The following method
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is one of the best known reduced rank square root (RRSQRT) filters, the singular

evolutive extended Kalman (SEEK) filter introduced in [100] and supposes that the

error covariance P a
k in (1.7) can be approximated by

P a
k ≈ Sak(Sak)T ,

for all k, where Sak ∈ Rn×r with r � p, n is a low-rank matrix.

This assumption allows (1.5) to be rewritten as

P f
k = MkS

a
k−1(Sak−1)TMT

k +Qk, (2.1)

or indeed

P f
k = S̃fk (S̃fk )T +Qk, where S̃fk = MkS

a
k−1. (2.2)

If additional restrictions are made on the rank of Qk, [5, 26], such that the rank of

P f
k is the same as that of P a

k , it can be assumed further that P f
k = Sfk (Sfk )T . Hence

the Kalman gain matrix can be replaced with a lower cost one:

Kk = Sfk (Ir + (HkS
f
k )TR−1

k (HkS
f
k ))−1(HkS

f
k )TR−1

k . (2.3)

As such the resulting corrected forecast is as before:

xak = xfk +Kk(yk −Hk(x
f
k)),

with the corrected covariance matrix:

P a
k = SakS

a
k , where Sak = Sfk (Ir + (HkS

f
k )TR−1

k (HkS
f
k ))−

1
2 . (2.4)

We observe that the matrix inversion required for the inverse of the square root in

(2.4) and in the Kalman gain matrix in (2.3) is an r × r matrix in contrast to the

p × p matrix being inverted in (1.8). This results in a method which reduces the

complexity of the Kalman filter. A consideration to be made is the initial choice of

covariance matrices, and requires a low-rank approximation to be made to take as

the initial choice P f
0 = B ≈ Sf0 (Sf0 )T . Investigations into this include [106], which

also has applications in variational data assimilation. Further extensions have been

made to the SEEK filter to allow for nonlinear models see for example [138].
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2.1.2 | Ensemble Kalman filters

An alternative approach for reducing the complexity of the Kalman filter by not

requiring the covariance matrices to be explicitly formed is the ensemble Kalman

filter (EnKF) proposed in [48]. To apply this method a collection (ensemble) of m

state vectors xk(i), i = 1, . . .m at timestep k are formed, where it is assumed that

the number of ensemble members m� n, the dimension of the state. The ensemble

are themselves updated and propagated, and the variability of the states leads to

an estimate for the covariance of the error. With the exception of computing the

Kalman gain matrix, the operations performed using the ensemble members are

independent, and hence the EnKF can easily be parallelised.

Each ensemble member xk(i) is evolved forward using (1.1), adding noise ηk with

zero mean and covariance Qk:

xfk(i) =Mk(x
a
k−1(i)) + ηk. (2.5)

The covariance matrices are obtained by Monte Carlo estimators, with the forecast

error covariance matrix computed as

P f
k =

1

m− 1

m∑
i=1

(xfk(i) − x̄
f
k)(x

f
k(i) − x̄

f
k)
T , with x̄fk =

1

m

m∑
i=1

xfk(i). (2.6)

There are different approaches for the analysis step of ensemble Kalman filters, which

can be generalised to two categories, stochastic approaches such as the perturbed

observation EnKF [48] and deterministic approaches such as Ensemble Square Root

Filters [129] akin to those in Section 2.1.1.

We first consider the perturbed observation Kalman filter. Here the ensemble

members are updated in the analysis step using perturbed observations

xak(i) = xfk(i) +Kk

[
yk + εyk −Hk(x

f
k(i))

]
, i = 1, . . . ,m, (2.7)

where εyk is drawn from a Gaussian distribution with zero mean and covariance Rk.

Here the Kalman gain matrix is as in (1.8)

Kk = P f
kH

T
k

(
1

m− 1

m∑
i=1

[
Hk(x

f
k(i) − x̄

f
k)
] [
Hk(x

f
k(i) − x̄

f
k)
]T

+Rk

)−1

, (2.8)

using the Monte Carlo estimate P f
k (2.6). The corrected covariance P a

k can thus be
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2.1. Kalman filters

calculated as

P a
k =

1

m− 1

m∑
i=1

(xak(i) − x̄ak)(xak(i) − x̄ak)T , with x̄ak =
1

m

m∑
i=1

xak(i), (2.9)

though is not necessary to be computed for applying this method. The introduction

of the random perturbations is to yield the same analysis error covariance matrix

P a
k = (I −KkHk)P

f
k ,

as in the original formulation of the Kalman filter (1.7) when taking the expectation

over the random noise [5].

An alternative approach which does not introduce additional noise through per-

turbation of the observations is to consider updating the ensemble simultaneously

instead of updating each ensemble member individually. Similarly to Section 2.1.1

we observe that

P f
k = Xf

k (Xf
k )T , (2.10)

where the columns of Xf
k ∈ Rn×m are given by the normalised perturbations

[Xf
k ]i =

xfk(i) − x̄f√
m− 1

.

Transforming the forecast ensemble to the observation space results in

yfk(i) = Hk(x
f
k(i)), (2.11)

and hence computing the mean and perturbations we obtain

ȳf =
1

m

m∑
i=1

yfk(i), [Y f
k ]i =

yfk(i) − ȳf√
m− 1

. (2.12)

where [Y f
k ]i is the i-th column of Y f

k .

The Kalman gain matrix can then be written as

Kk = Xf
k (Y f

k )T (Y f
k (Y f

k )T +Rk)
−1. (2.13)

We note that a similar approach can be taken to this for the perturbed observation

EnKF, with a Y f
k including the perturbation [5, 48].
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Chapter 2. Model reduction approaches for data assimilation

From here we can update the ensemble mean and perturbation

x̄ak = x̄fk +Kk(yk + ȳfk ), (2.14)

Xa
k = Xf

kT, (2.15)

where the matrix T is chosen such that

P a
k = Xa

k (Xa
k )T = Xf

kT (Xf
kT )T (2.16)

≈ (I −KkHk)P
f
k , (2.17)

as in the original formulation of the Kalman filter (1.7). The matrix T is not uniquely

defined by this and thus there have been multiple variants of the ensemble square

root Kalman filter, see for example [3, 21, 129, 141].

Hybrid methods

There has been investigation in recent years into methods which combine the ideas

of ensemble Kalman filters as described in this section and variational data assimi-

lation methods. It is not typically the methods themselves which are combined, but

the error covariances obtained from the methods. In variational methods a static

predetermined background covariance matrix B is used, whilst methods such as the

ensemble Kalman filter estimate the flow-dependent error covariance P f
k during the

assimilation process. These methods are referred to as ensemble variational (EnVar)

hybrid methods, and have led to similar or improved performance over traditional

EnKF or variational methods [68, 90, 91, 92], with extensions to weak constraint

4D-Var [41, 53]. A simple blending implementation for an EnVar approach is to

replace the background covariance matrix B with the covariance matrix

C = γB + (1− γ)P f , (2.18)

where γ ∈ [0, 1] is a scalar parameter which controls the blending of the covari-

ances. The cost function and updating of the ensemble is dependent on the EnKF

approach taken, with a stochastic method necessitating the inclusion of the observa-

tion permutations as above. This approach was first proposed in [68] for hybridising

the EnKF and 3D-Var, but has since been extended to 4D-Var (see for example

[28, 91]).

Ensemble approaches have been popular for data assimilation, with the paral-

lelisability of the methods resulting in computational efficiency. The number of
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2.1. Kalman filters

ensemble members is typically taken to be significantly smaller than the size of

the state, which naturally leads to a low-rank covariance matrix P f
k = Xf

k (Xf
k )T

resulting in further savings within the implementation.

2.1.3 | Balanced truncation within the Kalman

filter

In a different approach to the above, a control theoretic technique can be applied.

In [49], the balanced truncation model reduction method [96] is applied within the

Kalman filter.

Here the linearised model and observation operators Mk and Hk are projected

onto a lower dimensional space, with the error covariance and Kalman gain matrices

being computed using these reduced operators and transformed back to the full space

when updating the state estimate. The dimension of the reduced space is taken to

be r � n leading to significant reductions in the complexity of the Kalman filter.

The reduced model and observation operators are defined as

M̂k = UTMkV ∈ Rr×r,

Ĥk = HkV ∈ Rpk×r,

where the matrices U and V are obtained through balanced truncation. For further

discussion on balanced truncation we refer to Chapter 5 and [4].

The reduced error covariance matrices P̂ f
k are predicted using the formula

P̂ f
k = M̂kP̂

a
k−1M̂

T
k + Q̂k, (2.19)

where Q̂k is the model error covariance projected onto the reduced space: Q̂k =

UTQkU . The correction to the error covariance is then

P̂ a
k = (Ir − K̂kĤk)P̂

f
k , (2.20)

with the reduced order Kalman gain matrix K̂k given by

K̂k = P̂ f
k Ĥ

T
k (ĤkP̂

f
k Ĥ

T
k +Rk)

−1. (2.21)

If r � p, the inversion in (2.21) can be computed in a cheaper way by applying

the Sherman-Morrison formula. When used to update the state, the reduced order
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Chapter 2. Model reduction approaches for data assimilation

Kalman gain matrix K̂k must be projected back to the original dimension

xak = xfk + V K̂k(yk −Hk(x
f
k)).

Here the complexity of the Kalman filter is reduced by projecting the model and

observation operators onto a lower dimensional space, and generating covariance

and Kalman gain matrices of a smaller dimension. In [49] it is assumed that the

time dependent system underlying the problem has a time-invariant dominant part

on which balanced truncation is performed. This allows the projection matrices

generated by balanced truncation to be used over multiple timesteps, and amortises

the cost of performing balanced truncation.

2.2 | Variational data assimilation

Variational data assimilation has seen less specific development of low-rank or re-

duced order methods in contrast to sequential data assimilation. In [71] it is sug-

gested that in order to reduce the computational costs involved in the minimisation

of incremental 4D-Var, a linear simplification operator such as a projection can be

used. It is the specification of this simplification operator which determines the

efficacy of the reduced order method.

Simplified or reduced order models are implemented within the operationally

used incremental 4D-Var. As introduced in Section 1.3.2, in incremental 4D-Var

we consider an increment δx and solve a linearised cost function within an inner

loop. The model matrices used in this inner loop may be approximations which are

cheaper to compute or apply, or reduced order matrices lowering the complexity of

the method.

Over the years different approaches have been considered for simplifying the

model matrices used within incremental 4D-Var. These simplified models may be

obtained using a lower resolution model with fewer grid points or simplification of

the physics [130], or through a model reduction method such as balanced truncation

[23, 24, 84, 85, 96].

The earliest approaches considered a coarse grid and a lower resolution model,

and pre-date the use of incremental 4D-Var, with investigation into how close the

coarse resolution should be to the full resolution used in the forecast to retain a level

of accuracy. We refer to [127, 130] and the literature compilation of [34] for these ap-

proaches. Development of incremental methods which allow for multiple resolutions

over different inner loops was considered in [136] and implemented operationally for

20



2.2. Variational data assimilation

some numerical weather prediction applications. However this approach has since

been shown to have convergence problems in contrast to the standard incremental

4D-Var method [132] in higher dimensions. Alternative multi-level approaches have

been considered in recent years, such as using a multi-grid solver, or multi-level

approximations within the incremental 4D-Var process [27, 40]. These approaches

combine the accuracy of fine resolution grids, with the speed and reduced complexity

of coarse grids.

Here we present a short summary of a selection of approaches, referring the

reader to [5] and the references therein for greater detail.

2.2.1 | Reduced 4D-Var

There have been constructions for reducing the dimensionality of strong constraint

4D-Var by approximating the initial state x0. In [45, 107] it is assumed that the

initial state x0 is contained in a space of reduced-dimension r � n about the back-

ground estimate xb0:

x0 = xb0 +
r∑
i=1

ciwi,

where ci are real coefficients, and the linearly independent vectors wi contain the

main directions of variability in the system.

When considering incremental 4D-Var, this results in

δx0 =
r∑
i=1

ciwi, (2.22)

where we have dropped the inner loop notation (`) and thus the incremental cost

function to be minimised in reduced 4D-Var (c.f. (1.13)) becomes

J̃r(c1, . . . , cr) =
1

2

∥∥∥∥∥
(

r∑
i=1

ciwi

)
− b0

∥∥∥∥∥
2

B−1
r

+
1

2

N∑
k=0

∥∥∥∥∥dk −HkMk · · ·M1

(
r∑
i=1

ciwi

)∥∥∥∥∥
2

R−1
k

.

(2.23)

Here Br is the background error covariance in the reduced space, which approximates

B in the full space through

B ≈ WBrW
T , (2.24)

where the columns of W are the vectors wi.
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Chapter 2. Model reduction approaches for data assimilation

Minimisation of this reduced cost function takes place in a space of dimension

r � n, leading to a significant saving in computational expense. The efficacy of

the approach is dependent on the choice of vectors wi, with a selection of different

methods considered in [45]. This reduced method for incremental 4D-Var has been

used to initialise a full dimension incremental 4D-Var in order to achieve faster

convergence of the method, and computational savings [106].

A comparison between reduced 4D-Var and the SEEK filter was performed in

[105], with both methods producing similar results. Hybrid methods as described

in Section 2.1.2 using this formulation of incremental 4D-Var have been proposed in

[78, 105] with improved accuracy.

2.2.2 | Proper Orthogonal Decomposition within

4D-Var

A similar and related approach for generating a reduced order model for use within

4D-Var is through proper orthogonal decomposition (POD), this procedure is also

known as the Karhunen-Loève expansion, principal component analysis, or empirical

orthogonal functions in different fields [123], and can be considered as an application

of the singular value decomposition (SVD) to the approximation of general dynam-

ical systems [4]. In [30, 37, 128] this method is applied by taking snapshots x(i),

i = 1, . . . ,m of the state evolution at various timesteps during the data assimilation

window, where the number of snapshots is significantly less than the dimension of

the state space (m � n). The mean x̄ of this ensemble is taken, and a matrix of

snapshots is computed from the perturbations from the mean:

x̄ =
1

m

m∑
i=1

x(i), [X]i = x(i) − x̄, (2.25)

where [X]i denotes the i-th column of X.

Performing the singular value decomposition X = UΣV T on this matrix of snap-

shots, allows a reduced order control to be obtained by projecting x0 − x̄ onto the

POD space spanned by the left singular vectors:

x0 − x̄ = Uη =
m∑
i=1

ηiui. (2.26)

The matrix of left singular vectors U ∈ Rn×m, is referred to in POD literature as

the POD basis. The resulting minimisation problem is akin to (2.23), yielding the
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2.2. Variational data assimilation

optimal coefficients η1, . . . , ηm, with the approximate solution to the 4D-Var problem

obtained through (2.26).

An alternative approach using POD to reduce the complexity in the 4D-Var

process is to use the POD basis U as a projection matrix [123] in order to form

a reduced order forward model. To apply this method we assume that xk ≈ Ux̂k.

The reduced order forward model is constructed using a Petrov-Galerkin projection,

taking a matrix W ∈ Rn×m such that W TU = Im.

The resulting model is applied as a constraint to the minimisation of a reduced

order cost function:

ĴPOD(x̂0) =
1

2
‖Ux̂0 − xb0‖2

B−1 +
1

2

N∑
k=0

‖yk −Hk(Ux̂k)‖2
R−1

k
, (2.27)

subject to the constraint of the reduced order model

x̂k+1 = M̂k(x̂k), M̂k(x̂k) = W TMk(Ux̂k). (2.28)

This minimisation takes place in a lower dimensional space of size m� n than the

full space formulation of strong constraint 4D-Var (1.9), leading to a reduction in

the complexity of the method. Using the POD basis as a projection could also be

used within the incremental 4D-Var inner loop as a simplification operator as in

[71].

Different implementations of these POD methods have been proposed with vari-

ations to the generation of the POD basis U , through standard and tensorial POD

methods and the POD-DEIM (discrete empirical interpolation method) [31] ap-

proach [122]. The DEIM method approximates a nonlinear function by combin-

ing projection with interpolation, constructing interpolation indices that specify an

interpolation-based projection to approximate nonlinear terms with a lower com-

putational cost. These methods for generating the POD basis differ in the way

nonlinear terms are treated, with the efficacy of each approach depending on the

particular problem. We refer to [123] and the references therein for more detail on

POD approaches to 4D-Var.

2.2.3 | Balanced truncation within 4D-Var

An alternative method for constructing a reduced order model as a simplification

for use within the inner loop of incremental 4D-Var is proposed in [23, 24, 84, 85].

The authors apply balanced truncation [96] to project the model and observation

operators onto a lower dimensional space, and hence the resulting minimisation takes
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Chapter 2. Model reduction approaches for data assimilation

place in a space of reduced dimension.

These papers consider strong constraint 4D-Var to set up the linear system used

for balanced truncation. In Chapter 5 we extend these ideas to weak constraint 4D-

Var, and consider the efficacy of this method compared to other projection methods.

A limitation of this approach is that it is designed for linear models, with the

balanced truncation method requiring a stable, linear system.

In this chapter we have presented a short review of the existing methodology

for applying some form of model order reduction to the data assimilation problem.

There have been many different approaches for achieving a reduction in the com-

plexity of both the Kalman filter and variational methods for data assimilation,

with some hybrid methods which combine ideas and results from both. These meth-

ods have included constructing ensembles to generate Monte Carlo estimations for

the covariance matrices and using ideas from control theory, such as the balanced

truncation method for model reduction. As listed in Chapter 1, there are several

approaches for applying data assimilation, and as a result this literature review may

be incomplete, however it allows us to place the new methods introduced in the

subsequent chapters of this thesis in the wider context of the existing literature.
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CHAPTER 3

A LOW-RANK APPROACH TO WEAK

CONSTRAINT 4D-VAR

The work in this chapter is the basis of the paper [55] which appeared in Journal of

Computational Physics 357 (2018), pp. 263-281.

3.1 | Introduction

As mentioned in Chapter 1, data assimilation is used in many applications including

numerical weather prediction and other geosciences to combine a numerical model

with observations obtained from a physical system, in order to create a more accurate

estimate for the true state of the system.

A property which these applications all share is the vast dimensionality of the

state vectors involved. In numerical weather prediction the systems have variables

of order 108 [82]. In addition to the requirement that these computations to be

solved quickly, the storage requirement presents an obstacle. In this chapter we

propose an approach for implementing the weak four-dimensional variational data

assimilation method with a low-rank solution in order to achieve a reduction in

storage space as well as computation time. The approach investigated here is based

on a recent paper [125] which implemented this method in the setting of PDE-

constrained optimisation. We introduce here a low-rank modification to GMRES in

order to generate low-rank solutions in the setting of data assimilation.

This method was motivated by recent developments in the area of solving large

sparse matrix equations, see [12, 77, 99, 110, 117, 118], notably the Lyapunov equa-

tion

AX +XAT = −BBT

25



Chapter 3. A low-rank approach to weak constraint 4D-Var

in which we solve for the square matrix X, where A, B and X are large matrices

of conforming dimensions. It is known that if the right hand side of these matrix

equations are low-rank, there exist low-rank approximations to X [62]. There are a

number of methods which iteratively generate low-rank solutions; see e.g. [44, 86,

99, 110, 117], and it is these ideas which are employed in this chapter.

Alternative methods as discussed in Chapter 2 have been considered for comput-

ing low-rank solutions within the data assimilation problem, or considering reduced-

order models. In this chapter we take a different approach, the data assimilation

problem is considered in its full formulation, however the expensive solve of the

linear system is done in a low-rank in time framework.

In the next section we introduce a saddle point formulation of weak constraint

four dimensional variational data assimilation. Section 3.2 explains the connection

between the arising linear system and the solution to matrix equations. We then

introduce a low-rank approach to GMRES. Numerical results are presented in Sec-

tion 3.3, with an extension to time-dependent systems considered in Section 3.4.

3.2 | Low-rank approach

The approach we take here considers the incremental implementation of weak con-

straint 4D-Var. As mentioned in Section 1.3.2, the incremental approach [35] is

merely a form of Gauss-Newton iteration and generates an approximation to the

solution of x = argmin J(x), where J is the weak 4D-Var cost function (1.10). It

has been shown that if a full resolution linearisation is used this is not necessarily

an approximation, and returns an exact solution [64, 83].

We approximate the 4D-Var cost function by a quadratic function of an increment

δx(`) =
[
(δx

(`)
0 )T , (δx

(`)
1 )T , . . . , (δx

(`)
N )T

]T
defined as

δx(`) = x(`+1) − x(`), (3.1)

where x(`) =
[
(x

(`)
0 )T , (x

(`)
1 )T , . . . , (x

(`)
N )T

]T
denotes the `-th iterate of the Gauss-

Newton algorithm. Updating this estimate is implemented in an outer loop, whilst

generating δx(`) is referred to as the inner loop. This increment δx(`) is a solution
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to the minimisation of the linearised cost function

J̃(δx(`)) =
1

2
(δx

(`)
0 − b(`)

0 )TB−1(δx
(`)
0 − b(`)

0 )

+
1

2

N∑
k=0

(d
(`)
k −Hkδx

(`)
k )TR−1

k (d
(`)
k −Hkδx

(`)
k )

+
1

2

N∑
k=1

(δx
(`)
k −Mkδx

(`)
k−1 − c

(`)
k )TQ−1

k (δx
(`)
k −Mkδx

(`)
k−1 − c

(`)
k ).

(3.2)

Here Mk ∈ Rn×n and Hk ∈ Rpk×n, are linearisations ofMk andHk about the current

state trajectory x(`). For convenience and conciseness, we introduce

b
(`)
0 = xb0 − x(`)

0 , (3.3)

d
(`)
k = yk −Hk(x

(`)
k ), (3.4)

c
(`)
k =Mk(x

(`)
k−1)− x(`)

k . (3.5)

We define the following vectors in order to rewrite the cost function in a more

compact form:

δx =


δx0

δx1

...

δxN

 , δp =


δx0

δq1

...

δqN

 ,
where we have dropped the superscript for the outer loop iteration. These two

vectors are related by δqk = δxk −Mkδxk−1, or in matrix form

δp = Lδx, (3.6)

where

L =


I

−M1 I
. . . . . .

−MN I

 ∈ R(N+1)n×(N+1)n. (3.7)

Furthermore, we introduce the following matrices:

D =


B

Q1

. . .

QN

 ∈ R(N+1)n×(N+1)n, (3.8)
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R =


R0

R1

. . .

RN

 ∈ R
N∑

k=0
pk×

N∑
k=0

pk
, (3.9)

H =


H0

H1

. . .

HN

 ∈ R
N∑

k=0
pk×(N+1)n

, (3.10)

and vectors

b =


b0

c1

...

cN

 ∈ R(N+1)n, and d =


d0

d1

...

dN

 ∈ R
N∑

k=0
pk
. (3.11)

This representation allows us to write (3.2), with the superscripts dropped, as a

function of δx:

J̃(δx) =
1

2
(Lδx− b)TD−1(Lδx− b) +

1

2
(Hδx− d)TR−1(Hδx− d). (3.12)

Minimising the cost function is equivalent to setting the gradient of the cost

function to be zero, and solving the resulting linear system. Indeed, taking the

gradient of this cost function with respect to δx, the resulting equation is

∇J̃(δx) = LTD−1(Lδx− b) + HTR−1(Hδx− d) = 0. (3.13)

Defining λ = D−1(b − Lδx) and µ = R−1(d − Hδx), allows us to write the

gradient at the minimum as

∇J̃ = LTλ+ HTµ = 0. (3.14)

Additionally, we have

Dλ+ Lδx = b, (3.15)

Rµ+ Hδx = d, (3.16)
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and (3.14), (3.15) and (3.16) can be combined into a single linear system:D 0 L

0 R H

LT HT 0


 λµ
δx

 =

bd
0

 , (3.17)

which is to be solved to obtain δx.

This equation is known as the saddle-point formulation for weak constraint 4D-

Var, and allows us to exploit the saddle point structure for linear solves and corre-

sponding preconditioning techniques [14, 17, 125].

The saddle point matrix in (3.17), is a square symmetric indefinite matrix of

size
(

2n(N + 1) +
∑N

k=0 pk

)
. In order to successfully solve this system we must

use an iterative solver such as MINRES (minimal residual method) [98] or GMRES

(generalised minimal residual) [111] as it is infeasible with these large problem sizes

to use a direct method.

MINRES and GMRES are both Krylov subspace methods for solving linear

systems Ax = b. These methods obtain an approximate solution xk from a Krylov

subspace

Kk(A, b) = span{b, Ab,A2b, . . . , Ak−1b},

by imposing the Petrov-Galerkin condition b − Axk ⊥ Lk, where Lk is another

subspace of size k. The approximate solutions generated through MINRES and

GMRES are such that the norm of the residual ‖b− Axk‖ is minimised.

The MINRES and GMRES methods are derived from the Lanczos and Arnoldi

algorithms respectively. Hence MINRES can only be used for symmetric systems

whilst GMRES can be used for non-symmetric cases.

When solving problems with an iterative solver, we additionally require a good

choice of preconditioner. This is typically to improve the condition number of the

matrix A, and hence convergence of the iterative method [88]. There are many

preconditioners designed for saddle point systems [14, 15, 16, 17, 18, 53], however

in a data assimilation setting, the saddle point matrix has different properties to

majority of other saddle point problems in the literature. We refer to Chapter 4 for

greater discussion on this topic. The inexact constraint preconditioner [17] has been

found to be an effective choice of preconditioner for the data assimilation problem

[53], but application of this results in a non-symmetric system necessitating the use

of GMRES.

Furthermore, to overcome the storage requirements of the matrix in (3.17), we

wish to avoid forming it (and indeed as many of the submatrices as possible), which
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motivates the method described in the remainder of this chapter.

3.2.1 | Kronecker formulation

As noted above, the matrix formed in the saddle point formulation is very large, as

indeed are the vectors λ, µ, δx. We wish to adapt the ideas developed in [125] in

order to solve (3.17). This approach is dependent on the Kronecker product and the

vec (·) operator; which are defined to be

A⊗ B =


a11B · · · a1nB

...
. . .

...

am1B · · · amnB

 , vec (C) =



c11

...

c1n

...

cmn


.

We also make use of the relationship between the two:

(BT ⊗A)vec (C) = vec (ACB) . (3.18)

Employing these definitions, we may rewrite (3.17) as E1 ⊗B + E2 ⊗Q 0 IN+1 ⊗ In + C ⊗M
0 IN+1 ⊗R IN+1 ⊗H

IN+1 ⊗ In + CT ⊗MT IN+1 ⊗HT 0


 λµ
δx

 =

bd
0

 , (3.19)

where we make the additional assumptions that Qk = Q, Rk = R, Hk = H, Mk = M

and the number of observations pk = p for each k. The extended case relaxing this

assumption is considered in Section 3.4. Here

C =


0

−1 0
. . . . . .

−1 0

 , E1 =


1

0
. . .

0

 , and E2 =


0

1
. . .

1

 .

The matrices C,E1, E2, IN+1 ∈ R(N+1)×(N+1), whilst B,Q,M, In ∈ Rn×n, H ∈ Rp×n,

and R ∈ Rp×p, where n is the size of the state space, N the number of timesteps in

the assimilation window, and p is the number of observations.
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3.2. Low-rank approach

Using (3.18), we may rewrite (3.19) as the simultaneous matrix equations:

BΛE1 +QΛE2 +X +MXCT = b,

RU +HX = d,

Λ +MTΛC +HTU = 0.,

(3.20)

where we suppose λ, δx, b, µ and d are vectorised forms of the matrices Λ, X,b ∈
Rn×(N+1) and U,d ∈ Rp×(N+1) respectively. The three equations (3.20) are gener-

alised Sylvester equations, which we solve for Λ, U and X, though to update the

state estimate in incremental data assimilation, we require only δx and hence the

solution X.

For standard Sylvester equations of the form AX +XB = C, it is known that if

the right hand side C is low-rank, then there exist low-rank approximate solutions

[62]. Indeed, recent algorithms for solving these Sylvester equations have focused

on constructing low-rank approximate solutions. These algorithms include Krylov

subspace methods (see [118]) and ADI (alternating direction implicit) based methods

(see [10, 13, 54]). It is this knowledge which motivates the following approach.

3.2.2 | Existence of a low-rank solution

In this section, we wish to show that there exist low-rank approximate solutions to

the weak constraint variational data assimilation problem as in the setting above.

To do so, we consider the tensor rank of δx.

Definition (Tensor rank). Let x = vec (X) ∈ Rn2
. The minimal number r such

that

x =
r∑
i=1

ui ⊗ vi, (3.21)

where ui, vi ∈ Rn is called the tensor rank of the vector x.

We now state some properties of the tensor rank.

Lemma 3.1. Let x ∈ Rn2
be the vectorisation of X ∈ Rn×n, such that x = vec (X).

The tensor rank of the vector x is equal to the rank of the matrix X.

Proof. Let X have rank r, thus X can be decomposed as

X =
r∑
i=1

viu
T
i .
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Chapter 3. A low-rank approach to weak constraint 4D-Var

Vectorising this matrix we obtain

x = vec (X) =
r∑
i=1

vec
(
viu

T
i

)
,

and applying the identity (3.18): (BT ⊗A)vec (C) = vec (ACB) with C the scalar 1

we obtain:

x = vec (X) =
r∑
i=1

ui ⊗ vi,

as desired.

Lemma 3.2. Let x ∈ Rnm be the vectorisation of X ∈ Rn×m with tensor rank r, and

let A ∈ Rnm×nm be of the form

A =
k∑
i=1

(Ai ⊗Bi), (3.22)

where Ai ∈ Rn×n, Bi ∈ Rm×m for i = 1 . . . k. The tensor rank of the vector Ax is

at most kr.

Furthermore if B =
∑`

j=1(Cj ⊗Dj) ∈ Rnm×nm with Cj ∈ Rn×n, Dj ∈ Rm×m for

j = 1 . . . `. The tensor rank of the vector BAx is at most `kr.

Proof. Using the identity (3.18), we may rewrite Ax as

k∑
i=1

(Ai ⊗Bi)x = vec

(
k∑
i=1

BiXA
T
i

)
.

Using familiar properties of the rank of a matrix we observe

rank

(
k∑
i=1

BiXA
T
i

)
≤

k∑
i=1

rank(BiXA
T
i )

≤
k∑
i=1

min{rank(Bi), rank(X), rank(Ai)}

≤ kr.

Applying Lemma 3.1, the rank of
∑k

i=1 BiXA
T
i is equivalent to the tensor rank of∑k

i=1(Ai ⊗Bi)x, and hence this vector has tensor rank at most kr.

Considering the product BA, we obtain a matrix which is the sum of `k Kro-

necker products. Applying the previous yields the desired result.

Remark. Because of this result, we sometimes refer to a matrix of the form (3.22)
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3.2. Low-rank approach

as a matrix of tensor rank k.

In order to consider the existence of a low-rank approximate solution, we make

use of the following results from [61] and the method used in [9] for considering

low-rank solutions to problems with a tensor structure. In [61] it is shown that for

a stable matrix A, with eigenvalues in the left complex half plane, the inverse of A
is given by −

∫∞
0

exp (tA)dt, since

A
(
−
∫ ∞

0

exp (tA)dt

)
= −

∫ ∞
0

∂

∂t
exp (tA)dt = exp(0A) = I,

due to the negative eigenvalues of A.

The integral in the inverse can be approximated by quadrature, and we can apply

the following Lemma from [61].

Lemma 3.3. [61] Let A be a matrix with the spectrum σ(A) contained in a rectangle

Ω in C−, and let Γ denote the boundary of a rectangle which encloses this such that

the distance from Γ to σ(A) is at least 1. For each k ∈ N define the following

quadrature points and weights [124]:

hst :=
π2

√
k
,

tj := log(exp(jhst) +
√

1 + exp(2jhst)),

wj :=
hst√

1 + exp(−2jhst)
.

Then there exists a constant Cst independent of A and k such that for an arbitrary

matrix norm,∥∥∥∥∥
∫ ∞

0

exp (tA)−
k∑

j=−k
wj exp(tjA)

∥∥∥∥∥ ≤ Cst
2π

exp(
µ+ 1

π
− π
√

2k)

∮
Γ

‖(γI −A)−1‖dΓγ,

(3.23)

where µ ≥ |Im(λ)| for all λ ∈ σ(A).

It has been noted that the constant Cst is problem independent, and has been

experimentally determined as Cst ≈ 2.75, see [77].

We observe that taking a larger choice of k, and thus more quadrature points,

the smaller the error due to the exp(µ+1
π
− π
√

2k) term.

For matrices of the form A = A1 ⊗ I + I ⊗ A2, or more generally,

A =
d∑
i=1

Âi, Âi = I ⊗ · · · ⊗ I︸ ︷︷ ︸
i−1 terms

⊗Ai ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
d−i terms

, Ai ∈ Rn×n, (3.24)
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Chapter 3. A low-rank approach to weak constraint 4D-Var

tensor matrices with eigenvalues in the left complex half plane, we can consider the

matrix exponential and obtain the following lemma.

Lemma 3.4. Let A be a matrix of tensor structure (3.24), then

exp(A) = exp(A1)⊗ · · · ⊗ exp(Ai)⊗ · · · ⊗ exp(Ad). (3.25)

Proof. For illustration we take the case d = 2 with any matrices A1, A2 ∈ Rn×n,

(A1 ⊗ I)n = An1 ⊗ I, (I ⊗ A2)n = I ⊗ An2 .

Thus, considering the Taylor series expansion of the matrix exponential,

exp(A1 ⊗ I) = exp(A1)⊗ I, exp(I ⊗ A2) = I ⊗ exp(A2),

and hence

exp(A) = exp(A1 ⊗ I + I ⊗ A2) = exp(A1 ⊗ I) exp(I ⊗ A2)

= (exp(A1)⊗ I)(I ⊗ exp(A2))

= exp(A1)⊗ exp(A2).

The extension to d > 2 follows similarly.

Combining the results of Lemma 3.4 and Lemma 3.3 we can state the existence

of an approximate inverse to A, with an error bound between the approximate and

exact inverse.

Lemma 3.5. [61] Let A be a matrix of tensor structure (3.24) with d = 2 and the

spectrum σ(A) contained in a rectangle Ω in C−, and let Γ denote the boundary of a

rectangle which encloses this such that the distance from Γ to σ(A) is at least 1. Let

k ∈ N, and tj, wj denote the points and weights from Lemma 3.3. Then the inverse

A−1 of A can be approximated by

Ã−1 := −
k∑

j=−k
wj exp (tjA1)⊗ exp (tjA2) , (3.26)

with the approximation error∥∥∥A−1 − Ã−1

∥∥∥ ≤ Cst
2π

exp(
µ+ 1

π
− π
√

2k)

∮
Γ

‖(γI −A)−1‖dΓγ, (3.27)

where µ ≥ |Im(λ)| for all λ ∈ σ(A).
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3.2. Low-rank approach

If we consider the matrix L = I ⊗ I + C ⊗M from (3.7), let us rewrite this as

L = (I ⊗−M)(−C ⊗ I + I ⊗−M−1). The matrix (−C ⊗ I + I ⊗−M−1) satisfies

the structure of (3.24) for d = 2, and thus we can apply Lemma 3.5 to obtain

an approximation to L−1 with the above error bound dependent on the number of

quadrature points.

We are now ready to state our result on the existence of low-rank solutions to

the weak constraint 4D-Var cost function (3.12).

Theorem 3.6. Consider the problem (3.12), let the model and observations be time-

independent, with M = Mk, R = Rk, H = Hk, Q = Qk for all k. Furthermore,

assume M is invertible, and the spectrum of (−C ⊗ I + I ⊗ −M−1) is contained

in a rectangle in C−. Then the minimum of the cost function (3.12), δx can be

approximated by a vector of tensor rank at most 4(2r+ 1)2(rank(b) + p+ 1). Here r

arises from the quadrature approximation in Lemma 3.5, b is the background term

from (3.11) and p is the number of observations in the data assimilation problem.

This approximation δ̃x is of the form

δ̃x := L̃−1D(L̃−1)T (−f + HTg), (3.28)

where

L̃−1 =
r∑

j=−r
wj exp (−C)⊗ exp

(
M−1

)
M−1, (3.29)

with tj and wj the quadrature points and weights as defined in Lemma 3.3. The

vectors f and g are the right hand side of the normal equations (3.13):

f := LTD−1b+ HTR−1d, (3.30)

and the solution of

(I + R−1HL−1DL−THT )g = R−1HL−1DL−Tf (3.31)

respectively.

Proof. Let us consider the normal equations (3.13) which can be written

(LTD−1L + HTR−1H)︸ ︷︷ ︸
:=S

δx = LTD−1b+ HTR−1d︸ ︷︷ ︸
:=f

. (3.32)

We denote the matrix S, highlighting that this is (minus) the Schur Complement of

the saddle point system (3.17), and the right hand side of (3.32) as f .

35



Chapter 3. A low-rank approach to weak constraint 4D-Var

Applying the Sherman-Morrison-Woodbury formula [60, 70] we obtain

S−1 = −L−1DL−T + L−1DL−THT (I + R−1HL−1DL−THT )−1R−1HL−1DL−T

and thus

δx = S−1f

= L−1DL−T (−f + HT (I + R−1HL−1DL−THT )−1R−1HL−1DL−Tf). (3.33)

Let g = (I + R−1HL−1DL−THT )−1R−1HL−1DL−Tf , and G = vec−1 (g), then

recalling that H = I ⊗H we can write

vec−1
(
HTg

)
= vec−1

(
(I ⊗HT )g

)
= HTG

=

p∑
j=1

(Hj)
TGj.

Here we use the subscript j to denote the j-th row, noting that H is an p×n matrix.

It follows that

HTg =

p∑
j=1

(Gj)
T ⊗ (Hj)

T , (3.34)

and hence returning to (3.33) we obtain

δx = L−1DL−T (−f + HTg) (3.35)

= L−1DL−T (−f +

p∑
j=1

(Gj)
T ⊗ (Hj)

T ). (3.36)

To consider the tensor rank of δx, we consider the individual components. It

follows from the definition of tensor rank that HTg is rank p, as we have a sum of

p Kronecker products. We can decompose f as

f = LTD−1b+ HTR−1d

= (I ⊗ I + C ⊗M)T (E1 ⊗B−1 + E2 ⊗Q−1)b+ (I ⊗HTR−1)d,

where b and d are the vectors defined in (3.11).

Applying Lemma 3.2, the tensor rank of the first part is bounded by 4 rank(b),

as (I⊗ I +C⊗M)(E1⊗B−1 +E2⊗Q−1) contains four terms. However E1 = 1 and

hence the tensor rank of this term is more tightly bounded by (2+2 rank(b)). Again
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3.2. Low-rank approach

applying Lemma 3.2, the second term (I ⊗HTR−1)d has at most the same tensor

rank as the vector d. Furthermore, since d is obtained from our observations, it has

at most rank p (the number of observations at each timestep). Thus the tensor rank

of (−f + HTg) is at most (2 rank(b) + 2p+ 2).

It remains to investigate the tensor rank of L̃−1D(L̃−1)T ≈ L−1DL−T . Let us

rewrite L = I ⊗ I + C ⊗ M = (I ⊗ −M)(−C ⊗ I + I ⊗ −M−1). The matrix

(−C ⊗ I + I ⊗ −M−1) satisfies the structure of (3.24), and thus we can apply

Lemma 3.5. The inverse of L = (I ⊗ −M)(−C ⊗ I + I ⊗ −M−1) can hence be

approximated by

L̃−1 =
r∑

j=−r
wj exp (−C)⊗ exp

(
M−1

)
M−1.

From this we see that the approximation L̃−1 has a tensor rank of (2r + 1) which

arises from the quadrature. Thus, since D = (E1⊗B +E2⊗Q) is of tensor rank 2,

the approximation L̃−1D(L̃−1)T is of tensor rank 2(2r + 1)2.

Therefore, applying Lemma 3.2, we consider the tensor rank of (−f + HTg),

2(rank(b) + p+ 1) and that of L̃−1D(L̃−1)T which is 2(2r+ 1)2 we obtain the result

that an approximation δ̃x of the form

δ̃x = L̃−1D(L̃−1)T (−f + HTg), (3.37)

has a tensor rank of at most 4(2r + 1)2(rank(b) + p+ 1).

We have therefore shown that low-rank approximate solutions to the weak con-

straint variational data assimilation problem do exist. The method we illustrated

in this proof of existence, using quadrature is not the approach we take for generat-

ing low-rank solutions in the remainder of the chapter, however does provide some

insight into the properties of low-rank solutions. Here the rank of the solution is

related to the number of observations taken, and the tensor rank of our background

vector b. If these are both small, there is a greater chance of observing a low-rank

approximation solution. In applications, the number of observations taken each

timestep is significantly lower than the size of the state space vector, however less

can be said about the tensor rank of the background vector.

We had to make a number of assumptions to obtain this result, including that the

model and observations are time-independent. However, as we see experimentally in

Section 3.4, relaxing this assumption still results in low-rank approximate solutions.

Let us now consider a method for obtaining low-rank approximate solutions in

practice.
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Chapter 3. A low-rank approach to weak constraint 4D-Var

3.2.3 | Low-rank GMRES (LR-GMRES)

In order to find low-rank approximate solutions, we suppose as in [9, 125], that the

matrices Λ, U,X in (3.20) have low-rank representations, with

Λ = WΛV
T

Λ , WΛ ∈ Rn×kΛ , VΛ ∈ R(N+1)×kΛ , (3.38)

U = WUV
T
U , WU ∈ Rp×kU , VU ∈ R(N+1)×kU , (3.39)

X = WXV
T
X , WX ∈ Rn×kX , VX ∈ R(N+1)×kX , (3.40)

where kΛ, kU , kX � n,N . This allows us to rewrite (3.20) as follows:

[
BWΛ QWΛ WX MWX

]

V T

Λ E1

V T
Λ E2

V T
X

V T
XC

T

 = b,

[
RWU HWX

] [V T
U

W T
X

]
= d,

[
WΛ MTWΛ HTWU

] V T
Λ

V T
Λ C

V T
U

 = 0.

(3.41)

Since using a direct solver would be infeasible, we use an iterative solver, in this

case GMRES [111] to allow for flexibility in choosing a preconditioner, see Chapter 4.

Algorithm 1 details a low-rank implementation of GMRES, which leads to low-

rank approximate solutions to (3.19), using (3.41). Fundamentally this is the same

as a traditional vector-based GMRES with a vector w, where instead here we have λµ
δx

 = vec


WΛV

T
Λ

WUV
T
U

WXV
T
X


 = vec


W11W

T
12

W21W
T
22

W31W
T
32


 = w,

introducing the notation Wk1 and Wk2 for k = 1, 2, 3 to ensure consistent notation

in the intermediate steps of LR-GMRES.

To apply the vector addition x = y + ηz for some scalar η within LR-GMRES,

we observe that this is equivalent to applying the concatenation Xk1 = [Yk1, ηZk1],
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3.2. Low-rank approach

Xk2 = [Yk2, Zk2] for k = 1, 2, 3, since Xk1X
T
k2 = Yk1Y

T
k2 + ηZk1Z

T
k2 and hence

x = vec


X11X

T
12

X21X
T
22

X31X
T
32


 = vec


Y11Y

T
12 + ηZ11Z

T
12

Y21Y
T

22 + ηZ21Z
T
22

Y31Y
T

32 + ηZ31Z
T
32


 = y + ηz.

In Algorithm 1, we employ the same notation as in [125], using the brackets

{} as a concatenation and truncation operation. Furthermore, after applying matrix

multiplication or preconditioning, we also truncate the resulting matrices. How this

truncation could be implemented is also treated in [125], with options including

a truncated singular value decomposition, possibly through Matlab’s inbuilt svds

function, or a skinny QR factorisation. In the numerical results to follow, we use a

modification of the Matlab svds function.

In order to compute the inner product 〈w, v(i)〉 which arises in GMRES when

computing the entries of the Hessenberg matrix (see line 11 in Algorithm 1), we

make use of the relation between the trace and vec operators:

trace(ATB) = vec (A)T vec (B) .

Since in this setting, the vectors w and v(i) are the vectorisations

vec


W11W

T
12

W21W
T
22

W31W
T
32


 = w and vec


V

(i)
11 (V

(i)
12 )T

V
(i)

21 (V
(i)

22 )T

V
(i)

31 (V
(i)

32 )T


 = v(i),

we see that we may compute the inner product 〈w, v(i)〉 as

〈w, v(i)〉 =trace
(

(W11W
T
12)T (V

(i)
11 (V

(i)
12 )T )

)
+ trace

(
(W21W

T
22)T (V

(i)
21 (V

(i)
22 )T )

)
+ trace

(
(W31W

T
32)T (V

(i)
31 (V

(i)
32 )T )

)
. (3.42)

Importantly however, the matrices formed in (3.42) do not exploit the low-rank

nature of the submatrices. Fortunately, using the properties of the trace operator,

we may consider instead:

〈w, v(i)〉 = trace
(
W T

11V
(i)

11 (V
(i)

12 )TW12

)
+ trace

(
W T

21V
(i)

21 (V
(i)

22 )TW22

)
+ trace

(
W T

31V
(i)

31 (V
(i)

32 )TW32

)
, (3.43)

and hence compute the trace of smaller matrices. This is the method implemented

in line 11 of Algorithm 1.
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Algorithm 1: Low-rank GMRES (LR-GMRES)

Choose X
(0)
11 , X

(0)
12 , X

(0)
21 , X

(0)
22 , X

(0)
31 , X

(0)
32 .

{X̃11, X̃12, X̃21, X̃22, X̃31, X̃32} = Amult(X
(0)
11 , X

(0)
12 , X

(0)
21 , X

(0)
22 , X

(0)
31 , X

(0)
32 ).

V11 = {B11, −X̃11}, V12 = {B12, X̃12},
V21 = {B21, −X̃21}, V22 = {B22, X̃22},
V31 = {B31, −X̃31}, V32 = {B32, X̃32}.
ξ = [ξ1, 0, . . . , 0], ξ1 =

√
traceproduct(V

(1)
11 , . . . , V

(1)
11 , . . .).

for k = 1, . . . do
{Z(k)

11 , Z
(k)
12 , Z

(k)
21 , Z

(k)
22 , Z

(k)
31 , Z

(k)
32 } = Aprec(V

(k)
11 , V

(k)
12 , V

(k)
21 , V

(k)
22 , V

(k)
31 , V

(k)
32 )

{W11,W12,W21,W22,W31,W32} = Amult(Z
(k)
11 , Z

(k)
12 , Z

(k)
21 , Z

(k)
22 , Z

(k)
31 , Z

(k)
32 ).

for i = 1, . . . , k do
hi,k = traceproduct(W11, . . . , V

(i)
11 , . . .),

W11 = {W11, hi,kV
(i)

11 }, W12 = {W12, V
(i)

12 },
W21 = {W21, hi,kV

(i)
21 }, W22 = {W22, V

(i)
22 },

W31 = {W31, hi,kV
(i)

31 }, W32 = {W22, V
(i)

32 }.
end for
hk+1,k =

√
traceproduct(W11, . . . ,W11, . . .)

V
(k+1)

11 = W11/hk+1,k, V
(k+1)

12 = W12,

V
(k+1)

21 = W21/hk+1,k, V
(k+1)

22 = W22,

V
(k+1)

31 = W31/hk+1,k, V
(k+1)

32 = W32.
Apply Givens rotations to kth column of h, i.e.
for j = 1, . . . k − 1 do[

hj,k
hj+1,k

]
=

[
cj sj
−s̄j cj

] [
hj,k
hj+1,k

]
end for
Compute kth rotation, and apply to ξ and last column of h.[
ξk
ξk+1

]
=

[
ck sk
−s̄k ck

] [
ξk
0

]
,

hk,k = ckhk,k + skhk+1,k,
hk+1,k = 0.

if |ξk+1| sufficiently small then
Solve H̃ỹ = ξ, where the entries of H̃ are hi,k.

Y11 = {ỹ1V
(1)

11 , . . . , ỹkV
(k)

11 }, Y12 = {ỹ1V
(1)

12 , . . . , ỹkV
(k)

12 }
Y21 = {ỹ1V

(1)
11 , . . . , ỹkV

(k)
21 }, Y22 = {ỹ1V

(1)
22 , . . . , ỹkV

(k)
22 }

Y31 = {ỹ1V
(1)

31 , . . . , ỹkV
(k)

31 }, Y32 = {ỹ1V
(1)

32 , . . . , ỹkV
(k)

32 }
{Ỹ11, Ỹ12, Ỹ21, Ỹ22, Ỹ31, Ỹ32} = Aprec(Y11, Y12, Y21, Y22, Y31, Y32)

X11 = {X(0)
11 , Ỹ11}, X12 = {X(0)

12 , Ỹ12}
X21 = {X(0)

21 , Ỹ21}, X22 = {X(0)
22 , Ỹ22}

X31 = {X(0)
31 , Ỹ31}, X32 = {X(0)

32 , Ỹ32}
break

end if
end for
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3.3. Numerical results

The matrix vector multiplication Az in traditional GMRES, is implemented in

LR-GMRES by considering the low-rank form of the saddle point equations gen-

erated in (3.41). The concatenation is explicitly written in Algorithm 2 and is

denoted Amult in Algorithm 1.

Algorithm 2: Matrix multiplication (Amult)

Input: W11,W12,W21,W22,W31,W32

Output: Z11, Z12, Z21, Z22, Z31, Z32

Z11 = [BW11, QW11, W31, MW31],
Z12 = [E1W12, E2W12, W32, CW32],
Z21 = [RW21, HW31],
Z21 = [W22, W32],
Z31 = [W11, MTW11, HTW21],
Z32 = [W12, CTW12, W22]

Note that here we have considered traditional GMRES when implementing LR-

GMRES, however it would require only a small modification to allow for restarted

GMRES. Preconditioning LR-GMRES is implemented in Algorithm 1 through the

Aprec function, which works similarly to Amult in Algorithm 2 which implements

Az from traditional GMRES, here Aprec applies P−1z where P approximates A in

some sense. This is considered in greater detail in Chapter 4, where we consider the

application of preconditioners to this problem.

Due to the truncation steps within the algorithm, introducing a low-rank ap-

proximation (by removing small singular values), LR-GMRES does not minimise

the residual in the same sense as traditional GMRES. Hence LR-GMRES is more

precisely a form of inexact GMRES, see for example [119, 135] and the references

therein.

3.3 | Numerical results

In this section we present numerical results using LR-GMRES. (For preconditioning

strategies we refer to Chapter 4). We use a maximum iteration number of 20, and

stop LR-GMRES when the residual reaches a tolerance of 10−6, or maximum number

of iterations is reached. During the algorithm where we truncate the matrices after

concatenation and apply Amult, we use a truncation tolerance of 10−6. We present

examples with different choices of reduced rank r.
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Chapter 3. A low-rank approach to weak constraint 4D-Var

3.3.1 | One-dimensional advection-diffusion

system

As a first example, let us consider the one-dimensional (linear) advection-diffusion

problem, defined as:

∂

∂t
u(z, t) = cd

∂2

∂z2
u(z, t) + ca

∂

∂z
u(z, t), (3.44)

for z ∈ [0, 1], t ∈ (0, T ), subject to the boundary and initial conditions

u(0, t) = 0, u(1, t) = 0, ∈ (0, T ),

u(z, 0) = u0(z), z ∈ [0, 1].

We solve this system with a centered finite difference scheme for uz and ut, and a

Crank-Nicolson scheme [36] for uzz, discretising z uniformly with n = 500, ∆z = 1
499

and taking timesteps of size ∆t = 10−3. For this example, we set the underlying

system to have cd = 0.1, ca = 1.4 and for the initial condition we take u0(z) =

sin(πz).

a. Advection-diffusion example
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−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re(λ)

Im
(λ
)

b. Eigenvalues λ of M

Figure 3.1: The advection-diffusion example for 1000 timesteps, and the
eigenvalues of the model operator M

In Figure 3.1 we see the model evolved forward for 1000 timesteps set up as

above, and the eigenvalues of the model operator matrix M . The eigenvalues here

are all contained within the circle |λ| < 1 and hence the model is stable in the

discrete sense.

We now consider this example as a data assimilation problem, and compare the

solutions obtained both by solving the saddle point formulation (3.17) using GM-
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3.3. Numerical results

RES, and the low-rank approximation using LR-GMRES. For GMRES we also use

a tolerance of 10−6, and a maximum iteration number of 20. We take an assim-

ilation window of 200 timesteps (giving N = 199) where observations are taken

at each of these timesteps, followed by a forecast of 800 timesteps. Thus the re-

sulting linear system (3.17) we solve here is of size (200, 000 + 200p), where p is

the number of observations we take at each timestep. Independent of p, the full-

rank update is δx ∈ R100,000. In contrast, the low-rank update is WV T , where

W ∈ R500×r, V ∈ R200×r. For r = 20, this requires only 14% of the storage of the

full-rank update.

In the examples to follow, we compare the forecasts obtained after applying full-

and low-rank solutions to the data assimilation problem with the forecast obtained

from evolving the background estimate forward.

Perfect observations

First let us suppose we have perfect and full observations taken at every timestep

in the assimilation window. Hence p = 500, and the size of the saddle point system

we consider is 300, 000. We take as the background estimate ub0, a perturbed initial

condition with background covariance B = 0.1I500, and for this, and the following

examples, we consider a model error with zero mean and covariance Q = 10−6I500.

Here, we take r = 20, which as described above requires only 14% of the storage

used in the full-rank vector. Figure 3.2 a) shows the absolute error ‖u∗(x, tN+1)−
u(x, tN+1)‖ for the time tN+1 at the end of the assimilation window, denoting the

true solution by u∗ computed by the numerical method, and in Figure 3.2 b) we

consider the root mean squared error of the forecasts compared to the true state.

In this example we see that the forecast obtained using the low-rank solver closely

matches the one obtained from using GMRES despite the large reduction in space

needed. During the assimilation window the low-rank approach results in a slightly

higher RMSE than the full-rank method, but performs significantly more effectively

than not applying data assimilation.

Partial, noisy observations

Let us now consider partial noisy observations, taking observations in every fifth

component of u. These are generated from the truth with covariance R = 0.01Ip, for

p = 100, and as such the linear system we consider for this example is of size 220, 000.

In this example we take for the background error covariance Bi,j = 0.1 exp(−|i−j|
2n

),

keeping Q = 10−6I100 and r = 20. The resulting errors are shown in Figure 3.3.
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Figure 3.2: Error at time tN+1, and root mean squared error for the 1D
advection-diffusion example with perfect observations (r = 20).

Here we see that the error between the true state and those obtained with the full-

and low-rank data assimilation approaches are of similar levels for both approaches.

When we consider the root mean squared errors of the full- and low-rank approaches

in Figure 3.3 b) there is a difference between the resulting forecasts in contrast

to Figure 3.2 b). The low-rank approach results in a forecast which has slightly

higher levels of RMSE than the full-rank approach, but the error is still smaller than

forecasting without applying data assimilation.
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Figure 3.3: Error at time tN+1, and root mean squared error for the 1D
advection-diffusion example with partial, noisy observations

(r = 20).
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Different choices of rank

Let us now consider the effect of the chosen rank on the assimilation result.

In the previous examples we have considered r = 20, which resulted in the low-

rank approximation to δx requiring only 14% of the storage needed for the full-rank

solution. Here we consider r = 5 (requiring 3.5% of the storage), and r = 1 (needing

just 0.7%), and otherwise keep the setup of the example used in Figure 3.3, with

partial, noisy observations unchanged.
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a. r = 5
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Figure 3.4: Root mean squared errors for the 1D advection-diffusion example
with partial, noisy observations (r = 5, r = 1).

In Figure 3.4 a) we see that the forecast obtained from the low-rank method

using r = 5, results in only a slightly larger level of error than that which we saw

for r = 20 in Figure 3.3 b). In the assimilation window, taking r = 5 has a greater

variability in the error, and indeed has a lower level than the forecast obtained with

the full-rank method.

Surprisingly taking r = 1 results in a forecast which performs very similarly to

the other two examples, despite having a larger error in the assimilation window

than the full-rank example, and initially has a slightly higher level of error than the

r = 5 case in the forecast window.

For this example, we see that the forecasts for both r = 5 and r = 1 are close to

the full-rank solution and have a smaller error than not applying a data assimilation

method.

45



Chapter 3. A low-rank approach to weak constraint 4D-Var

Storage requirements

Table 3.1 presents the storage requirements for the examples considered in

this section. As Figures 3.2- 3.4 demonstrate, despite the large reduction in the

necessary storage for the low-rank approach, it results in close approximations to

the full-rank method.

# of matrix elements in storage
n N p rank full-rank solution low-rank solution reduction

100 199 100 20 20,000 6,000 70%
500 199 500 20 100,000 14,000 86%
500 199 100 20 100,000 14,000 86%
500 199 100 5 100,000 3,500 96.5%
500 199 100 1 100,000 700 99.3%

Table 3.1: Storage requirements for full- and low-rank methods in the 1D
advection-diffusion equation examples.

Computation time

In Table 3.2, we present a comparison of the computation time for different

choices of rank in the advection-diffusion example using LR-GMRES. For the fol-

lowing table, we consider the advection-diffusion example used in Figure 3.3, taking

n = 500, N = 199, p = 100 leading to a saddle point matrix of size 220, 000. With

each solver, we apply here only 20 iterations, and average over one hundred runs.

These computations were done on an Intel i5-4460 processor operating at 3.2GHz.

Solver runtime (s)

GMRES 9.0055
LR-GMRES (rank 50) 12.9397
LR-GMRES (rank 20) 2.5673
LR-GMRES (rank 5) 0.5909
LR-GMRES (rank 1) 0.3127

Table 3.2: Comparison of computation time for low-rank GMRES for the 1D
advection-diffusion equation example.

We note that due to the truncation steps in the LR-GMRES algorithm, which

are currently performed using a (sparse) svd, we do not see significant savings in

Table 3.2 for the computation time for the larger choices of rank compared to
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3.3. Numerical results

solving the saddle point system using ordinary GMRES because of this expense.

However we see that in these examples, the small choice of rank still leads to close

approximations to those obtained with GMRES. Furthermore, as seen in Table 3.1,

these approximations require significantly lower storage requirements.

3.3.2 | Two-dimensional linearised shallow water

equations

As a second example we consider the two-dimensional linearised shallow water

equations (SWE), with a constant phase velocity. This example has two veloc-

ity components u(x, y, t) and v(x, y, t) and a height perturbation η(x, y, t), where

(x, y) ∈ [0, 1]× [0, 1] is a spatial coordinate and t > 0 is time. The governing PDEs

are:
∂u

∂t
= −∂η

∂x
,

∂u

∂t
= −∂η

∂y
,

∂η

∂t
= −

(
∂u

∂x
+
∂v

∂y

)
,

with the initial conditions

u(x, y, 0) = 0, v(x, y, 0) = 0, η(x, y, 0) = η0(x, y),

where η0(x, y) is a sinusoidal perturbation.

We solve this problem using centered finite differences, discretising the space

with an m ×m grid taking m = 13, thus leading to a state space size of n = 507

considering the height and two velocities, and taking timesteps of size ∆t = 5 ·10−4.

As with the advection-diffusion example when considering this as a data assim-

ilation problem, we take an assimilation window of (N + 1) = 200 timesteps with

observations taken at each of these timesteps, followed by a forecast of 800 timesteps.

In Figure 3.5 we see the initial condition η0(x, y) for this example as set up

above, and the imaginary part of the eigenvalues of the model operator M . The

eigenvalues λ for this example are of the form 1 + νi, with ν ∈ (−0.01, 0.01). Since

this results in some |λ| > 1, the model is not stable.

For the following numerical examples, we consider the RMSE for just the height

component of the state. This is for convenience and to present clearer figures as the

velocity components behave similarly.

Perfect observations

As in the advection-diffusion example, let us first suppose we have perfect ob-

servations taken at every state in the assimilation window. Hence p = 507, and the
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Figure 3.5: The initial condition for the 2D shallow water equations example
and the eigenvalues of the model operator M

size of the saddle point system we consider is 304, 200. We take as the background

estimate ub0, a perturbed initial condition with background covariance B = 0.1I507,

and for this, and the following examples, we consider a model error with zero mean

and covariance Q = 10−6I507.
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Figure 3.6: Error at time tN+1, and root mean squared error for the 2D shallow
water equations example with perfect observations (r = 20).

Here, we take r = 20 and observe in Figure 3.6 that, as with our perfect obser-

vations example for the advection-diffusion problem, the forecast obtained using the

low-rank solver achieves very similar levels of error to those obtained via GMRES,

despite once again using only 14% of the storage for the update vector.
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3.3. Numerical results

Partial, noisy observations

If we now consider partial noisy observations, taking p = 100 with observations

in every fifth component in our state. These are generated from the truth with

covariance R = 0.01I100, and as such the linear system we consider for this example

is of size 222, 800. In this example we use Bi,j = 0.1 exp(−|i−j|
2n

) and Q = 10−6I100.

The resulting root mean squared errors for the forecasts are shown in Figure 3.7

for r = 20 and r = 5.
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Figure 3.7: Root mean squared errors for the 2D shallow water equations
example with partial, noisy observations (r = 20, r = 5).

We observe in Figure 3.7 that with partial observations for this example we

obtain near identical levels of error for the forecasts obtained through both GMRES

and LR-GMRES, irrespective of the choice of rank for these examples, with low-rank

updates requiring much less storage.

Storage requirements

Table 3.3 presents the storage requirements for the examples considered in this

section. As for the previous example, despite the large reduction in the necessary

storage for the low-rank approach, it results in close approximations to the full-rank

method.
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# of matrix elements in storage
n N p rank full-rank solution low-rank solution reduction

507 199 507 20 101,400 14,140 86%
507 199 100 20 101,400 14,140 86%
507 199 100 5 101,400 3,535 96.5%

Table 3.3: Storage requirements for full- and low-rank methods in the 2D
shallow water equations examples.

3.4 | Time-dependent systems

Let us now consider an extension of the Kronecker formulation (3.19) to the time-

dependent case, allowing for time-dependent model, and observation operators, and

the respective covariance matrices.

3.4.1 | Kronecker formulation of time-dependent

systems

The remaining assumption we must make is that the number of observations in the

i-th timestep, pi is constant, i.e. pi = p for each i. With these assumptions, the

linear system in (3.19) becomes
F1 ⊗B +

N∑
i=1

Fi+1 ⊗Qi 0 I ⊗ Ix +
N∑
i=1

Ci ⊗Mi

0
N∑
i=0

Fi+1 ⊗Ri

N∑
i=0

Fi+1 ⊗Hi

I ⊗ Ix +
N∑
i=1

CT
i ⊗MT

i

N∑
i=0

Fi+1 ⊗HT
i 0


 λµ
δx

 =

bd
0

 ,
(3.45)

where Fi denotes the matrix with 1 on the ith entry of the diagonal, and zeros

elsewhere, and Ci is the matrix with −1 on the ith column of the subdiagonal, and

zeros elsewhere. Here Mi and Hi are linearisations of the model and observation

operators Mi and Hi respectively about xi.

As in Section 3.2.1, we may use (3.18) to rewrite this as the following (now more
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general) matrix equations

BΛF1 +
N∑
i=1

QiΛFi+1 +X +
N∑
i=1

MiXC
T
i = b,

N∑
i=0

RiUFi+1 +
N∑
i=0

HiXFi+1 = d,

Λ +
N∑
i=1

MT
i ΛCi +

N∑
i=0

HT
i UFi+1 = 0.

(3.46)

Here as before, λ, δx, b, µ and d are vectorised forms of the matrices Λ, X,b ∈
Rn×N+1 and U,d ∈ Rp×N+1 respectively. These matrix equations must again be

solved for Λ, U and X, where X is the matrix of interest.

Algorithm 3 is an implementation of Amult for the time-dependent case, ex-

plicitly writing the concatenation defined by (3.46) in the form required for LR-

GMRES. This requires linearisations of the model and observation operators at all

timesteps in order to be applied.

Algorithm 3: Matrix multiplication (time-dependent) (Amult)

Input: W11,W12,W21,W22,W31,W32

Output: Z11, Z12, Z21, Z22, Z31, Z32

Z11 = [BW11, Q1W11, . . . , QNW11, W31, M1W31, . . . , MNW31],
Z12 = [F1W12, F2W12, . . . , FN+1W12, W32, C1W32, . . . , CNW32],
Z21 = [R0W21, . . . , RNW21, H0W31, . . . , HNW31],
Z21 = [F1W22, . . . , FN+1W22, F1W32, . . . , FN+1W32],
Z31 = [W11, MT

1 W11, . . . , MT
NW11, HT

0 W21, . . . , HT
NW21],

Z32 = [W12, CT
1 W12, . . . , CT

NW12, F1W22, . . . , FN+1W22]

We note that further to the truncation expense highlighted in Section 3.3, the

significantly increased number of matrices being concatenated prior to truncation

results in longer runtimes, particularly if new linearised matrices must be computed.

As an example, we consider the Lorenz-95 system [94] which is both nonlinear,

and also chaotic rather than smoothing such as the previous example (Section 3.3.1),

so as to better represent real world data assimilation problems such as weather

forecasting.

3.4.2 | Lorenz-95 system

We consider the Lorenz-95 system [94], this is a generalisation of the three dimen-

sional Lorenz system [93] to n dimensions. The model is defined by a system of n
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nonlinear ordinary differential equations

dzi

dt
= −zi−2zi−1 + zi−1zi+1 − zi + f, (3.47)

where z = [z1, z2, . . . , zn]T is the state of the system, and f is a forcing term. It is

known that for f = 8, the Lorenz system exhibits chaotic behaviour [57, 94]. Also

noted is that for reasonably large values of n (here we take n = 40), this choice of

f leads to a model which is comparable to weather forecasting models.

We solve (3.47) using a 4th order Runge-Kutta method in order to obtain

zk+1 =Mk(zk), where zk = [z1
k, z

2
k, . . . , z

n
k ]T , (3.48)

where Mk is the nonlinear model operator which evolves the state zk to zk+1. As

before Hk denotes the potentially nonlinear observation operator for the state zk.

We set the initial value of each zi to be ”1” or ”0” with equal probability.

To formulate the data assimilation problem as a saddle point problem, we gen-

erate the tangent linear model, and observation operators Mk and Hk by linearising

Mk and Hk about zk.

As in Section 3.3.1, we compare the low-rank approximation computed using

LR-GMRES, to the full-rank solution of the saddle point formulation (3.17) solved

using GMRES, and the background estimate (e.g. no assimilation). We perform the

data assimilation using an assimilation window of 200 timesteps, where observations

are taken at each of these timesteps, followed by a forecast of 800 timesteps, all of

size ∆t = 5 · 10−3. The resulting full-rank update for the 40-dimensional Lorenz

system is therefore δx ∈ R8,000, whilst in contrast the low-rank update WV T , is

such that W ∈ R40×r, V ∈ R200×r. Here we consider r = 20 once more, which here

requires 60% of the storage, still demonstrating a significant reduction compared to

the full-rank GMRES solve.

In Figure 3.8 we see the initial condition for this example as described above.

Additionally we consider the evolution of the components z1, z20 and z40 over the

forecast and assimilation window, and observe that these states behave very differ-

ently to one another.
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Figure 3.8: The initial condition for the 40-dimensional Lorenz-95 example and
the evolution of three components for 1000 timesteps.

Perfect observations

As with the advection-diffusion equation, let us first suppose we have perfect

observations of every state in the assimilation window, we take as the background

estimate xb0, a perturbation of the ”1,0” initial condition with background covariance

B = 0.1I40, and as before, we consider a model error with covariance Q = 10−4I40.

The error ‖z∗ − z‖ between the true state z∗, and the assimilated state z, for the

timestep tN+1 immediately after the assimilation window, and the root mean square

errors for the three approaches in this example are presented in Figure 3.9.
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Figure 3.9: Error at time tN+1, and root mean squared error for the
40-dimensional Lorenz-95 system with perfect observations (r = 20).
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Chapter 3. A low-rank approach to weak constraint 4D-Var

In this example with perfect observations, as with the advection-diffusion exam-

ple, we see that the forecast obtained using LR-GMRES has a very similar level

of error throughout the window considered, to that obtained using ordinary GM-

RES, with a solution which requires 40% less storage. In the state error plot we

observe small differences between the approaches for some states, however is still

very similar.

Noisy observations

We next consider noisy observations, taking R = 0.01Ip for the observation

error covariance, and as the background error covariance Bi,j = 0.1 exp(−|i−j|
2n

). In

Figure 3.10 we consider the root mean squared errors for two different choices of

observation operator: taking interpolatory observations in every component (p = 40)

shown on the left, and in every fifth component (p = 8) on the right. In both cases,
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Figure 3.10: Root mean squared error for the 40-dimensional Lorenz-95 system
with noisy, and partial observations (r = 5, r = 1).

we see the forecast generated from the low-rank method matches that from the

full-rank very closely until timestep 400 in Figure 3.10 a), and throughout for

Figure 3.10 b). To achieve these very similar results using the low-rank approach,

despite using just 60% of the storage, is very promising.

500-dimensional Lorenz-95

Finally, we consider as a larger example, the 500 - dimensional Lorenz-95 system

with an assimilation window of 200 timesteps. This gives a full-rank update δx ∈
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3.4. Time-dependent systems

R100,000, and we consider two different choices of low-rank, r = 20 requiring 14% of

the storage, and r = 5 needing 3.5%. In this example we take noisy observations in

each state, with covariances Bi,j = 0.1 exp(−|i−j|
2n

), R = 0.01I500 and Q = 10−6I500.

These examples, shown in Figure 3.11 demonstrate further that a low-rank

approximation performs very closely to that of the full-rank solution despite taking

a smaller rank r.
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Figure 3.11: Root mean squared error for the 500-dimensional Lorenz-95 system
with full, noisy observations (r = 20, r = 5).

During the forecast window for both r = 20 and r = 5, we see the forecast

obtained from the low-rank solution results in very similar levels of RMSE for this

example, despite the large reduction in size.

Table 3.4 presents the storage requirements for the examples considered in

this section. As with the other two examples, despite the large reduction in storage

required, the experiments have shown that the low-rank approximations give similar

results to the full-rank approach, which is a very good prospect.

# of matrix elements in storage
n N p rank full-rank solution low-rank solution reduction

40 199 40 20 8,000 4,800 40%
40 199 8 20 8,000 4,800 40%
500 199 500 20 100,000 14,000 86%
500 199 500 5 100,000 3,500 96.5%

Table 3.4: Storage requirements for full- and low-rank methods in the Lorenz-95
examples.
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Chapter 3. A low-rank approach to weak constraint 4D-Var

3.5 | Conclusions

The saddle point formulation of weak constraint four-dimensional variational data

assimilation results in a large linear system which in the incremental approach is

solved to determine the update δx at every step. In this chapter we have proposed

a low-rank approach which approximates the solution to the saddle point system,

with significant reductions in the storage needed. This was achieved by considering

the structure of this saddle point system and using techniques from the theory of

matrix equations. Using the properties of the Kronecker product we showed that

low-rank solutions to the data assimilation problem exist under certain assumptions,

with numerical experimentation demonstrating that this may be the case even when

these assumptions are relaxed.

We introduced a low-rank GMRES solver and considered the requirements for

implementing this algorithm. Numerical experiments have demonstrated that the

low-rank approach introduced here is successful using both linear and nonlinear

models.

In these examples we achieved close approximations to the full-rank solutions

with storage requirements as low as 1% of those needed by the full-rank approach,

and can be obtained in less time than through GMRES. These results are very

promising, though some further investigation is needed, in particular for nonlinear

problems.

In the next chapter, we consider preconditioning approaches for the data assim-

ilation saddle point problem, and the difficulties which arise when applying precon-

ditioners to the low-rank method introduced here.
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CHAPTER 4

PRECONDITIONING THE DATA

ASSIMILATION SADDLE POINT PROBLEM

This chapter considers preconditioning the data assimilation saddle point problem

from Chapter 3. In [55] preconditioning with LR-GMRES was considered, and this

chapter extends this investigation, providing context with the traditional saddle

point problem.

4.1 | Introduction

When solving a linear systemAx = b iteratively using for example a Krylov subspace

method such as MINRES [98] or GMRES [111], convergence is usually slow.

For symmetric problems, or more generally when the matrix is normal, the (worst

case) convergence behaviour of Krylov subspace methods such as MINRES and

GMRES is completely determined by its spectrum. In the nonnormal case, the

analysis of the convergence of GMRES is more complicated and may not be related

to the eigenvalues [88].

To illustrate this, we consider MINRES, noting that GMRES and MINRES are

theoretically equivalent in exact arithmetic for symmetric problems. The relative

residual norm of this method can be written

‖rk‖
‖r0‖

≤ min
pk∈

∏
k

max
λ∈σ(A)

|pk(λ)|. (4.1)

where rk denotes the residual after k iterations,
∏

k is the set of degree k polynomials

with pk(0) = 1, and σ(A) denotes the spectrum of A.

We observe that this indicates that the iterative method will converge to the
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Chapter 4. Preconditioning the data assimilation saddle point problem

solution after s iterations if A has s distinct eigenvalues, and thus the total number

of iterations is at most the size of A. For the data assimilation saddle point problem,

this could be (2n+ p)(N + 1) iterations. As noted in [65, 140], if the eigenvalues of

A are in a small number of clusters, neither too far, nor too close to one side of the

origin, the Krylov subspace method should converge rapidly.

If more information is known about the properties of the matrix A and/or its

spectra, further convergence estimates can be computed. We refer to [65, 88] for

more discussion on this topic, and convergence bounds for GMRES.

As a result of slow convergence, we often (implicitly) transform the system into

one with more desirable properties so as to reduce the number of iterations needed

to obtain a solution. This is particularly important for GMRES, as each iteration

increases the storage requirements. A preconditioner is a matrix P which performs

this transformation, and can be applied on the left of the system (P−1Ax = P−1b)

or on the right (AP−1u = b, u = Px). It is also possible to precondition on both

sides and consider split preconditioning (P−1
1 AP−1

2 u = P−1
1 b, u = P2x). Whether to

use left-, right- or split preconditioning is problem and solving method dependent.

Here we consider right preconditioning for our problems because the residuals for the

right-preconditioned system are identical to the true residuals in exact arithmetic.

When choosing a preconditioner the aim is to improve the spectral properties of

the resulting preconditioned system, either in terms of clustering or location of the

eigenvalues or the spectral condition number of the matrix AP−1 (or indeed P−1A).

As such, the matrix P often approximates A in some sense.

The art of choosing a preconditioner is a large area of research in numerical linear

algebra. There are multiple different approaches to designing preconditioners, and

one which works well for one problem may be ineffective for another. It is very

problem dependent, and this is particularly true in saddle point problems as noted

in [14]; one must exploit the block structure, and any knowledge of the origin or

structure of the individual blocks in order to construct an effective preconditioner.

In this chapter we consider the preconditioning of the weak constraint data assim-

ilation saddle point problem we introduced in Chapter 3, and how preconditioning

strategies change when considering the low-rank method introduced there.
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4.2. Preconditioning the data assimilation saddle point problem

4.2 | Preconditioning the data assimila-

tion saddle point problem

We return to the saddle point problemD 0 L

0 R H

LT HT 0


 λµ
δx

 =

bd
0

 , (4.2)

from Chapter 3 and consider preconditioners for this problem. For the remainder of

this chapter we shall refer to the saddle point matrix in (4.2) as A.

General saddle point matrices A are often thought of as block 2× 2 matrices of

the form

A =

[
A1 BT

1

B2 C1

]
, (4.3)

where A1 ∈ Rn×n, B1, B2 ∈ Rm×n, C1 ∈ Rm×m where n ≥ m. For the saddle point

problem (4.2) we consider the partitioning

A1 =

[
D 0

0 R

]
, B1 = B2 =

[
LT HT

]
, C1 = 0.

These blocks are often referred to in the literature as the (1, 1), (1, 2) or (2, 1), and

(2, 2) blocks respectively.

Many approaches exist for preconditioning saddle point problems, a number of

which are detailed in [14, 15, 108]. However, the data assimilation setting introduces

an unusual situation where the (1, 2) block

[
L

H

]
of the saddle point matrix is more

computationally expensive than the (1, 1) block

[
D 0

0 R

]
. This is the case because

the linearised model and observation operators are present in the (1, 2) block, whilst

the (1, 1) block consists of our covariance matrices which are comparatively easier

to use. In other applications, the opposite is more typically the case, with the

matrices B2 (and BT
1 ) in (4.3) arising as a constraint, whilst the matrix A1 contains

information about the model, which may be a discretisation of a differential operator,

multiplication by a function, or a finite element mass matrix to give just a few

examples.

When constructing preconditioners for this problem we therefore do not consider

approximations to the matrices D or R, however we shall use approximations to
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Chapter 4. Preconditioning the data assimilation saddle point problem

L = IN+1 ⊗ In + C ⊗M and H = IN+1 ⊗H, namely L̃ and H̃.

A natural choice of approximation L̃ is one of the form

L̃ = IN+1 ⊗ In + C ⊗ M̃, (4.4)

where C as before is the tridiagonal matrix with −1 on the subdiagonal and M̃ is

an approximation to the linearised model operator M , thus retaining the structure

of L. We consider the simple approximation taking M̃ = In and introduce

L̂ = IN+1 ⊗ In + C ⊗ In = (IN+1 + C)⊗ In. (4.5)

We also consider the approximation L̃ = IN+1⊗ In which for convenience we denote

I for the remainder of this chapter. In Section 4.6 we consider the implementation

of more general approximations of the form (4.4).

An important tool used in saddle point preconditioners is the Schur complement

of the (1, 1) block in the saddle point matrix: S, an (N + 1)n× (N + 1)n matrix of

the form

S = −LTD−1L−HTR−1H, (4.6)

for the saddle point problem (4.2) which has the inverse

S−1 = −L−1DL−T + L−1DL−THT (R + HL−1DL−THT )−1HL−1DL−T . (4.7)

As with the matrices L and H, when using the Schur complement in practice,

we must consider approximations. One can approximate the Schur complement

separately from the other terms however here we use the approximations S̃ arising

from the approximation of L and H.

In Table 4.1 we present the approximations to L, H and S which we use in this

chapter.

L̃ H̃ S̃ S̃−1

I 0 −D−1 −D
I H −D−1 −HR−1H −D + DHT (R + HDHT )−1HD

L̂ = (IN+1 + C)⊗ In 0 −L̂TD−1L̂ −L̂−1DL̂−T

Table 4.1: Table of approximations for L̃ and H̃ and the resulting Schur
complement approximations.

Whilst we do not consider it here, in Section 4.6 we present approximations to

the Schur complement inverse using approximations to L−1.
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4.2. Preconditioning the data assimilation saddle point problem

4.2.1 | Spectral properties of the data assimila-

tion saddle point problem

As we described in Section 4.1, by preconditioning we aim to improve the spectral

properties of the resulting preconditioned system, either in terms of clustering of

the eigenvalues or the spectral condition number of the matrix AP−1. In this sec-

tion, we shall consider the spectral properties of the saddle point matrix A prior to

preconditioning.

We make use of the following result from [109] which provides eigenvalue bounds

for a class of saddle point systems, such as the data assimilation saddle point prob-

lem.

Theorem 4.1. [109] Let A be the matrix

A =

[
A1 BT

1

B1 0

]
,

with A1 ∈ Rn×n symmetric positive definite, and B1 ∈ Rn×m,m ≤ n of full rank.

We denote the largest and smallest eigenvalues of A1 µ1 and µn respectively, and

σ1, σm the largest and smallest singular values of B1. Let σ(A) be the spectrum of

A. Then

σ(A) ⊂ I− ∪ I+,

where

I− =

[
1

2

(
µn −

√
µ2
n + 4σ2

1

)
,
1

2

(
µ1 −

√
µ2

1 + 4σ2
m

)]
,

and

I+ =

[
µn,

1

2

(
µ1 +

√
µ2

1 + 4σ2
1

)]
.

We apply the above result for the data assimilation saddle point matrix.

As in Chapter 3, we consider three different model problems: the 1D advection-

diffusion example, the linearised 2D shallow water equations, and the Lorenz-95

problem. For these illustrative examples we consider an assimilation window of 30 =

N +1 timesteps for all three problems, with observations at each of these timesteps.

A state space discretisation is taken with n = 30 for the advection-diffusion and

Lorenz-95 problems, and n = 27 for the shallow water equations example. We

consider both full observations, i.e. p = n, and partial observations with p = 3.

In both scenarios we assume the observation errors have zero mean with covariance

R = 0.01Ip and for the background and model errors we have a zero mean and

covariances B = 0.01In and Q = 10−4In respectively. With the covariance matrices
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Chapter 4. Preconditioning the data assimilation saddle point problem

thus defined, when using the result from Theorem 4.1, the largest eigenvalue arising

from the covariance matrices is µ1 = 0.01, with the smallest being µn = 0.0001. For

the nonlinear Lorenz-95 example, we consider the linearisation arising in the first

inner loop of incremental 4D-Var.

Let us now consider the eigenvalues of the resulting saddle point matrix A for

these three problems with full p = n observations, and partial p = 3 observations for

the three different models. We plot the eigenvalues in Figure 4.1, and we present

in Table 4.2 the resulting bounds from Theorem 4.1.
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λ

a. Advection-diffusion (p = 30)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

λ

b. Advection-diffusion (p = 3)
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c. Shallow water equations (p = 27)
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d. Shallow water equations (p = 3)
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e. Lorenz (p = 30)
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f. Lorenz (p = 3)

Figure 4.1: Eigenvalues of A with different model operators.

We observe that the eigenstructures are similar across the three different choices

of model operator. The difference in the clustering is affected by the model op-

erator, with the advection-diffusion example resulting in a far greater number of

(numerically) distinct eigenvalues.

In contrast, reducing the number of observations reduces the clustering, with

the eigenvalues closer to zero which is highlighted in Table 4.2. Here we use

the notation AD and SWE to refer to the advection-diffusion and shallow water

equations problems respectively.

Whilst Theorem 4.1 does not distinguish between the positive eigenvalues clus-

tered near 0, and those between 1 and 2.5 in Figures 4.1 a), 4.1 c) and 4.1 e) for

the positive interval I+, the greater spread is apparent in the interval I−.

As noted above, for all of these examples, the largest eigenvalue of

[
D 0

0 R

]
is

µ1 = 0.01, with the smallest being µn = 0.0001.

As we shall see in the subsequent sections, whilst the choice of model does not

play a large role on the eigenstructure of the matrix A, it has a greater effect when

considering preconditioned systems, and the efficacy of those preconditioners when
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4.2. Preconditioning the data assimilation saddle point problem

Model σ1 σm I− I+

AD (p = 30) 2.2329 1.0014 [-2.2329, -0.9964] [0.0001, 2.2379]
SWE (p = 27) 2.2332 1.0016 [-2.2331, -0.9966] [0.0001, 2.2382]
Lorenz (p = 30) 2.2380 1.0012 [-2.2379, -0.9962] [0.0001, 2.2430]
AD (p = 3) 2.1364 0.0567 [-2.1364, -0.0519] [0.0001, 2.1415]
SWE (p = 3) 2.2337 0.0515 [-2.2336, -0.0467] [0.0001, 2.2387]
Lorenz (p = 3) 2.2295 0.0494 [-2.2295, -0.0446] [0.0001, 2.2345]

Table 4.2: Extreme singular values of [LT HT ], and eigenvalue bounds for A
with different model operators.

used in GMRES due to the clustering observed in Figure 4.1.

In the following sections we consider applying preconditioners using the approx-

imations in Table 4.1. We investigate two classes of preconditioner which are com-

monly used for saddle point problems and exploit the block structure: Schur com-

plement preconditioners, and constraint preconditioners.

4.2.2 | Schur complement preconditioners

Schur complement preconditioners are a common choice for saddle point problems.

These preconditioners make use of the Schur complement (4.6) to form matrices

which use the block structure of the original saddle point matrix and approximate

the diagonal or triangular part. Here we consider the block diagonal and block

triangular Schur complement preconditioners and approximations to the matrices

L and H in Table 4.1. Schur complement preconditioners are detailed further in

[14, 15, 108].

Block diagonal Schur complement preconditioners

The simplest Schur complement preconditioner is the block diagonal preconditioner

PD =

D 0 0

0 R 0

0 0 −S̃

 , (4.8)

where S̃ is an approximation to the Schur-complement (4.6) such as those in Ta-

ble 4.1.

Due to its simple construction and efficacy, the block diagonal Schur complement

preconditioner is a popular preconditioner, and used often for saddle point problems

arising in fluid dynamics.
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Chapter 4. Preconditioning the data assimilation saddle point problem

Applying this preconditioner to the data assimilation saddle point matrix allows

MINRES to be used. However for the purposes of this thesis we apply GMRES

to compare the different preconditioners considered. In the full-rank case, GMRES

and MINRES are theoretically equivalent in exact arithmetic.

Analysis of the block diagonal Schur complement pre-

conditioners

When applying the block diagonal Schur complement preconditioner to the data

assimilation saddle point problem, the resulting preconditioned matrix AP−1 is of

the form

AP−1 =

D 0 L

0 R H

LT HT 0


D

−1 0 0

0 R−1 0

0 0 −S̃−1

 =

 I 0 −LS̃−1

0 I(N+1)p −HS̃−1

LTD−1 HTR−1 0

 .
(4.9)

When taking the exact matrices S, L and H for the approximations S̃, L̃ and H̃

respectively, the resulting preconditioned system has three distinct eigenvalues as

we observe in Figure 4.2.

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

λ

Figure 4.2: Eigenvalues of AP−1 using the block diagonal Schur complement
preconditioner with the exact Schur complement.

Here we see that the eigenvalues of the preconditioned saddle point matrix irre-

spective of model operator consist of three distinct points, 1, 1
2
(1+
√

5) and 1
2
(1−
√

5)

as proved in [39, 97]. For this scenario, MINRES (or GMRES) converge in at most

three steps. However in general, we must consider approximations to S which re-

duces the efficacy of the preconditioner.

Block triangular Schur complement preconditioners

An alternative Schur complement preconditioner is the block triangular Schur com-

plement preconditioner, which unlike the block diagonal one above necessitates the
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4.2. Preconditioning the data assimilation saddle point problem

use of GMRES. The block triangular preconditioner is of the form:

PT =

D 0 L̃

0 R H̃

0 0 S̃

 , (4.10)

where here as with the block diagonal preconditioner, we consider approximations

to L, H, and the Schur complement S.

Triangular preconditioners are among the most effective preconditioners [14],

with the first two block rows of P coinciding with A when exact L and H are

chosen.

Analysis of the block triangular Schur complement pre-

conditioners

When applying the block triangular Schur complement preconditioner to the

data assimilation saddle point problem, the resulting preconditioned matrix AP−1

is of the form

AP−1 =

D 0 L

0 R H

LT HT 0


D

−1 0 −D−1L̃S̃−1

0 R−1 −R−1H̃S̃−1

0 0 S̃−1



=

 I 0 (L− L̃)S̃−1

0 I(N+1)p (H− H̃)S̃−1

LTD−1 HTR−1 (−LTD−1L̃−HTR−1H̃)S̃−1

 , (4.11)

where we observe that unlike the diagonal Schur complement preconditioner, we

retain a term containing L̃ in P−1, in addition to the L̃−1 arising from S̃−1.

When we consider taking exact matrices S, L and H for the approximations S̃, L̃

and H̃ respectively, the resulting preconditioned system has one distinct eigenvalue

as we observe in Figure 4.3.

0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05

λ

Figure 4.3: Eigenvalues of AP−1 using the block triangular Schur complement
preconditioner with the exact Schur complement.

The spectrum here is precisely {1}, however the matrix (4.11) (with exact L̃,

H̃, S̃) is not diagonalisable [14]. If in (4.10), S̃ is replaced with −S̃, the resulting
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Chapter 4. Preconditioning the data assimilation saddle point problem

preconditioned system has two distinct eigenvalues for S̃ = S, and is diagonalisable.

However this approach is using the exact Schur complement preconditioner, in

practice approximations must be taken for L and H as presented in Table 4.1.

4.2.3 | Inexact constraint preconditioners

An alternative class of preconditioners are constraint preconditioners. Constraint

preconditioners arise from the idea that the preconditioning matrix should have the

same block structure as the original saddle point matrix. It is extensively used in

the solution of saddle point systems particularly those arising from elliptic PDEs.

Here we consider the inexact constraint preconditioner [16, 17, 18], a modification

which has an inexact (1, 2) block. In [50, 53] it is noted that this makes for an

effective choice of preconditioner to account for the more expensive (1, 2) block in

the data assimilation setting:

P =

D 0 L̃

0 R H̃

L̃T H̃T 0

 , (4.12)

provided good approximations are chosen for L̃ and H̃. However, this (as with the

data assimilation saddle point matrix itself) is an indefinite matrix, and thus using

an inexact constraint preconditioner requires the use of GMRES since the resulting

preconditioned system is non-symmetric.

Analysis of the inexact constraint preconditioners

Applying the inexact constraint preconditioner to the data assimilation sad-

dle point problem, the eigenvalues of the resulting preconditioned matrix can be

bounded using the following result from [17, 18].

Corollary 4.2. [17, 18] Let A and P be the matrices

A =

[
A1 BT

1

B1 0

]
, and P =

[
A1 B̃1

T

B̃1 0

]
,

respectively and assume that B̃1 has maximum rank. The eigenvalues λ of P−1A

are either one or bounded by

|λ− 1| ≤ ‖(B1 − B̃1)A
−1/2
1 ‖

σ̃1

,
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4.2. Preconditioning the data assimilation saddle point problem

where σ̃1 is the smallest singular value of B̃1A
−1/2
1 , and ‖ · ‖ denotes any norm.

Applying this result to the data assimilation saddle point problem, we obtain

that the eigenvalues λ of the matrix

D 0 L̃

0 R H̃

L̃T H̃T 0


−1 D 0 L

0 R H

LT HT 0

 (4.13)

are either one, or bounded by

|λ− 1| ≤

∥∥∥[(LT − L̃T )D−1/2 (HT − H̃T )R−1/2
]∥∥∥

σ̃1

,

where σ̃1 is the smallest singular value of
[
L̃TD−1/2 H̃TR−1/2

]
.

In [53], it is shown that when considering the exact approximation L̃ = L, and

taking H̃ = 0, the resulting preconditioned system has eigenvalues

τ = 1±
√
vTHL−1DL−THTv

vTRv
i,

where v ∈ R(N+1)p. Using the properties of the Rayleigh quotient, we know that

the eigenvalues are on a line parallel to the imaginary axis through 1, where the

maximum distance from the real axis is given by√
λmax(HL−1DL−THT )

λmin(R)
.

In Figure 4.4, we plot the imaginary part of the eigenvalues of AP−1 for the

advection-diffusion example with full and partial observations as described in Sec-

tion 4.2.1.

4.2.4 | Spectral properties of the preconditioned

data assimilation saddle point problem

Let us now investigate the spectra of the preconditioned data assimilation saddle

point problem for the advection-diffusion example using the approximations for L,H

and S in Table 4.1. We consider the problem as described in Chapter 3, with

the same dimensions as in Figure 4.1, an assimilation window of 30 = N + 1

timesteps with a state space discretisation using n = 30. We consider both full,
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Figure 4.4: Eigenvalues of AP−1 using the inexact constraint preconditioner
with L̃ = L, H̃ = 0.

i.e. p = n, and partial observations with p = 3. For both scenarios we assume

the background, observation and model errors have zero mean with covariances

B = 0.01In, R = 0.01Ip and Q = 10−4In respectively.

In this section we focus only on the spectra of the preconditioned system using

the advection-diffusion example. The shallow water equations and Lorenz examples

as presented in Figure 4.1 are qualitatively similar.

Full observations

Prior to preconditioning, the spectra of A is presented in Figure 4.5. There

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

λ

Figure 4.5: Eigenvalues of A with full observations.

are three distinct groupings of eigenvalues, those near zero, and in the intervals

approximately [−2.25,−1] and [1, 2.25] (see Table 4.2).

Block diagonal Schur complement preconditioner

Applying the block diagonal Schur complement preconditioners to this problem

with the approximations from Table 4.1, we obtain the spectra in Figure 4.6. We

observe that including the exact observation matrix H results in slightly less spread

eigenvalues, but qualitatively the spectra for this preconditioned problem is similar

to taking L̃ = I and H̃ = 0. Taking the approximation L̃ = L̂ we observe that the

cluster of eigenvalues with larger magnitude are spread over a larger interval than

in the previous two preconditioned systems.
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−20 −15 −10 −5 0 5 10 15 20

λ

a. L̃ = I and H̃ = 0

−20 −15 −10 −5 0 5 10 15 20

λ

b. L̃ = I and H̃ = H

−20 −15 −10 −5 0 5 10 15 20

λ

c. L̃ = L̂ and H̃ = 0

Figure 4.6: Eigenvalues of AP−1 with full observations using the block diagonal
Schur complement preconditioner.

Block triangular Schur complement preconditioner

When using the block triangular Schur complement preconditioner, we observe

that the behaviour of the spectra taking L̃ = I returns similar results irrespective

of choosing H̃ = 0 or H̃ = H. In contrast, we observe in Figure 4.7 taking the

approximation L̃ = L̂, the eigenvalues of the preconditioned system are further away

from 0 and there are an arc of eigenvalues from approximately 1±−5i to 3.5±−20.

These eigenvalues are more spread out with more distinct clusters.
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Figure 4.7: Eigenvalues of AP−1 with full observations using the block
triangular Schur complement preconditioner.

Inexact constraint preconditioner

The eigenvalues of the preconditioned system using the inexact constraint precon-

ditioner are considered in Figure 4.8. We observe that taking the approximation

L̃ = I, the eigenvalues are in a circle of radius 1 centred at 1 + 0i, with n = 30
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’spokes’ 0.3 long on either side of the real axis and an eigenvalue at 1. In contrast,

the eigenvalues for the L̃ = L̂ scenario result in a very different structure. Here we

observe a cluster of eigenvalues in arcs with Re(λ) ≈ 1, in addition to two arcs of

eigenvalues from ±6 + i to ±6 + 5i.
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Figure 4.8: Eigenvalues of AP−1 with full observations using the inexact
constraint preconditioner.

Partial observations

We now consider the different resulting spectra if we take partial observations rather

than observations of every state, as before, here we consider 10% observations. Prior

to preconditioning, the spectra of A is presented in Figure 4.9. The eigenvalues

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

λ

Figure 4.9: Eigenvalues of A with partial (p = 3) observations.

for the problem with partial observations has less clustering than the full observation

example. As seen in Table 4.2, the eigenvalues are spread across the whole range

[−2.2, 2.2], as a result, we expect the convergence of GMRES to be worse for the

observation examples which we consider in Section 4.3.

Block diagonal Schur complement preconditioner

When we consider the difference between the spectra of the block diagonal Schur

complement preconditioned system for the system with full observation and the

partial observations here in Figure 4.10, we observe that the spread of the spectra

with partial observations is much greater. Considering the approximation with

L̃ = I, the largest magnitude eigenvalue is approximately 100 in contrast to 10
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in Figure 4.6. We observe some clustering with the addition of the observation

operator H, however the spectra are qualitatively similar. Taking L̃ = L̂ the spectra

is spread over a larger interval [−160, 160], though with a relatively small number

of distinct eigenvalues.
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Figure 4.10: Eigenvalues of AP−1 with partial observations using the block
diagonal Schur complement preconditioner.

Block triangular Schur complement preconditioner

For the block triangular Schur complement preconditioner, the spectra of the

preconditioned system is similar for the full and partial observations for the eigen-

values with Im(λ) < 2. However for those with Im(λ) > 2 in the full observations

example, the corresponding eigenvalues are significantly larger in Figure 4.11.
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Figure 4.11: Eigenvalues of AP−1 with partial observations using the block
triangular Schur complement preconditioner.
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Inexact constraint preconditioner

As with the full observation example, the spectra of the preconditioned systems

using the inexact constraint preconditioner with the approximation L̃ = I are in

a circle of radius 1 centred at 1 + 0i, although here in Figure 4.12 there is less

clustering, with a greater number of distinct eigenvalues and less structure than in

Figure 4.8. Taking L̃ = L̂, the behaviour of the spectra is very different to the full

observations example, and we see many distinct eigenvalues with majority of these

clustered around 1 + i.

0 0.5 1 1.5 2 2.5 3 3.5
−6

−4

−2

0

2

4

6

Re(λ)

Im
(λ
)

a. L̃ = I and H̃ = 0

0 0.5 1 1.5 2 2.5 3 3.5
−6

−4

−2

0

2

4

6

Re(λ)

Im
(λ
)

b. L̃ = I and H̃ = H

0 0.5 1 1.5 2 2.5 3 3.5
−6

−4

−2

0

2

4

6

Re(λ)

Im
(λ
)

c. L̃ = L̂ and H̃ = 0

Figure 4.12: Eigenvalues of AP−1 with partial observations using the inexact
constraint preconditioner.

Summary

From the spectra of the preconditioned systems we have observed in this section,

we see that considering the data assimilation saddle point problem with partial

observations results in significantly less clustering for the eigenvalues of the precon-

ditioned systems. This results in a harder problem, and we expect to observe the

examples with partial observations in the following section needing more iterations

to reach convergence than when taking full observations.

For each of the three types of preconditioner considered in this section, we have

observed that applying the approximation L̃ = L̂ results in greater clustering of

the eigenvalues of the preconditioned systems. The structure of the spectra is quite

different to that obtained when considering the approximation L̃ = I. Similar

spectra for taking H̃ = 0 and H̃ = H is observed, with slightly tighter clustering

when including H̃ = H. As such we would expect to see a slight improvement in

the efficacy of the preconditioner when using H̃ = H in the following numerical

examples.
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4.3 | Numerical results

Let us now compare these preconditioners using the approximations from Table 4.1

for L and H. In this section we consider the three examples from Chapter 3 and

in the preceding sections: the 1D advection-diffusion example, the linearised 2D

shallow water equations, and the Lorenz-95 problem.

For these examples, as above, we consider an assimilation window of 30 = N + 1

timesteps for all three problems, taking a state space discretisation using n = 30 for

the advection-diffusion and Lorenz-95 problems, and n = 27 for the shallow water

equations example. Furthermore, we assume the background, observation and model

errors have zero mean with covariances B = 0.01In, R = 0.01Ip and Q = 10−4In

respectively. We consider both full observations, i.e. p = n, and partial observations

with p = 3.

As we saw in Section 4.2, when using the exact Schur complement in the Schur

complement preconditioners, we would expect GMRES to converge in three or less

iterations [14, 97]. However we are using the approximations presented in Table 4.1

and as such will not achieve such fast convergence.

In the following sections we present the norm of the residual computed in GMRES

at each iteration for the different choices of preconditioner.

4.3.1 | Advection-diffusion

As our first example we present the advection-diffusion problem as introduced in

Section 3.3.1. We take a state space discretisation of n = 30 with N + 1 = 30

timesteps which results in a saddle point system of size (1800 + 30p)× (1800 + 30p).

Full observations

In Figure 4.13, we compare the convergence of GMRES for the different precon-

ditioners using the advection-diffusion example with full observations which results

in a 2700× 2700 matrix.

We see that for the first 50 iterations, using no preconditioner leads to the best

convergence, at which point the inexact constraint preconditioner with L̃ = L̂, H̃ = 0

achieves a lower residual.

Here we see that for all three types of preconditioner the best results are obtained

for L̃ and H̃ are taking L̃ = L̂ and H̃ = 0. Indeed, taking L̃ = I we see similar plots

for the convergence with or without the inclusion of H. This is not unexpected,
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Figure 4.13: GMRES residual with different preconditioners for the 2700× 2700
advection-diffusion example with full observations.

as we saw in Section 4.2.4, the spectra for the preconditioned problem when using

L̃ = I was very similar irrespective of the choice of H̃. For the inexact constraint

preconditioner, taking H̃ = H does result in a slight improvement over using H̃ = 0

however it is not as significant as considering L̃ = L̂ as some model information is

included using this approximation.

The two Schur complement preconditioners with L̃ = L̂ are slightly less effective

than the inexact constraint preconditioners with L̃ = I, and all result in higher

residuals than not using a preconditioner for the first 120 iterations, however after

this number of iterations, the Schur complement preconditioners converge faster.

Partial observations

Let us now consider partial observations. Here we keep the rest of the example

as before, but take 10% (p = 3) observations. The corresponding observation error

covariance matrix we take to be R = 0.01Ip as before.

We observe that the convergence for this problem with no preconditioner is

significantly slower than the previous example. Taking partial observations results

in a harder problem in Figure 4.14 than Figure 4.13. We observed in Section 4.2.4

that there is less clustering of the eigenvalues for the partial observation case which

typically results in slower convergence of methods such as GMRES. Whilst in the

previous example, the residual for the unpreconditioned problem was 10−4 after 400

iterations, here it takes approximately 1200 to reach the same level, despite being a
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Figure 4.14: GMRES residual with different preconditioners for the 1890× 1890
advection-diffusion example with partial observations.

smaller problem size. This is not too surprising given the eigenstructure observed in

Section 4.2.4, where the eigenvalues of the system were spread over a larger interval,

and closer to 0.

The Schur complement preconditioners with L̃ = I are ineffective in comparison

to the other preconditioners presented here, taking over 900 iterations for the residual

to be smaller than 10−6, and over 500 iterations to be more effective than not using

a preconditioner.

As with the previous example, the most effective preconditioner is the inexact

constraint preconditioner taking the approximation L̃ = L̂, with the residual reach-

ing 10−6 after only 50 iterations. This is more effective than the example with full

observations. The other approximations for the inexact constraint preconditioner

are also effective for the first 100 iterations, at which point the two Schur comple-

ment preconditioners with L̃ = L̂ result in slightly lower residuals.

4.3.2 | Shallow water equations

We now consider the two dimensional shallow water equations example from Sec-

tion 3.3.2. To obtain a similarly sized example as above, we take a state space

discretisation of n = 27 with N + 1 = 30 timesteps resulting in a saddle point

system of size (1620 + 30p)× (1620 + 30p).
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Full observations

As before we first consider full (p = 27) observations, resulting in a saddle point

matrix of size 2430× 2430.
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Figure 4.15: GMRES residual with different preconditioners for the 2430× 2430
shallow water equations example with full observations.

In the shallow water equations example in Figure 4.15 we see that the conver-

gence of GMRES is significantly faster than the advection-diffusion example with

full observations. Here the residual for the unpreconditioned problem reaches 10−6

after only 200 iterations. As with the advection-diffusion examples we see that

taking the approximation L̃ = I results in similar convergence rates for the precon-

ditioners, irrespective of the inclusion of H̃ = H in contrast to 0. The residuals for

these six preconditioners stagnate with little change for the first 50 iterations before

a significant drop in the residual.

The three preconditioners where we take the approximation L̃ = L̂ result in

very similar convergence to one another, with the inexact constraint preconditioner

marginally superior, all three achieving a residual smaller than 10−6 after only 20

iterations. Despite this, for the first 5 iterations there is no improvement in the

residual over using no preconditioner.

Partial observations

Let us now consider partial observations for the SWE example taking p = 3,

with the rest of the example as before. This gives a saddle point matrix of size
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1701× 1701.
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Figure 4.16: GMRES residual with different preconditioners for the 1701× 1701
shallow water equations example with partial observations.

As with the advection-diffusion example, here taking partial observations results

in a harder problem, and thus more iterations needed as the eigenvalues are less

clustered than the problem in Figure 4.16. We observe that as in the previous

example, all three preconditioners taking the approximation L̃ = L̂ are equally

the most effective, taking only 20 iterations to achieve a residual of 10−6. The

remaining inexact constraint preconditioners are marginally less effective than in the

full observations example, however have a more gradual reduction in the residual. In

contrast the two Schur complement preconditioners with the approximation L̃ = I

are significantly less effective in the partial observations setting of Figure 4.16,

with both less effective than no preconditioner for the first 160 iterations.

The efficacy of the approximation L̃ = L̂ for the shallow water equations example

is likely due to the closeness of the eigenvalues of the model matrix M to 1 as seen

in Figure 3.5 b). The inexact constraint preconditioner with this approximation

achieved the best results for the shallow water equations examples.

4.3.3 | Lorenz system

For our final example, let us consider the nonlinear Lorenz-95 system example we

considered in Section 3.4.2. As with the advection-diffusion example, we take n = 30

states, and N + 1 = 30 assimilation timesteps, with the covariance matrices as in
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our previous examples, resulting in a saddle point system of size (1800 + 30p) ×
(1800 + 30p).

This is a nonlinear example and as such requires multiple inner loops during

incremental 4D-Var. We consider the first linearisation, and use this to illustrate the

behaviour of applying preconditioned GMRES to the linear system for the following

examples.

Full observations

Taking full (p = 30) observations at each timestep, the size of the saddle point

matrix is 2700×2700 and the residuals for GMRES with the different preconditioners

and approximations are given in Figure 4.17.
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Figure 4.17: GMRES residual with different preconditioners for the 2700× 2700
Lorenz-95 example with partial observations.

In this example, as with the shallow water equations example, the three precon-

ditioners with the approximation L̃ = L̂ result in similar convergence plots, and are

significantly better than the alternatives presented here. Although once again, for

the first 20 iterations, using no preconditioner results in the smallest residual. The

remaining preconditioners taking the approximation L̃ = I are less effective than

not using a preconditioner to begin with, but ultimately do obtain a lower residual.
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Partial observations

As our final example, we consider the Lorenz system with partial (p = 3) ob-

servations resulting in a saddle point system of size 1890 × 1890. This is a harder

problem than the full observations example above despite the smaller size, due to

the reduced clustering of the eigenvalues when considering partial observations as

seen in Section 4.2.4.
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Figure 4.18: GMRES residual with different preconditioners for the 1890× 1890
Lorenz-95 example with partial observations.

Here we observe that the most effective preconditioner in Figure 4.18, as with all

our previous examples, is the inexact constraint preconditioner with the approxima-

tion L̃ = L̂ and H̃ = 0. The block triangular, and block diagonal Schur complement

preconditioners with the same approximations are similarly effective, and take less

than 100 iterations to reach a residual of 10−6. The remaining inexact constraint

preconditioners are slightly more effective for the partial observations Lorenz exam-

ple here than the full observations above, however is initially worse than not using

a preconditioner.

The four Schur complement preconditioners with L̃ = I are all significantly less

effective than in the full observations example, and have a higher residual than not

applying a preconditioner for the first 300 timesteps
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4.3.4 | Summary

From these examples we see that across all different examples considered, the most

effective preconditioner was the inexact constraint preconditioner with the approx-

imations L̃ = L̂ = (IN+1 + C) ⊗ In and H̃ = 0. The block triangular and block

diagonal Schur complement preconditioners with these approximations were the next

most effective, although in the advection-diffusion example, there was a larger dif-

ference between these and the inexact constraint preconditioner.

The inclusion of the true observation operator, taking H̃ = H did not appear to

make a large difference on the efficacy of the preconditioners when using the approx-

imation L̃ = I, particularly when applying the Schur complement preconditioners.

It was the Schur complement preconditioners with the approximation L̃ = I which

were the least effective. The two inexact constraint preconditioners with L̃ = I were

more effective compared to the other approaches when considering the partial obser-

vations. In these examples, the inexact constraint preconditioners with L̃ = I were

closer to the performance of the Schur complement preconditioners with L̃ = L̂,

during the initial iterations.

When considering partial observations, we see that the number of iterations

needed for the residual to be 10−6 is significantly larger when not applying a pre-

conditioner, which matches with the greater spread in eigenvalues observed in Fig-

ure 4.1. This reduction in efficacy is also apparent for the Schur complement

preconditioners with the approximation L̃ = I. The remaining preconditioners were

less affected by the reduction in observations, and we observed similar plots for

the residuals. Generally, as observed in Figures 4.13-4.18, the inexact constraint

preconditioner with the approximations L̃ = L̂ and H̃ = 0 worked most effectively.

In the next sections we shall see how the efficacy of the preconditioners changes

when solving the data assimilation saddle point problem using the low-rank GMRES

from Chapter 3 rather than GMRES as used here.

4.4 | Preconditioning the data assimila-

tion saddle point problem for low-

rank GMRES

The low-rank GMRES method introduced in Chapter 3 brings new requirements to

consider when implementing preconditioners.

In order to maintain the low-rank structure we wish to write the preconditioned
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GMRES

problem in Kronecker form, however we must also consider the inverse of the precon-

ditioner which must be written in Kronecker form as well. It is the implementation

of the inverse in Kronecker form which allows us to write this as a simple matrix

multiplication as in (3.41) for the saddle point matrix.

We recall from Chapter 3, the matrices within the saddle point matrix can be

written in Kronecker form as follows:

D = E1 ⊗B + E2 ⊗Q,
R = I ⊗R,
H = I ⊗H,
L = I ⊗ I + C ⊗M.

The approximations introduced in the first half of this chapter can be written in

Kronecker form, and in Table 4.3 we present the Kronecker forms for the approxi-

mations to L, H and S−1 introduced in Table 4.1. Here L̂ = (IN+1 +C)⊗In as pre-

viously. Furthermore we define the matrices FB = HBHT+R and FQ = HQHT+R.

L̃ H̃ S̃−1

I 0 −E1 ⊗B − E2 ⊗Q
I H E1 ⊗ (−B +BHTF−1

B HB) + E2 ⊗ (−Q+QHTF−1
Q HQ)

L̂ 0 −(I + C)−1E1(I + C)−T ⊗B − (I + C)−1E2(I + C)−T ⊗Q

Table 4.3: Table of approximations for L̃ and H̃ and the resulting Schur
complement inverse in Kronecker form.

If we consider a more general approximation L̃ to L, of the form L̃ = IN+1⊗In+

C ⊗ M̃ , the resulting inverse in Kronecker form contains a large number of terms,

and hence we must consider truncation to tractably apply the inverse. In Section 4.6

we consider the exact L and approximate the inverse through truncation.

As noted above, we wish to implement the inverse of the preconditioner in Kro-

necker form in order to apply the preconditioner through simple matrix multiplica-

tion as in (3.41). This is implemented within LR-GMRES (Algorithm 1) as the

Aprec function.

To illustrate a possible choice of the this Aprec function, we consider the block
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diagonal Schur complement preconditioner with L̃ = I, H̃ = 0

P−1 =

D
−1 0 0

0 R−1 0

0 0 −S̃−1



=

E1 ⊗B−1 + E2 ⊗Q−1 0 0

0 IN+1 ⊗R−1 0

0 0 E1 ⊗B + E2 ⊗Q

 .
The application of this P−1 using simple matrix multiplication is shown in Algo-

rithm 4.

Algorithm 4: Block diagonal Schur complement preconditioner L̃ = I, H̃ = 0
(Aprec)

Input: W11,W12,W21,W22,W31,W32

Output: Z11, Z12, Z21, Z22, Z31, Z32

Z11 = [B−1W11, Q−1W11],
Z12 = [E1W12, E2W12],
Z21 = R−1W21,
Z22 = W22,
Z31 = [BW31, QW31],
Z32 = [E1W32, E2W32]

An alternative method for implementing the Schur complement approximation

S̃ = −L̃D−1L̃, with a L̃ of the form (I ⊗ I + C ⊗ M̃), whilst retaining a low-rank

form is detailed in [125]. There the relationship between the Kronecker product

and Sylvester equations is exploited. In order to solve −S̃Z31Z
T
32 = W31W

T
32, the

Kronecker form

(I⊗I+CT⊗M̃T )(E1⊗B−1+E2⊗Q−1)(I⊗I+C⊗M̃)vec
(
Z31Z

T
32

)
= vec

(
W31W

T
32

)
,

is written as two consecutive Sylvester equations. These resulting Sylvester equa-

tions are solved one after the other using a low-rank solver such as an ADI [10, 13]

or Krylov [117] method to generate a low-rank approximation X31X
T
32. However we

do not employ this approach here.

4.5 | Low-rank numerical results

Let us now compare the preconditioners introduced in Section 4.2 using LR-GMRES.

In this section we consider the same three examples from Section 4.3: the 1D
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advection-diffusion example, the linearised 2D shallow water equations, and the

Lorenz-95 problem.

For these examples, we consider an assimilation window of 30 = N +1 timesteps

for all three problems, taking a state space discretisation with n = 30 for the

advection-diffusion and Lorenz-95 problems, and n = 27 for the shallow water equa-

tions example. The background, observation and model errors are assumed to have

zero mean with covariances B = 0.01In, R = 0.01Ip and Q = 10−4In respectively.

As before we consider both full observations, i.e. p = n, and partial observations

with p = 3.

In the following sections we present the norm of the residual computed in LR-

GMRES at each iteration for the different choices of preconditioner. As in Sec-

tion 3.3, we consider different ranks for the method, taking r = 20 and r = 5.

4.5.1 | Advection-diffusion

For our first example we present the advection-diffusion problem as introduced in

Section 3.3.1. We take a state space discretisation of n = 30 with N + 1 = 30

timesteps which results in a saddle point system of size (1800 + 30p)× (1800 + 30p),

and an update vector δx with 900 entries, the low-rank solutions will have 60r entries

in total. We note that due to the small illustrative problem size, the solution itself

has a larger number of matrix entries for r = 20, but is still a lower rank.

Full observations

Let us first consider taking full observations for this example. In Figure 4.19

we present the LR-GMRES residuals for r = 20 and r = 5.

The first observation we make from these figures is that majority of methods

appear to stagnate in terms of lowering the LR-GMRES residual after a number of

iterations. This is likely due to the truncation within the LR-GMRES algorithm.

During LR-GMRES, the truncation process selects only the most important modes,

e.g. the ones belonging to larger eigenvalues, ignoring the smaller ones. Therefore,

the low-rank approach itself acts like a regularisation, and hence in some sense like

a projected preconditioner.

For both choices of r, the most effective preconditioners are the inexact constraint

preconditioners, however the approximation L̃ = L̂ works better in the rank 5 exam-

ple, whilst taking L̃ = I is more effective in the larger r = 20 case. The remaining

preconditioners do not see significant improvement in the level of the residual, with

only small improvements over the 500 iterations consider in Figure 4.19. This is
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Diagonal SC L̃ = L̂, H̃ = 0 Triangular SC L̃ = L̂, H̃ = 0 Inexact constraint L̃ = L̂, H̃ = 0

Figure 4.19: LR-GMRES residual with different preconditioners for the
2700× 2700 advection-diffusion example with full observations

(r = 20, r = 5).

likely due to the stagnation mentioned above. For this problem and the precondi-

tioners we considered here, the most effective choice of preconditioner is not applying

one, with the low-rank approach itself acting like a projected preconditioner.

Partial observations

We now consider partial observations for the advection-diffusion example, taking

p = 3 observations at each timestep.
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b. r = 5

No preconditioner Diagonal SC L̃ = I, H̃ = 0 Triangular SC L̃ = I, H̃ = 0 Inexact constraint L̃ = I, H̃ = 0

Diagonal SC L̃ = I, H̃ = H Triangular SC L̃ = I, H̃ = H Inexact constraint L̃ = I, H̃ = H

Diagonal SC L̃ = L̂, H̃ = 0 Triangular SC L̃ = L̂, H̃ = 0 Inexact constraint L̃ = L̂, H̃ = 0

Figure 4.20: LR-GMRES residual with different preconditioners for the
1890× 1890 advection-diffusion example with partial observations

(r = 20, r = 5).

In Figure 4.20 we see that the efficacy of preconditioners is significantly better

84



4.5. Low-rank numerical results

taking r = 20 over r = 5. For both choices of rank we see that the Schur comple-

ment preconditioners are not effective and result only in a minor improvement of

the residual. As in Figure 4.19 we observe stagnation of the residuals, for some

preconditioning approaches this occurs sooner than others. The inexact constraint

preconditioner with the approximation L̃ = L̂ is initially the most effective choice

of preconditioner for the r = 20 example, however stagnates after 50 iterations,

whilst taking r = 5 the reduction in the residual is more gradual using this pre-

conditioner. The two inexact constraint preconditioners with L̃ = I exhibit similar

behaviour to one another for both examples, however the inclusion of H̃ = H causes

the stagnation of the approach to occur at a different level of residual.

As with the GMRES example in Figure 4.14, we see that initially no pre-

conditioner is most effective for the first 20 iterations, at which point the inexact

constraint preconditioner taking the approximation L̃ = L̂ has the best convergence

when considering r = 20. For the r = 5 example, the low-rank method acting like

a projected preconditioner means we observe that using no preconditioner is most

effective choice.

4.5.2 | Shallow water equations

We now consider the two dimensional shallow water equations example from Sec-

tion 3.3.2. Taking the same dimensions as in Section 4.3.2, we have a state space

discretisation of n = 27 with N + 1 = 30 timesteps.

Full observations

As before we first consider full (p = 27) observations, with two choices of rank

r = 20 and r = 5.

Here we observe similar behaviour to the advection-diffusion example with full

observations, with majority of the preconditioners being less effective than consid-

ering the unpreconditioned saddle point system. The exception here is the inexact

constraint preconditioner with the approximation L̃ = L̂ for the r = 20 example

in Figure 4.21 a), where the preconditioned system achieves a lower residual af-

ter 40 iterations of LR-GMRES. The remaining preconditioners which see a slight

improvement stagnate at a similar residual to one another for both choices of r.
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Figure 4.21: LR-GMRES residual with different preconditioners for the
2430× 2430 shallow water equations example with full observations

(r = 20, r = 5).

Partial observations

In Figure 4.22 we consider partial observations for the shallow water equations

example, taking p = 3 observations at each timestep.
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b. r = 5

No preconditioner Diagonal SC L̃ = I, H̃ = 0 Triangular SC L̃ = I, H̃ = 0 Inexact constraint L̃ = I, H̃ = 0

Diagonal SC L̃ = I, H̃ = H Triangular SC L̃ = I, H̃ = H Inexact constraint L̃ = I, H̃ = H

Diagonal SC L̃ = L̂, H̃ = 0 Triangular SC L̃ = L̂, H̃ = 0 Inexact constraint L̃ = L̂, H̃ = 0

Figure 4.22: LR-GMRES residual with different preconditioners for the
1701× 1701 shallow water equations example with partial

observations (r = 20, r = 5).

Here we observe the most effective results for preconditioning the LR-GMRES

method. We see that applying the inexact constraint preconditioner with the ap-

proximation L̃ = L̂ and H̃ = 0 converges to a level of 10−6 in 20 iterations for

the r = 20 example, and 10−4 for the r = 5 case (at which point it stagnates).

The other two inexact constraint preconditioners are also effective, though taking a
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greater number of iterations, and not reaching a residual as small before stagnation.

In Figure 4.22 a) we also witness an improvement of the block triangular Schur

complement preconditioner taking L̃ = L̂, however it is still less effective than not

applying a preconditioner. Initially no preconditioner results in the best conver-

gence for the first 10 iterations, at which point the inexact constraint preconditioner

achieves a lower residual.

4.5.3 | Lorenz system

For our final example, we again consider the nonlinear Lorenz-95 system introduced

in Section 3.4.2. As before, we take n = 30 states, and N + 1 = 30 assimilation

timesteps.

For this example we consider the first linearisation used in incremental 4D-Var

as in Section 4.3.3, and use this to investigate applying preconditioners within LR-

GMRES to the linear system for the following examples.

Full observations

Taking full (p = 30) observations at each timestep, we consider the residuals

obtained by applying the different preconditioners and approximations L̃ and H̃ to

the saddle point problem solved using LR-GMRES in Figure 4.23.
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Figure 4.23: LR-GMRES residual with different preconditioners for the
2700× 2700 Lorenz-95 example with full observations (r = 20,

r = 5).

Here, as with the full observations examples for the advection-diffusion and shal-

low water equations problems, we see that the preconditioning approaches all stag-
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nate quite early, with no method resulting in significant improvements to the resid-

ual. The preconditioners using the approximation L̃ = L̂ provide the lowest residuals

of the preconditioned problems, however not applying a preconditioner is as with

the advection-diffusion example in Figure 4.19 the most effective choice.

Partial observations

Let us now consider partial (p = 3) observations for the Lorenz problem. We

present the residuals for LR-GMRES applying different preconditioners in Fig-

ure 4.24.
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b. r = 5

No preconditioner Diagonal SC L̃ = I, H̃ = 0 Triangular SC L̃ = I, H̃ = 0 Inexact constraint L̃ = I, H̃ = 0

Diagonal SC L̃ = I, H̃ = H Triangular SC L̃ = I, H̃ = H Inexact constraint L̃ = I, H̃ = H

Diagonal SC L̃ = L̂, H̃ = 0 Triangular SC L̃ = L̂, H̃ = 0 Inexact constraint L̃ = L̂, H̃ = 0

Figure 4.24: LR-GMRES residual with different preconditioners for the
1890× 1890 Lorenz-95 example with partial observations (r = 20,

r = 5).

The residuals in this example display similar behaviour to the other examples we

have considered. The Schur complement preconditioners are not effective for this

problem, stagnating and not improving significantly from the first few iterations.

Initially the most effective preconditioner is the inexact constraint preconditioner

with the approximation L̃ = L̂ for both the r = 5 and r = 20 examples, however

for the smaller choice of rank, the preconditioner stagnates after fewer iterations of

LR-GMRES. For the first few iterations however, applying no preconditioner returns

the smallest residual. The two remaining inexact constraint preconditioners both

achieved similar levels of residual to taking L̃ = L̂, however they required a larger

number of iterations to reach that level.
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4.5.4 | Summary

In this section we have considered several preconditioner approaches for LR-GMRES

applied to three different examples. In these examples we see that preconditioning

is not as effective for LR-GMRES as in the GMRES examples in Section 4.3. This

is largely due to the truncation steps within LR-GMRES. In these steps, only the

most important modes are selected e.g. the ones belonging to larger eigenvalues,

ignoring the smaller ones. Therefore, the low-rank approach loses some information.

The preconditioners which were most affected by this were the Schur complement

preconditioners, for both the block diagonal and block triangular Schur complement

preconditioners only small improvements in the residual were observed, and in all of

the examples we considered here, the systems preconditioned using this approach did

not achieve a smaller residual than when considering the unpreconditioned system.

In Section 4.3 the examples with partial observations required a larger number

of iterations to converge than the equivalent examples with full observations. The

opposite was true here, with the inexact constraint preconditioners being signifi-

cantly more effective for the examples with partial observations. This suggests that

the partial, and thus lower-rank observations improved the efficacy of the precondi-

tioner, with the LR-GMRES method being able to exploit this. Taking a larger rank

for the LR-GMRES method improved the performance of the inexact constraint pre-

conditioners across majority of the examples, with this being more significant in the

partial observations examples. In these particular examples the rank of the matrices

within LR-GMRES and thus the tensor rank of the solution vector, was greater than

the number of observations, and this may have contributed to the efficacy.

The most effective preconditioner of the ones considered here was the inexact

constraint preconditioner with the approximation L̃ = L̂ and H̃ = 0. This resulted

in the smallest residual from the preconditioned systems for the first 50 iterations

in majority of examples, however as with the other preconditioners, it ultimately

stagnated, and in some examples the remaining inexact constraint preconditioners

achieved a lower residual.

In the partial observations examples, using the inexact constraint preconditioner

with L̃ = L̂ outperformed not using a preconditioner after approximately 10 itera-

tions for the r = 20 examples, and all but the advection-diffusion example taking

r = 5. Indeed, not applying a preconditioner for LR-GMRES appeared to be a

better choice than a large number of the preconditioners we considered here. This

is likely due to the truncation process as mentioned above, with the low-rank ap-

proach acting as a form of regularisation and thus in some sense like a projected
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preconditioner itself.

A possible approach for preconditioning the partial observations examples may

be to use a ”hybrid” approach, where no preconditioner is used for the first 10 to

20 iterations before applying the inexact constraint preconditioner with the approx-

imations L̃ = L̂ and H̃ = 0.

In the next sections we shall consider including closer approximations to L and

L−1 through truncation and the implementation of this approach.

4.6 | Truncating inverses in Kronecker

form

Thus far we have presented preconditioners P , where we apply the inverse P−1 to

the matrix A. In LR-GMRES we implement this through matrix multiplication for

example Algorithm 4. When inverted these preconditioners have terms with L̃−1.

For the approximations I and L̂ we considered in the above numerical results, the

inverses L̃ can each be written as one Kronecker product, making implementation

within LR-GMRES easy.

In this section we consider approximations to L of the form L̃ = IN+1⊗In+C⊗M̃
and consider the inverse:

L̃−1 =


I

−M̃ I
. . . . . .

−M̃ I


−1

=


I

M̃ I
...

. . . . . .

M̃N · · · M̃ I

 . (4.14)

To write this in Kronecker form, we observe that the each diagonal can be written

as (−C)k ⊗ M̃k since C is the matrix with −1 on the sub-diagonal. Thus when

(−C) is raised to each successive power we obtain the diagonal below, taking −C
to ensure the correct signs. Hence the inverse of L̃−1 can be written:

L̃−1 = IN+1 ⊗ In − C ⊗ M̃ + C2 ⊗ M̃2 − . . .+ CN ⊗ M̃N

= IN+1 ⊗ In +
N∑
k=1

(−C)k ⊗ M̃k. (4.15)

In order to tractably include more complicated approximations to L than those

considered earlier in this chapter, we truncate the resulting inverse (4.15) and use

this in our preconditioners.
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When we include this truncated inverse into the inverse of our preconditioners,

this results in an approximation Q to the actual inverse of the preconditioner P−1.

We consider applying the preconditioner Q in the same approach as above, applying

the matrix multiplication AQ within GMRES or LR-GMRES. As with P−1, we do

not need to form Q explicitly.

As an example, let us consider the inexact constraint preconditioner with L̃ of

the above form, and H̃ = 0:

P−1 =

D 0 L̃

0 R 0

L̃T 0 0


−1

=

 0 0 L−T

0 R−1 0

L−1 0 −L̃−1DL̃−T

 (4.16)

=

 0 0 (I ⊗ I + C ⊗ M̃)−T

0 I ⊗R−1 0

(I ⊗ I + C ⊗ M̃)−1 0 S̃−1

 ,
(4.17)

if we truncate the sum in (4.15) after one term and substitute this into (4.17), we

obtain:

P−1 ≈

 0 0 I ⊗ I − C ⊗ M̃
0 I ⊗R−1 0

I ⊗ I − C ⊗ M̃ 0 S̃−1
I

 = Q, (4.18)

where

S̃−1 =− (I ⊗ I + C ⊗ M̃)−1(E1 ⊗B)(I ⊗ I + C ⊗ M̃)−T

− (I ⊗ I + C ⊗ M̃)−1(E2 ⊗Q)(I ⊗ I + C ⊗ M̃)−T

≈− (I ⊗ I − C ⊗ M̃)(E1 ⊗B)(I ⊗ I − CT ⊗ M̃T )

− (I ⊗ I − C ⊗ M̃)(E2 ⊗Q)(I ⊗ I − CT ⊗ M̃T ) = S̃−1
I .

When applying these truncated inverses within the resulting approximated precondi-

tioner in this way, the truncated inverse makes a significant difference to the efficacy.

However a consideration must be made for the number of terms which are included

in the approximation, with each additional term increasing the number of matrix

vector products which must be applied within the solver.

In this section, we consider L and truncating the inverse as described above.

This method applies only to the advection-diffusion, and shallow water equations

examples from above, as these two methods have constant model matrices M and
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thus the resulting L are of the form IN+1 ⊗ In + C ⊗M whilst the Lorenz example

is not (we refer to Section 3.4).

We shall apply this approximation to the preconditioners introduced in Sec-

tion 4.2 for both the data assimilation saddle point problem solved with GMRES,

and with LR-GMRES.

4.6.1 | Numerical results for GMRES

Let us first consider the application of the truncated L−1 to the preconditioners us-

ing GMRES. To illustrate this approach we consider the advection-diffusion example

from Section 4.3. In the figures to follow we present the three preconditioners sep-

arately with different levels of truncation. For comparison, we include the residuals

obtained when not using a preconditioner, when taking the approximations L̃ = L̂,

and for L̃ = L if we do not truncate at all. Furthermore we observe that if we do not

include any terms from the sum in (4.15), we re-obtain the approximation L̃ = I.

To illustrate the truncation of L−1 we consider here the partial (p = 3) observa-

tions example in Section 4.3.1 as there was the greatest disparity between taking the

approximations L̃ = I and L̃ = L̂. We consider the three preconditioners separately

for clarity.

Diagonal Schur complement

First we present the results for truncating the inverse of L when using the block

diagonal Schur complement preconditioner in Figure 4.25.

We observe that using the true inverse of L (k = 29), the preconditioner is very

effective, with the residual reaching a level of 10−6 after only 25 iterations, despite

not using the observation operator H. In contrast, as we saw in Figure 4.14, using

the approximation L̃ = I (or indeed truncating (4.15) at k = 0) is not very effective.

Increasing k does increase the efficacy of the preconditioner, however it is only after

taking k = 20 that the approximation to L−1 is more effective than taking the

approximation L̃ = L̂. We must note however than increasing k also increases the

number of matrix vector products, and thus becomes more expensive to apply. As in

Section 4.3.1, we see that with the exception of using the true inverse, not applying

a preconditioner is more effective for the first 80 iterations.
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Figure 4.25: GMRES residual for the 1890× 1890 advection-diffusion example
with partial observations using block diagonal Schur complement

preconditioners.

Triangular Schur complement
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Figure 4.26: GMRES residual for the 1890× 1890 advection-diffusion example
with partial observations using block triangular Schur complement

preconditioners.

When using the block triangular Schur complement preconditioners, we observe
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that the inverted preconditioner contains a term with L̃, hence truncating the sum

in (4.15) with L̃ = L and k = 0 does not result in the same preconditioner as

taking L̃ = I. As seen in Figure 4.26 this performs even less effectively than using

L̃ = I and only achieves a lower residual than the unpreconditioned system after

600 iterations.

We see that the inclusion of one additional term from (4.15) greatly increases the

efficacy of the preconditioner, far more noticeably than for the block diagonal Schur

complement preconditioner. Here we also observe that it is after only k = 10 terms

that the truncated L−1 is more effective than taking the approximation L̃ = L̂, in

contrast to the 20 needed in the block diagonal Schur complement example. As with

the previous example we observe that initially these preconditioners when not using

the true L−1, do not result in an improvement over not applying a preconditioner,

and require significantly more matrix vector products.

Inexact constraint

In Section 4.3.1 we observed that the most effective of the preconditioners were

the inexact constraint preconditioners, in Figure 4.27 we consider the effect of

truncating (4.15) for these preconditioners.
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Inexact constraint L̃ = L, H̃ = 0 IC L−1 truncated after k = 1 IC L−1 truncated after k = 5

IC L−1 truncated after k = 10 IC L−1 truncated after k = 20

Figure 4.27: GMRES residual for the 1890× 1890 advection-diffusion example
with partial observations using inexact constraint preconditioners.

Here we observe that truncating (4.15) after only 5 terms results in a precondi-

tioner which is similarly effective to the approximation L̃ = L̂, with the convergence
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improving quite significantly for the first terms from that achieved with the approx-

imation L̃ = I. This is fewer terms than in the Schur complement preconditioners

examples, however still requires more matrix vector products than the approxima-

tion L̃ = L̂. Whilst the performance does improve for k = 10 and k = 20, getting

closer to the efficacy of the preconditioner with the true L−1 it is more incremen-

tal improvements due to how effective the approximation L̃ = L̂ already is, and

increases the number of matrix vector products further.

Summary

A common observation to all three preconditioners for the advection-diffusion

example is that it takes a number of terms from (4.15) to achieve the efficacy of the

approximation L̃ = L̂, and requires significantly more matrix vector products. This

is particularly noticeable for the block diagonal Schur complement preconditioner in

Figure 4.25 where it requires 20 terms from the sum in (4.15) to achieve the same

convergence as simply approximating the model matrix M with the identity.

If we consider the shallow water equations example from Section 4.3.2 we note

that the approximation L̃ = L̂ was very effective due to the closeness of the eigen-

values of the model matrix M to 1. Truncation of L̃−1 for this example would not

be able to compete with the cheap approximation M = I, i.e. L̃ = L̂.

As such taking the approximation L̃ = L̂ is a more natural choice than truncating

the inverse to L, or another approximation of the form L̃ = (I ⊗ I + C ⊗ M̃).

4.6.2 | Low rank numerical results

Let us now apply these ideas to LR-GMRES, with the hope that including the

model operator will lead to an improvement in the convergence of LR-GMRES. As

with the GMRES example above, we consider the advection-diffusion example, here

from Section 4.5.1 taking partial (p = 3) observations. We present only the inexact

constraint preconditioner for this example, as we observed in Figure 4.20 that the

Schur complement preconditioners were not effective for this problem.

Inexact constraint

We observe that as with applying GMRES, when truncating the sum in (4.15)

at k = 0, we return to L̃ = I. We consider the same levels of truncation k =

0, 1, 5, 10, 20 as in Section 4.6.1, and additionally the convergence using the approx-

imation L̃ = L̂.
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Figure 4.28: LR-GMRES residual for the 1890× 1890 advection-diffusion
example with partial observations using inexact constraint

preconditioners (r = 20, r = 5).

We observe here that the inclusion of a larger number of terms from (4.15) does

improve the efficacy of the preconditioner which is more noticeable in the r = 5

example in Figure 4.28 b) due to the scale. Unfortunately including more terms

does not achieve the same improvement we observed in Section 4.6.1, with level of

truncating L−1 achieving the same level of efficacy as taking L̃ = L̂, nor exceeding

it.

This is likely due to the truncation inherent in the LR-GMRES algorithm. The

additional terms from the approximation to L−1 results in additional concatenated

matrices which must be truncated. As a result, some of the information which is

gained by including the true model matrix is lost through this truncation step.

As we observed in Section 4.6.1, the approximation L̃ = L̂ is a cheap and effective

choice for approximating L. This is especially true when we consider the LR-GMRES

method as the inverse is cheaper to consider, and does not lead to the same level

of concatenation which is necessary when we consider approximations of the form

L̃ = (I ⊗ I + C ⊗ M̃) or the true L.

4.7 | Conclusions

In this chapter we have presented three different preconditioners and applied them

to the data assimilation saddle point problem when solved with both GMRES and

the low-rank GMRES method introduced in Chapter 3. In order to apply these

preconditioners, we considered different approximations for the matrices L and H.
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We observed that when solving the data assimilation saddle point problem with

GMRES, the most effective preconditioner was the inexact constraint preconditioner

[16, 17, 18] taking the approximation L̃ = L̂ to the matrix L, and approximating

H by 0. In Section 4.6 we considered using the exact L and approximating its

inverse, and whilst we did achieve superior results for close approximations to L−1,

the evaluation of this is significantly more expensive. For LR-GMRES we observed

that the inexact constraint preconditioner with L̃ = L̂ was also the most effective

preconditioner for this method as well.

When considering the convergence of GMRES or LR-GMRES, we identified that

whilst for GMRES having full observations each timestep led to faster convergence

in comparison to taking partial observations, this was not true for LR-GMRES. In

the low-rank setting we observed that for both the unpreconditioned system, and

when using the inexact constraint preconditioners, the convergence was significantly

improved for the examples where we considered partial observations. For the low-

rank method, we investigated two different choices of rank, and in the numerical

results we saw that taking a larger value for r generally led to better performance. A

possible explanation for why preconditioning is not as effective majority of the time

within LR-GMRES when compared to GMRES, and often leads to the convergence

of LR-GMRES stagnating is the following. During LR-GMRES, the truncation

process selects only the most important modes, e.g. the ones belonging to larger

eigenvalues, ignoring the smaller ones. Therefore, the low-rank approach acts like a

regularisation, and hence in some sense like a projected preconditioner.

The interesting observation to be made for both methods, and for majority of

the examples we considered was that using no preconditioner returned the smallest

residual for the first 10 to 20 iterations (and sometimes more). As a result we con-

clude that preconditioning the data assimilation saddle point problem may require

further investigation into different types of preconditioners. A possible approach for

preconditioning the low-rank method when considering partial observations may be

to use a ”hybrid” approach, where no preconditioner is used for the first 10 to 20

iterations before applying the inexact constraint preconditioner with the approxi-

mations L̃ = L̂ and H̃ = 0.
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CHAPTER 5

PROJECTION METHODS FOR WEAK

CONSTRAINT VARIATIONAL DATA

ASSIMILATION

The work in this chapter is the basis of the paper [56] which has been submitted for

publication.

5.1 | Introduction

When considering real world applications of data assimilation, such as numerical

weather prediction, the dimension of the state space of these systems can become

very large. As such, it is essential to consider projecting the variables onto a space

of smaller dimension in order to solve a smaller problem which a) approximates the

full-size problem effectively, and b) reduces the computational cost.

In this chapter we present projection methods for the weak constraint varia-

tional data assimilation problem. During the data assimilation minimisation, we

must solve a linear system. Through projection methods, we are able to solve a sig-

nificantly smaller system, reducing the complexity of this step. We extend the use

of balanced truncation [96] from the strong constraint variational data assimilation

case considered in [23, 24, 84, 85] to the weak constraint setting, and introduce ran-

domised projection methods, sometimes known as sketching methods, to the data

assimilation problem.

Model reduction methods have previously been considered within variational

data assimilation, with papers considering balanced truncation, proper orthogonal

decomposition (POD) and reduced basis methods, as well as low-rank approaches
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as discussed in Chapter 2. In this chapter we take a different approach, making

use of randomised algorithms which have seen growth in recent years [43, 67, 95].

There have been investigations into the efficacy of randomised approaches for matrix

decompositions [67] and other numerical linear algebra techniques see for example

[43]. Here we apply random projections, which have been used effectively for di-

mensionality reduction in other applications. For example, [20] uses these ideas

for image and text data, whilst [89] applies sketching methods to inverse problems.

There have been other applications of these randomised sketching methods to least

squares problems and low-rank matrix approximation, see for example [103, 134]

and references therein. Furthermore, we extend the application of balanced trunca-

tion from the strong constraint variational data assimilation setting considered in

[23, 24, 84, 85] to the weak constraint setting. We compare the performance of these

two approaches to the results obtained by solving the full-sized problem numerically,

and with error analysis on the error introduced through projection.

In the remainder of this section we recall incremental weak constraint four di-

mensional variational data assimilation (4D-Var), introduced in greater detail in

Chapter 3. Section 5.2 then introduces projected 4D-Var, before we introduce the

balanced truncation and randomised methods as two special cases of projection type

methods in Sections 5.3 and 5.4. The resulting error in the state space for the pro-

jected method compared to the full solution is presented in Section 5.5. Numerical

results are given in Section 5.6.

Incremental 4D-Var

To implement 4D-Var operationally, an incremental approach [35] is used. This

is essentially the Gauss-Newton method and generates an approximation to the

solution of x = argmin J(x). We approximate the 4D-Var cost function by a

quadratic function of an increment

δx(`) = x(`+1) − x(`), (5.1)

where x(`) =
[
(x

(`)
0 )T , (x

(`)
1 )T , · · · , (x(`)

N )T
]T

denotes the `-th iterate of the Gauss-

Newton algorithm. This increment δx(`) is a solution to the minimisation of the
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linearised cost function

J̃(δx(`)) =
1

2
‖δx(`)

0 − b(`)
0 ‖2

B−1

+
1

2

N∑
k=0

‖d(`)
k −Hkδx

(`)
k ‖2

R−1
k

+
1

2

N∑
k=1

‖δx(`)
k −Mkδx

(`)
k−1 − c

(`)
k ‖2

Q−1
k
,

(5.2)

where Mk ∈ Rn×n and Hk ∈ Rn×pk , are linearisations of Mk and Hk about the

current state trajectory x(`). Here we have used

b
(`)
0 = xb0 − x(`)

0 , (5.3)

d
(`)
k = yk −Hk(x

(`)
k ), (5.4)

c
(`)
k =Mk(x

(`)
k−1)− x(`)

k . (5.5)

Dropping the iterate (`) for convenience, The cost function (5.2) can be written

more concisely as

J̃(δx) =
1

2
‖Lδx− b‖2

D−1 +
1

2
‖d−Hδx‖2

R−1
k
, (5.6)

where δx =
[
δxT0 , δx

T
1 , · · · , δxTN

]T ∈ R(N+1)n and L and H are matrices of size

(N + 1)n× (N + 1)n and
N∑
k=0

pk × (N + 1)n respectively,

L =


I

−M1 I
. . . . . .

−MN I

 , H =


H0

H1

. . .

HN

 (5.7)

which can be thought of as model and observation operators over the assimilation

window.

We assume there is no correlation between timesteps, and hence the covariance

matrices are block diagonal matrices

D = diag(B,Q1, · · · , QN), R = diag(R0, R1, · · · , RN),
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with corresponding vectors

b =
[
bT0 , c

T
1 , · · · , cTN

]T ∈ R(N+1)n, d =
[
dT0 , d

T
1 , · · · , dTN

]T ∈ R
N∑

k=0
pk
.

Minimising J̃(δx) results in solving a potentially very large linear system. In par-

ticular, the linearised model and observation operators Mk and Hk for each timestep

can be very expensive to evaluate, and this motivates projecting the state space onto

a subspace of smaller dimension. This is what we present in the remainder of this

chapter.

5.2 | Projected weak constraint 4D-Var

We project Mk and Hk onto a lower dimensional space in order to perform the

minimisation of (5.6) to find δx. We introduce a restriction operator UT ∈ Rr×n

which maps the model variables δxk to a lower-dimensional space, defining δx̂k ∈ Rr,

with r � n as δx̂k = UT δxk. The minimisation problem will be carried out in a lower

dimensional space of dimension r � n. Therefore we introduce the prolongation

operator V ∈ Rn×r which maps back to the original space, with the requirement

that UTV = Ir.

This allows us to define reduced model and observation operators M̂k and Ĥk

for the lower dimensional problem:

M̂k = UTMkV ∈ Rr×r,

Ĥk = HkV ∈ Rpk×r.

The projection from δx to δx̂ does not affect the observations, nor the observation

error covariance matrices Rk. However the background error b0 = (xb0−x0) becomes

b̂0 = UT (xb0−x0) and thus the covariance matrix B must be projected to B̂ = UTBU .

The same is true of the model error ck, and corresponding covariance matrices Qk,

being projected here to ĉk = UT ck and Q̂k = UTQkU respectively.

The resulting linearised cost function for this reduced system is hence

J̃(δx̂) =
1

2
‖δx̂0 − b̂0‖2

B̂−1 +
1

2

N∑
k=0

‖dk − Ĥkδx̂k‖2
R−1

k

+
1

2

N∑
k=1

‖δx̂k − M̂kδx̂k−1 − ĉk‖2
Q̂−1

k
,

(5.8)
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or indeed

J̃(δx̂) =
1

2
‖L̂δx̂− b̂‖2

D̂−1 +
1

2
‖d− Ĥδx̂‖2

R−1 , (5.9)

which we wish to minimise.

Here D̂ = UTDU and Ĥ = HV, with b̂ = UT b defining U = I ⊗ U and

V = I ⊗ V , whilst L̂ = UTLV due to the requirement that UTV = Ir.

The choice of U and V will determine the efficacy of the method. We present

two approaches in the remainder of this chapter. Firstly we consider balanced trun-

cation, a control theoretic model reduction approach. Subsequently we introduce

randomised methods for dimensionality reduction, and we compare both approaches

to performing a coarsening grid method approach.

5.3 | Balanced truncation

Balanced truncation [96] is a model reduction method which has been applied within

incremental 4D-Var for strong constraint variational data assimilation in [23, 24, 84,

85]. In order to apply balanced truncation within data assimilation, the system is

linearised via the so-called tangent linear model.

Let us first consider some necessary concepts from control theory before intro-

ducing balanced truncation for linear time-invariant systems.

5.3.1 | Control theoretic preliminaries

The motivation for balanced truncation comes from the control theoretic desire to

approximate the input-output map u→ y of a linear discrete time-invariant system

such as

xk+1 = Axk + Buk,

yk = Cxk,
(5.10)

where at each timestep k we have a state xk ∈ Rn, input uk ∈ Rm and output

yk ∈ Rp. The matrices A,B and C are time-invariant, and of sizes n×n, n×m and

p× n respectively.

In balanced truncation, the system is transformed such that the states xk in

(5.10) which are difficult to reach, and those which are difficult to observe coincide.

The states which are most difficult are eliminated, thus obtaining a reduced order
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system:

x̂k+1 = Âx̂k + B̂uk,

ŷk = Ĉx̂k,
(5.11)

where Â ∈ Rr×r, B̂ ∈ Rr×m and Ĉ ∈ Rp×r, with r � n which approximates (5.10).

Reachability and observability are important concepts in control theory which

are defined as follows:

Definition (Reachability). A state is reachable from a zero initial state if there

exists an input function of finite energy such that the state is reached in a finite time

interval.

The linear discrete time-invariant system (5.10) is reachable if all states x ∈ Rn

are reachable.

Definition (Observability). A state is observable if when considered as an initial

state, it can be determined from the system output that has been observed within a

finite time interval.

The linear discrete time-invariant system (5.10) is observable if all states x ∈ Rn

are observable.

For the remainder of this chapter we assume that the linear time-invariant sys-

tems we consider are both reachable and observable.

In order to consider the states which are difficult to reach and observe, we must

have a notion of the energy needed to reach or observe a state. We consider the

infinite reachability and observability Gramians Gr and Go of the system, which are

defined only for stable systems.

Definition (Stability). A linear discrete time-invariant system (5.10) is stable if

all eigenvalues λ of A lie inside the unit disk: |λ| < 1 for all λ ∈ σ(A).

Definition (Infinite Gramians). Let the linear discrete time-invariant system (5.10)

be stable, reachable and observable. The infinite reachability and observability Grami-

ans of the system (5.10), Gr and Go are

Gr =
∞∑
j=0

AjBBT (AT )j, (5.12)

Go =
∞∑
j=0

(AT )jCTCAj, (5.13)

respectively.
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Lemma 5.1. The infinite reachability and observability Gramians Gr and Go satisfy

the Stein (or discrete Lyapunov) equations:

Gr = AGrAT + BBT , (5.14)

Go = ATGoA + CTC. (5.15)

Proof. We consider the right hand side of (5.14),

AGrAT + BBT =

j=∞∑
j=0

Aj+1BBT (AT )j+1 + BBT

=

j=∞∑
j=1

AjBBT (AT )j + A0BBT (AT )0

=

j=∞∑
j=0

AjBBT (AT )j = Gr.

The same method can be used for the Stein equation for the observability Gramian

(5.15).

Solving the Stein equations (5.14) and (5.15) provide a computable way of ob-

taining the Gramians. In practice this is computationally expensive and as a result

iterative solvers such as low-rank Smith methods [87], Krylov subspace methods [73]

and combinations of these approaches [11, 112] are used. These adapt the Smith

method [121] and compute approximate solutions G̃r = ZrZ
T
r to the Stein equation

(5.14) obtaining the low-rank factor Zr, and equivalently for (5.15). We refer to

[118] for further discussion on this topic. As we shall see when applying balanced

truncation, it is often convenient to obtain a factor Zr of the Gramian.

The following lemma provides a way to determine the states which are the most

difficult to reach and to observe using the infinite Gramians defined above.

Lemma 5.2. [4] The minimal energy required to reach the state x from an initial

state of 0 is

xTG−1
r x.

The maximal energy produced by observing the output of the system whose initial

state is x is

xTGox.

Hence the states which are most difficult, i.e. those which require the most

energy to reach, are in the span of the eigenvectors of Gr corresponding to the

smallest eigenvalues. Equivalently, the states which are difficult to observe, i.e. those
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producing the smallest observation energy, are in the span of the eigenvectors of Go
corresponding to small eigenvalues. Thus if we desire to have a system where states

xk which are difficult to reach are also difficult to observe, we wish the Gramians Gr
and Go to be equal.

The description (5.10) is not unique, if we apply a state space transformation

to the system (5.10), taking x = T x̂, we obtain the equivalent linear time-invariant

system

x̂k+1 = T−1AT x̂k + T−1Buk,

yk = CTxk,
(5.16)

with the input-output behaviour of this system remaining affected by this transfor-

mation.

The Stein equations for the transformed discrete linear time-invariant system

(5.16) are:

Ĝr = T−1AT ĜrT TATT−T + T−1BBTT−T , (5.17)

Ĝo = T TATT−T ĜoT−1AT + T TCTCT, (5.18)

and hence the transformed Gramians are Ĝo = T TGoT and Ĝr = T−1GrT−T .

The product of these transformed Gramians ĜoĜr, and the product of the Grami-

ans from the original system GoGr are related by a similarity transformation:

GoGr = T TGoTT−1GrT−T = T TGoGrT−T .

Thus GoGr and ĜoĜr have the same eigenvalues. The positive square roots of these

eigenvalues are known as the Hankel singular values of the system, an important

system invariant.

Performing a transformation T such that Ĝr = Ĝo is known as balancing, with the

resulting system being called balanced. From a balanced system, we may truncate

the system, removing those states which are both difficult to reach and observe.

The combination of these two steps to create a reduced order model is the model

reduction method balanced truncation.
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5.3.2 | Balanced truncation for discrete linear

time-invariant systems

There are several possibilities to obtain a transformation for implementing balanced

truncation c.f. [4]. We illustrate one approach below.

Let Gr = KKT , Go = LLT be decompositions of the respective Gramians. As

noted above, K and L are usually computed directly from the discrete Lyapunov

equations (5.14),(5.15) rather than decomposing the Gramians. We compute the

singular value decomposition

KTL = ZΣY T , (5.19)

where Σ = diag(σ1, . . . , σn) are the Hankel singular values as introduced above.

We define the following projection matrices which result in a balanced, truncated

system where the Gramians are equal, and the system is truncated via a rank-r

approximation:

V = KZrΣ
− 1

2
r ∈ Rn×r, (5.20)

U = LYrΣ
− 1

2
r ∈ Rn×r. (5.21)

Here Zr and Yr are the first r columns of Z and Y respectively, and the Hankel

singular values which are kept are Σr = diag(σ1, . . . , σr).

Letting T = V , we see UT is the left inverse of T :

UTV = Σ
− 1

2
r Y T

r L
TKZrΣ

− 1
2

r

= Σ
− 1

2
r Y T

r Y ΣZTZrΣ
− 1

2
r

= Σ
− 1

2
r [Ir 0]Σ[Ir 0]TΣ

− 1
2

r = Ir.

Thus V and U satisfy UTV = Ir, however neither are orthogonal.

Applying the transformation T = V to the discrete linear time-invariant sys-

tem (5.10), the Gramians of the transformed system are equal. Taking the infinite

reachability Gramian first we see

Ĝr = UTGrU

= Σ
− 1

2
r Y T

r L
TGrLYrΣ−

1
2

r

= Σ
− 1

2
r [Ir 0]Σ2[Ir 0]TΣ

− 1
2

r

= Σr,
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and similarly for the infinite observability Gramian,

Ĝo = V TGoV

= Σ
− 1

2
r ZT

r K
TGoKZrΣ−

1
2

r

= Σ
− 1

2
r ZT

r K
TLLTKZrΣ

− 1
2

r

= Σ
− 1

2
r ZT

r ZΣY TY ΣZTZrΣ
− 1

2
r

= Σ
− 1

2
r [Ir 0]Σ2[Ir 0]TΣ

− 1
2

r

= Σr.

Hence the system obtained by applying this transformation is balanced.

Limitations of applying balanced truncation

Limitations of balanced truncation for model reduction are the time-invariance

of the system, and that the matrix A in (5.10) must be stable, which in the discrete

setting, corresponds to the spectrum of A contained within the unit ball. The infinite

Gramians (5.12) and (5.13) are defined only for stable systems, and are necessary

to consider for the system to be balanced. There have been extensions to balanced

truncation which aim to overcome these issues, such as [79, 80, 113, 116] and the

references therein for time varying systems. These extensions have included using

a data-based approach similar to POD, and considering time-varying Gramians.

For unstable systems there have been proposals which split the system into stable

and unstable parts, or shift the system, see [8, 46, 143, 144] and references within.

Furthermore in [23], an alternative approach of scaling the system matrices has been

considered.

One further limiting factor to the efficacy of balanced truncation within data

assimilation, is the cost involved, notably solving the Stein equations (5.15), (5.14)

to obtain the Gramians, and computing the singular value decomposition in (5.19).

When balanced truncation is applied in other settings, the cost of the model reduc-

tion is amortised by reusing the same reduced model over multiple applications of the

reduced system. However in data assimilation, each assimilation (typically) leads to

a new system which must be then reduced. Hence the cost is freshly incurred each

time, unless a linear time-invariant system is considered. In the remainder of this

section we consider applying balanced truncation within weak constraint variational

data assimilation, and in Section 5.6 shall see the efficacy of such a reduced system.
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5.3.3 | Balanced truncation within the weak

constraint 4D-Var method

The authors of [23, 24, 84, 85] apply a modified version of balanced truncation

within incremental strong constraint 4D-Var. Here we consider applying a similar

approach to weak constraint 4D-Var, and a time-invariant system. Let us assume

that the model and observation operators are time-invariant, with Mk = M and

Hk = H for all k. The tangent linear model in the inner loop of incremental 4D-Var

is considered as the linear discrete stochastic system

δx−1 = 0,

δxk+1 = Mδxk + uk,

dk = Hδxk,

(5.22)

where, in the weak constraint data assimilation case, the inputs are:

uk =

e0 ∼ N (0, B), for k = −1

ηk ∼ N (0, Q), for k ≥ 0.
(5.23)

Here we make the further assumption that the model, and observation error covari-

ances are time-invariant, Qk = Q,Rk = R for all k.

The resulting infinite reachability and observability Gramians Gr and Go of the

system (5.22) are

Gr =
∞∑
j=1

M jQ(MT )j +B, (5.24)

Go =
∞∑
j=0

(MT )jHTRHM j. (5.25)

These follow from the conditions described in [19] and [23].

As seen with the discrete linear time-invariant system (5.10) in Lemma 5.1, the

Gramians (5.24) and (5.25) are the solutions to Stein equations.

Lemma 5.3. The infinite reachability and observability Gramians Gr and Go satisfy

the Stein (or discrete Lyapunov) equations:

Gr = MGrMT +B +M(Q−B)MT , (5.26)

Go = MTGoM +HTRH. (5.27)
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Proof. The observability Gramian is as in Lemma 5.1:

MTGoM +HTRH =
∞∑
j=0

(MT )j+1HTRHM j+1 +HTRH

=
∞∑
j=1

(MT )jHTRHM j + (MT )0HTRHM0

=
∞∑
j=0

(MT )jHTRHM j = Go.

For the reachability Gramian, we consider the right hand side of (5.26) as before,

MGrMT +B +M(Q−B)MT =
∞∑
j=1

M j+1Q(MT )j+1

+MBMT +B +M(Q−B)MT

=
∞∑
j=2

M jQ(MT )j +B +MQMT

=
∞∑
j=1

M jQ(MT )j +B = Gr.

As introduced above, there are multiple transformations for implementing bal-

anced truncation. We can decompose Gr = KKT and Go = LLT as before despite

the different discrete Lyapunov equations. Proceeding in the same manner, we com-

pute the singular value decomposition KTL = ZΣY T , and define the projection

matrices:

V = KZrΣ
− 1

2
r ∈ Rn×r, (5.28)

U = LYrΣ
− 1

2
r ∈ Rn×r. (5.29)

Here as before, Zr and Yr are the first r columns of Z and Y respectively, and the

Hankel singular values which are kept are Σr = diag(σ1, . . . , σr).

α-bounded balanced truncation

As mentioned at the start of Section 5.3, balanced truncation applies only to sta-

ble time-invariant systems, where the spectrum of the model matrix (in our setting

M) is within the unit ball. In order to overcome the stability requirement of the
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system, the author in [23] introduces α-bounded balanced truncation in which the

discrete linear time-invariant system is shifted. Let α be such that the eigenvalues

of M are bounded by a disk of radius α from the origin. The balanced truncation

method is applied to the shifted system

δxk+1 = Mαδxk + uk,

dk = Hαδxk,

with corresponding background covariance matrix Bα, where

Mα = M/α, Hα = H/
√
α, Bα = B/

√
α.

This system is a stable discrete linear time-invariant system, on which balanced

truncation can be applied to obtain the projection matrices U and V . This provides

a method to apply balanced truncation to unstable systems. We refer to [23] for

further details. In our numerical experiments in Section 5.6 we apply this approach

to the unstable example of the shallow water equations.

5.4 | Randomised methods

In this section, we introduce randomised methods for projection. In contrast to the

previous section where we used the balanced truncation method to compute the

projection matrices U and V , here we wish to generate these projection matrices

U and V from a random distribution. Constructing the choice of U and V in bal-

anced truncation is an expensive step requiring the solution to two Stein equations.

Thus generating random matrices U and V provides a significantly cheaper way for

obtaining projection matrices.

Random methods for dimensionality reduction have been previously used for

image data [20], inverse problems [89] and other applications, see references within.

The motivation behind randomised methods for dimensionality reduction comes

from the Johnson - Lindenstrauss (JL) Lemma [74] which says that when points are

projected to a (sufficiently large) random subspace, the distances between them are

approximately preserved.

Theorem 5.4 (Johnson-Lindenstrauss Lemma). For any 0 < ε < 1
2
, let V ⊂ Rd be

a set of n points and k = 20ε−2 log(n). Then there exists a map f : Rd → Rk such
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that for all u, v ∈ V ,

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2. (5.30)

For a proof we refer to [38].

Another name used for these methods is sketching, as the resulting matrix, once

projected, is a ’sketch’ of the original. Sketching methods can be considered as

projection methods or sampling methods. The sampling based methods are data-

dependent, and can potentially be quite expensive if considering an importance

based sampling method, where the probability of sampling a column is dependent

on a weighted norm of that column.

In this chapter we consider projection methods rather than sampling based meth-

ods, and take UT to be the Moore-Penrose pseudoinverse of V , such that UTV

approximates Ir.

Projection matrices from a distribution

In previous papers about randomised dimension reduction [38, 89, 95], and ref-

erences within, taking a normally distributed random matrix has worked very effec-

tively, and taking an approximation for the Gaussian distribution [1, 20], this can

be generated efficiently. Here we consider

V =

√
n

r
G, G ∈ Rn×r ∼ N (0, B), (5.31)

where each column of G is drawn from a multivariate normal distribution zero mean

with covariance B, our background covariance matrix.

An alternative approach is to consider a matrix where the entries are uniformly

distributed taking

V =

√
n

r
G, G ∈ Rn×r ∼ Uni(0, 1). (5.32)

Our last approach, as used in [1] is taking a matrix V where each entry of G is

drawn from a Rademacher distribution:

V =

√
n

r
G, Gij =

+1 with probability 1/2,

−1 with probability 1/2.
(5.33)

By the JL Lemma, the expected norm of a projection of a unit vector onto a

random subspace through the origin is
√

r
n
, as such we scale our projection matrices
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by
√

n
r
.

All three of the random matrices we consider are dense matrices, with all non-

zero entries. In Section 5.6, we compare the efficacy of these projection methods

with a sparse coarse interpolatory matrix of the same size n × r. Some of the

other approaches which we do not consider in the following numerical examples

are: CountSketch, a data streaming inspired method which works effectively for

large sparse data, statistical leverage score sampling methods, the fast Johnson-

Lindenstrauss transform, and the Nyström method. The latter requiring that the

matrix or matrices we are projecting are symmetric positive semidefinite, which in

general is not the case for our model matrix M .

5.5 | Projection error

In this section, we compare the resulting update vectors from solving the cost func-

tion for the full system and the projected system, (5.6) and (5.9).

Taking the gradient of (5.6) we can write the solution to the full state system as

δx = (LTD−1L + HTR−1H)−1(LTD−1b+ HTR−1d), (5.34)

and the corresponding solution to the projected problem using (5.9) is

δx̂ = (L̂T D̂−1L̂ + ĤTR−1Ĥ)−1(L̂T D̂−1b̂+ ĤTR−1d). (5.35)

We are interested in the error between these two state vector updates, to compare

the errors, we need to project δx̂ back to the original size: ‖δx−Vδx̂‖. Using

S = (LTD−1L + HTR−1H),

Ŝ = (L̂T D̂−1L̂ + ĤTR−1Ĥ),

noting that these are indeed (minus) the Schur complements of the saddle point

formulation of weak constraint 4D-Var, we manipulate (5.34) and (5.35) to obtain

δx−Vδx̂ = S−1LTD−1b−VŜ−1UT b

+ S−1HTR−1d−VŜ−1ĤTR−1d.
(5.36)

113



Chapter 5. Projection methods for weak constraint variational data
assimilation

We consider the background and model error terms, those containing b first:

S−1LTD−1b−VŜ−1L̂T D̂−1UT b = S−1[LTD−1b

− SV(L̂−1D̂L̂−T )L̂T D̂−1UT b

+ SV(L̂−1D̂L̂−T ĤT F̂−1ĤL̂−1D̂L̂−T )L̂T D̂−1UT b].

Here we have made use of the Sherman-Morrison- Woodbury formula to rewrite the

inverse of Ŝ e.g.

Ŝ−1 = L̂−1D̂L̂−T − L̂−1D̂L̂−T ĤT F̂−1ĤL̂−1D̂L̂−T ,

where F̂ = (R + ĤL̂−1D̂L̂−T ĤT ). We now substitute S, obtaining:

S−1LTD−1b−VŜ−1L̂T D̂−1UT b = S−1[LTD−1b

− LTD−1LVL̂−1UT b

+ LTD−1LVL̂−1D̂L̂−T ĤT F̂−1ĤL̂−1UT b

+ HTR−1HVL̂−1D̂L̂−T ĤT F̂−1ĤL̂−1UT b

+ HTR−1HVL̂−1UT b].

Adding and subtracting the term HT F̂−1HL−1UT b, the resulting expression is

S−1LTD−1b−VŜ−1L̂T D̂−1UT b = S−1[LTD−1(I− LVL̂−1UT )b

+ (LTD−1LVL̂−1D̂L̂−T ĤT −HT )F̂−1ĤL̂−1UT b

+ HT (R−1(R + HVL̂−1D̂L̂−T ĤT )F̂−1Ĥ)L̂−1UT b

−HT (R−1HV)L̂−1UT b].

However we notice that HV = Ĥ, and as such this simplifies to

S−1LTD−1b−VŜ−1L̂T D̂−1UT b = S−1LTD−1(I− LVL̂−1UT )b

− S−1JHT F̂−1ĤL̂−1UT b,

where J = (I− LTD−1LVL̂−1D̂L̂−TVT ).

Taking the same approach for the observation error terms, we obtain

S−1HTR−1d−VŜ−1ĤTR−1d = S−1JHTR−1d

− S−1JHT F̂−1ĤL̂−1D̂L̂−T ĤTR−1d

= S−1JHT F̂−1d.
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Thus, returning to (5.36), we have

δx−Vδx̂ = S−1LTD−1(I− LVL̂−1UT )b

+ S−1JHT F̂−1f,

where f = (d− ĤL̂−1UT b). Manipulating the second term, we obtain

δx−Vδx̂ = S−1(I− LTUL̂−TVT )HT F̂−1f

+ S−1LTD−1(I− LVL̂−1UT )b

+ S−1LTD−1(I− LVL̂−1UT )DUL̂−TVTHT F̂−1f.

Since (I−LVL̂−1UT ) and (I−LTUL̂−TVT ) are projection matrices, taking the

norm of this error we obtain:

‖δx−Vδx̂‖ ≤ ‖S−1‖‖HT F̂−1f‖
+ ‖S−1LTD−1‖‖b+ DUL̂−TVTHT F̂−1f‖.

(5.37)

Arbitrary projection can naturally lead to large errors, however we observe that

taking r = n results in square projection matrices, and a projection error of zero.

By our requirement that UTV = Ir = In, we have UT = V −1. Therefore L̂−1 =

UTL−1V and hence the projection matrices (I−LVL̂−1UT ) and (I−LTUL̂−TVT )

are equal to 0.

Furthermore, both parts of (5.37) contain the term (d− ĤL̂−1UT b) and thus we

can hope to reduce the approximation error if (d− ĤL̂−1UT b) is small. Returning

to our projected cost function (5.9):

J̃(δx̂) =
1

2
‖L̂δx̂− b̂‖2

D̂−1 +
1

2
‖d− Ĥδx̂‖2

R−1 ,

if the first part is solved exactly, we obtain L̂−1UT b = δx̂. Thus the term we wish to

minimise in (5.37) becomes (d− Ĥδx̂). This is precisely the case if the second part

of (5.9) is solved exactly. However it is not the case that both are solved exactly,

nonetheless this presents a possible way to identify good projections.

Finding a sharp error bound for an arbitrary projection is generally not feasible.

However when using the balanced truncation method to project the system, we can

find an error bound.
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For a stable linear time-invariant system (5.10) with an initial state of 0:

x0 = 0,

xk+1 = Axk + Buk,

yk = Cxk,

the H∞ norm of a linear time-invariant system (5.10) is given by

‖G‖H∞ = sup
ω∈R

σmax(G(iω)),

where σmax denotes the maximum singular value of a matrix, and

G(z) = (C(zI −A)−1B),

is the transfer function of the system.

Applying the (discrete-time) Laplace transform (Z-transform) to the system

(5.10), an explicit input-output relation can be obtained:

y(z) = (C(zI −A)−1B)u(z), (5.38)

where u(z) and y(z) denote the Z-transforms of the input and output functions u(t)

and y(t). Using Plancherel’s theorem, the approximation error between the system

(5.10) and the reduced system (5.11) is bounded by

‖yk − ŷk‖2 ≤ ‖G− Ĝ‖H∞‖uk‖2,

with the respective transfer functions G and Ĝ.

Thus for the discrete linear time-invariant system considered here:

δx−1 = 0,

δxk+1 = Mδxk + uk,

dk = Hδxk,

we observe the transfer function G corresponds to G = (H(zI−M)−1). Hence when

considering the data assimilation problem taking full observations with H = I, this

allows us to consider an error bound on δx itself:

‖δxk − V δx̂k‖2 ≤ ‖G− Ĝ‖H∞‖uk‖2,
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where G(z) = (zI −M)−1 and Ĝ(z) = V (zI − M̂)−1.

For balanced truncation, it is possible to derive a computable bound on the dif-

ference between the transfer functions of the full and reduced-order models. Taking

the matrix of Hankel singular values Σ, we consider the truncated matrix of Hankel

singular values which are kept in the reduced system (5.20),(5.21) Σr. We suppose

the retained singular values are σi, with multiplicity mi i = 1, . . . , k, where k < q

and q is the total distinct Hankel singular values, then ‖G− Ĝ‖H∞ can be bounded

by twice the sum of the distinct neglected Hankel singular values which are not

retained:

‖G− Ĝ‖H∞ ≤ 2(σk+1 + · · · σq). (5.39)

For a proof we refer to [69].

5.6 | Numerical results

In this section we present numerical results for the projection methods introduced

in Sections 5.3 and 5.4.

We present figures with the root mean squared error (RMSE) at each timestep

of the assimilation window and forecast for each solution method. For these results

the randomised methods were repeated 100 times and the mean RMSE is presented

in the plots for comparison with the other methods.

We consider a coarse interpolatory projection as a simple method in order to

compare to the other projections we consider. This is done considering the n × r
matrix with a ”1” in each column and the remainder to be ”0” with the non-zero

entries equally spaced. When taking r = n, this results in V = U = I.

The plots show the following methods: solving the full-sized system, projecting

with coarse interpolatory projection matrices, generating the projection matrices

through balanced truncation, and applying randomised projection matrices gener-

ated through a uniform distribution, a multivariate Gaussian distribution, and with

a Rademacher distribution. These approaches are compared with the RMSE arising

from evolving the background state of the system forward. We observe that the best

results are obtained by using the full-sized system, and typically the worst results

are those obtained from evolving the background state.
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5.6.1 | One-dimensional advection-diffusion

system

As a first example, we consider the one-dimensional (linear) advection-diffusion

problem as in Chapter 3:

∂

∂t
u(x, t) = 0.1

∂2

∂x2
u(x, t) + 1.4

∂

∂x
u(x, t) (5.40)

for x ∈ [0, 1], t ∈ (0, 1), subject to the boundary and initial conditions

u(0, t) = 0, t ∈ (0, 1)

u(1, t) = 0, t ∈ (0, 1)

u(x, 0) = sin(πx), x ∈ [0, 1].

We discretise this system with a centered difference scheme for ux and ut, and a

Crank-Nicolson scheme for uxx, discretising x uniformly with h = 1
500

, and taking

timesteps of size ∆t = 10−3.

We now consider this example as a data assimilation problem. We take an

assimilation window of 200 timesteps, followed by a forecast of 800 timesteps.

The linear systems we must solve are of size 100, 000 for the full-sized prob-

lem, and 200r after applying a projection method. This is true for full or partial

observations.

In the following figures, we consider the root mean squared error (RMSE) for

the different approaches. The first 200 timesteps in the figure are the assimilation

window, these are the timesteps where the observations of the system are taken, and

these states are considered in the cost function being minimised. The subsequent

timesteps are obtained by using our updated state to forecast forward.

Full observations

We first consider full, interpolatory observations (p = 500) in each timestep of

the assimilation window, thus H = I500, and we take the observation error covariance

to be R = 0.01I500. In this example we take Bi,j = 0.1 exp(−|i−j|
2n

) as the background

error covariance, with the model error covariance Q = 10−6I500.

Let us begin with a reduced space of size r = 20. The space the minimisation

takes place in for the projected methods is thus 4% of the size of the full-size problem.

In Figure 5.1 a) we observe that the forecast resulting from solving the data
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Figure 5.1: Root mean squared errors for the 1D advection-diffusion example
with full, noisy observations (r = 20, r = 5).

assimilation problem using the coarse grid projection does not give any improve-

ment over forecasting without performing assimilation. For the first 200 timesteps

after the assimilation window, we observe the uniform random projection, and

Rademacher random projection methods yield similarly accurate forecasts. After

this point however the uniform random projection approach gives a less accurate

forecast, though still more accurate than not performing data assimilation. In con-

trast, the Rademacher approach after 400 timesteps yields similar forecasts to the

multivariate Gaussian projection method. The balanced truncation method achieves

the best forecast out of the four projection methods, with the forecast resulting in

the same level of error as the forecast obtained using the full-size model.

We consider in Figure 5.1 b) a smaller reduced space, here r = 5, which is just

1% of the size of the full-size models.

Despite this small space, the forecasts obtained using the balanced truncation

method achieves results with the same level of error as the forecast obtained through

the full-size model after 100 timesteps of the forecast window. During the assimi-

lation window the method performs considerably less effectively than the example

with r = 20 as the reduced system size.

The uniform random projection method perform very similarly to the r = 20

example, achieving comparable levels of error from the resulting forecast. The

Rademacher random projection in this smaller space performs worse than the uni-

form random projection for the first 400 timesteps of the forecast window, after
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which the resulting forecast has a smaller error.

In contrast the multivariate Gaussian approach results in significantly worse

forecasts than in the larger space, though still better than not performing data

assimilation.

Partial observations

We now consider partial observations in contrast to the full observations consid-

ered above, as in real-world applications, the number of observations is considerably

less than the full state. Here we take p = 100 observations at each timestep of

the assimilation window, with an observation in every fifth component, otherwise

retaining the same setup as before, though here R = 0.01I100. Let us again consider

projecting with r = 20, and r = 5 where the resulting RMSE plots are shown in

Figure 5.2.
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Figure 5.2: Root mean squared errors for the 1D advection-diffusion example
with partial, noisy observations (r = 20, r = 5).

The resulting RMSEs for the data assimilation problem with partial observations

in Figure 5.2 have similar characteristics to the full observations in Figure 5.1.

The initial guess, and the forecasts generated using the coarse projection result in

very similar RMSEs.

The forecasts obtained through the balanced truncation method, as in the full

observation example achieves a similar error to the full-size model for the r = 20

case. In the r = 5 example, with partial observations it takes 300 timesteps of the
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forecast window for the error from the forecast to be at the same level as the full-size

model.

The multivariate Gaussian projection approach results in slightly higher RMSEs

than in the full observation example, but in the r = 20 example still results in

significantly lower error than not applying data assimilation.

For the Rademacher and uniform random projection methods, the resulting fore-

casts from the example with partial observations have less error in than the full

observations example. Taking r = 20, both of these methods are more effective

than the multivariate Gaussian approach after 300 timesteps of forecast. Whilst

the Rademacher projection leads to the best results of the randomised projection

methods after 400 timesteps of the forecast window.

As with the full observation example, for the lower dimension case, r = 5, the uni-

form random projection remains similarly effective to the r = 20 example. However

the Rademacher and multivariate Gaussian approaches again perform less success-

fully.

5.6.2 | The spread of randomised projection RM-

SEs

A consideration which has to be taken for the randomised methods which we present

here is the variability of the methods depending on the random seed which has

been taken. In the previous section, we presented the mean RMSE from 100 ap-

plications of the randomised projections for comparison to the other methods. In

Figure 5.3 we consider the same example as in Figure 5.2 a), the advection-

diffusion example with partial (p = 100), noisy observations taking covariance ma-

trices Bi,j = 0.1 exp(−|i−j|
2n

) for the background, Q = 10−6I500 for the model, and

R = 0.01I100 for the observation covariances. However, we present a shaded area of

one standard deviation of the resulting forecasts above and below the mean.

In Figure 5.3, we observe that the forecasts obtained from the randomised

projection methods are relatively similar to one another.

If we consider one standard deviation above and below the mean RMSEs ob-

tained from these randomised projection methods we see that the uniform random

projection forecasts we obtain have the same level of error as one another for the first

300 timesteps, at which point we see that this variability becomes slightly larger.

The variability for the forecasts obtained using the Rademacher random projection

increases over the forecast window, until the error level reaches that of the full-rank

method after 700 timesteps of the forecast window. In contrast the multivariate
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b. Multivariate Gaussian with covariance

B
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c. Rademacher

Initial Guess
No projection

Coarse projection
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Uniform random mean
Uniform random spread

MV Gaussian random mean
MV Gaussian random spread
Rademacher random mean
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Figure 5.3: Root mean squared errors for the 1D advection-diffusion example
with partial, noisy observations (r = 20, r = 5) with spread of

random methods.

Gaussian approach results in the variability of the forecasts decreasing over the

course of the forecast window.

Computation time

In Table 5.1, we present a comparison of the computation times for different

parts of the process in the advection-diffusion example using the projection methods

presented in the numerical examples. We consider the advection-diffusion example

used in Figure 5.2, taking partial observations (p = 100) for the advection-diffusion

example with a state space of size 500 and 200 assimilation timesteps. Thus the
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linear system we are solving is of size 100, 000 in the full-size problem, and 4, 000

or 1, 000 taking r = 20 and r = 5 respectively. We use Matlab’s inbuilt conjugate

gradient function to solve (5.34) and (5.35) for the full-size and projected problems

respectively, applying the preconditioner LTD−1L or L̂T D̂−1L̂. The stopping criteria

for this method is a tolerance of 10−6 or 20 iterations. These computations were

done on an Intel i5-4460 processor operating at 3.2GHz.

Projection method Forming projection CG Total
matrices solve

No proj. 0 5.0049 5.0049

BT (r = 20) 1.2271 0.1419 1.3690
Uniform (r = 20) 0.0284 0.0730 0.1014
MV Gaussian (r = 20) 0.0302 0.0760 0.1062
Rademacher (r = 20) 0.0287 0.0717 0.1004
Coarse proj. (r = 20) 0.0009 0.0208 0.0217

BT (r = 5) 1.1778 0.0467 1.2245
Uniform (r = 5) 0.0076 0.0257 0.0333
MV Gaussian (r = 5) 0.0092 0.0265 0.0357
Rademacher (r = 5) 0.0077 0.0257 0.0334
Coarse proj. (r = 5) 0.0007 0.0125 0.0132

Table 5.1: Comparison of computation time for different projection methods for
the 1D advection-diffusion equation example (r = 20, r = 5).

We see in Table 5.1 that all the projection methods are significantly faster than

performing the minimisation in the larger space. The balanced truncation method

as mentioned previously requires considerable expense to compute the projection

matrices U and V due to the requirement of solving Steins equation. As such when

considering a smaller choice of r, the formation of the reduced matrices requires a

similar amount of time.

5.6.3 | 2D linearised shallow water equations

As in Chapter 3 we take for a second example the two-dimensional linearised shallow

water equations, with a constant phase velocity. We have two velocity components

u(x, y, t) and v(x, y, t) and a height perturbation η(x, y, t), where (x, y) ∈ [0, 1]×[0, 1]

is a spacial coordinate and t > 0 is time. The governing PDEs are:

∂u

∂t
= −∂η

∂x
,

∂u

∂t
= −∂η

∂y
,

∂η

∂t
= −

(
∂u

∂x
+
∂v

∂y

)
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with the initial conditions

u(x, y, 0) = 0, v(x, y, 0) = 0, η(x, y, 0) = η0(x, y),

where η0(x, y) is a sinusoidal perturbation.

We solve this problem using centered finite differences, discretising the space

with an m ×m grid taking m = 13, thus leading to a state space size of n = 507

considering the height and two velocities, and taking timesteps of size ∆t = 5 ·10−4.

As with the advection-diffusion example when considering this as a data assim-

ilation problem, we take an assimilation window of (N + 1) = 200 timesteps, where

observations are taken at each timestep, followed by a forecast of 800 timesteps. We

compare the same projection methods as in Section 5.6.1, however as the spectrum of

our model matrix M is not necessarily within the unit circle, we perform α-bounded

balanced truncation (see Section 5.3) on the linear system. For this problem we take

α ≈ 1 + 7 · 10−5, resulting in a stable Ma = M/α.

For the following numerical examples, we consider the RMSE for just the height

component of the state.

Full observations

As in the advection-diffusion example, let us first consider full, interpolatory

observations here with p = 507, again giving the observation operator H = Ip. As

before, we take the observation error covariance to be R = 0.01Ip, the background

error covariance Bi,j = 0.1 exp(−|i−j|
2n

), and the model error covariance Q = 10−6I507.

Let us begin with a reduced space of size r = 20, which as in the advection-

diffusion example corresponds to 4% of the size of the full space. In Figure 5.4 a),

we observe that the forecasts obtained by solving the data assimilation problem

using the coarse interpolatory projection, the uniform random projection and the

Rademacher random projection methods do not result in an improvement for the

RMSE over not performing data assimilation.

As in the advection-diffusion example, the balanced truncation method achieves

the best forecast for the projection methods, though here the RMSE is greater

than using the full system. The multivariate Gaussian approach results in a similar

forecast to balanced truncation, but as seen in Table 5.2, it is cheaper to compute.

Unfortunately applying a coarse projection or the two other randomised projec-

tions, taking a uniform or Rademacher projection do not result in better forecasts

than without applying data assimilation.

For the smaller space with r = 5 which results in a space 1% of the size of the full-
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b. r = 5
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Figure 5.4: Root mean squared errors for the 2D shallow water equations
example with full, noisy observations (r = 20, r = 5).

size problem in Figure 5.4 b), the projection methods are all less effective, with the

coarse, uniform random, and Rademacher random projections all resulting in fore-

casts with the same levels of error as not applying data assimilation. In contrast, the

multivariate Gaussian approach results in a forecast which is a slight improvement

throughout the forecast window, whilst the balanced truncation method results in

a forecast with a smaller error in the middle of the forecast window.

Partial observations

Considering partial observations, taking p = 100, and otherwise retaining the

same setup as before, though here R = 0.01I100. We obtain very similar results,

presented in Figure 5.4 for r = 20 and r = 5.
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Figure 5.5: Root mean squared errors for the 2D shallow water equations
example with partial, noisy observations (r = 20, r = 5).

Though not presented in this work, experiments with the choice of r = 50 dis-

played similar behaviour to the r = 20 examples for the shallow water equations,

with both full and partial observations. The uniform and Rademacher randomised

projection methods did not result in an improved forecast over those obtained from

not applying data assimilation.

Computation time

In Table 5.2, we present a comparison of the computation times for different parts

of the process in the two dimensional shallow water equations example using the

projection methods presented in the numerical examples. We consider the example

from Figure 5.5, with partial observations (p = 100) of the state of size 507,

with 200 assimilation timesteps. The resulting linear systems are 101, 400 for the

full-size problem and 10, 000 and 4, 000 taking r = 20 or r = 5. As with the

advection-diffusion example, we use Matlab’s inbuilt conjugate gradient function to

solve (5.34) and (5.35) for the full-size and projected problems respectively, applying

the preconditioner LTD−1L or L̂T D̂−1L̂. The stopping criteria for this method is a

tolerance of 10−6 or 20 iterations. These computations were done on an Intel i5-4460

processor operating at 3.2GHz.

We see in Table 5.2 that the randomised and coarse projections results in a faster

CG solve than the full-size system due to the smaller size, and forming the matrices
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Projection method Forming projection CG Total
matrices solve

No proj. 0 0.1943 0.1943

BT (r = 20) 1.2887 0.1996 1.4884
Uniform (r = 20) 0.0288 0.1000 0.1288
MV Gaussian (r = 20) 0.0307 0.1047 0.1354
Rademacher (r = 20) 0.0291 0.1001 0.1292
Coarse proj. (r = 20) 0.0010 0.0189 0.0199

BT (r = 5) 1.2514 0.0512 1.3025
Uniform (r = 5) 0.0077 0.0286 0.0364
MV Gaussian (r = 5) 0.0093 0.0301 0.0394
Rademacher (r = 5) 0.0077 0.0286 0.0363
Coarse proj. (r = 5) 0.0007 0.0161 0.0168

Table 5.2: Comparison of computation time for different projection methods for
the 2D shallow water equations example (r = 20, r = 5).

does not require much expense. In contrast the balanced truncation method as

mentioned in Section 5.6.1, requires considerable expense to compute the projected

matrices due to the Stein equation solves, furthermore we must compute a suitable

α for the α-bounded balanced truncation adding an additional expense. Here we

observe that the small number of iterations needed for the full-sized system CG

solve allows it to perform effectively, and as such we do not see the same levels of

savings in the CG solve as we did in the advection-diffusion example. This is due

to the eigenvalues of M being tightly clustered, which is not necessarily the case for

the projected M̂ . In further cycles of assimilation however, the projected matrix M̂

could potentially be reused, thus amortising the cost of formation, particularly for

the balanced truncation method.

5.6.4 | Lorenz-95 system

Let us now consider the Lorenz-95 system [94] which is a chaotic nonlinear exam-

ple, which is often used to represent real world data assimilation problems such as

weather forecasting, and the other example we introduced in Chapter 3. This is

a generalisation of the three-dimensional Lorenz system [93] to n dimensions. The

model is defined by a system of n nonlinear ordinary differential equations

dzi

dt
= −zi−2zi−1 + zi−1zi+1 − zi + f, (5.41)
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where z = [z1, z2, . . . , zn]T is the state of the system, and f is a forcing term. Taking

f = 8, the Lorenz system exhibits chaotic behaviour [57, 94]. For this example, we

take n = 500.

We solve (5.41) using a 4th order Runge-Kutta method in order to obtain

zk+1 =Mk(zk), where zk = [z1
k, z

2
k, . . . , z

n
k ]T , (5.42)

where Mk is the nonlinear model operator which evolves the state zk to zk+1. As

before Hk denotes the observation operator for the state zk. To formulate the

data assimilation problem, we generate the tangent linear model, and observation

operators Mk and Hk by linearising Mk and Hk about zk.

As in Section 5.6.1, let us now consider this example as a data assimilation

problem. We take an assimilation window of (N + 1) = 200 timesteps, where

observations at each timestep, with a forecast of only 300 timesteps.

We compare the same projection methods as in Section 5.6.1, however as the

Lorenz-95 system is not a stable, time-invariant system we cannot perform balanced

truncation in the standard way. The generation of the projection matrices UT

and V is performed with the final linearised model matrix during the assimilation

window, MN . However, as the spectrum of this matrix is not within the unit circle,

we perform α-bounded balanced truncation (see Section 5.3) on the linear system

with MN . From experimentation we observe similar results taking different choices

of M to generate our projection matrices. For this problem we take α ≈ 1.034.

This approach is not optimal however allows an illustrative comparison for balanced

truncation to the randomised projection methods.

Full, noisy observations

As with our previous examples, let us consider full, interpolatory observations

taking p = 500, which results in the observation operator H = Ip. As before, we take

the observation error covariance to be R = 0.01Ip, the background error covariance

Bi,j = 0.1 exp(−|i−j|
2n

), and the model error covariance Q = 10−6I500.

In Figure 5.6 we observe that none of the projection methods see a significant

improvement over not performing assimilation after the assimilation window, despite

a better approximation within the assimilation window. Balanced truncation and

the multivariate Gaussian projection method both achieve a significant improvement

during the first half of the assimilation window. A possible reason for this is that

the Lorenz system is a chaotic nonlinear system, and these nonlinearities may be

too severe to be accurately captured in the projected model matrices. Further
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Figure 5.6: Root mean squared errors for the Lorenz-95 example with full, noisy
observations (r = 20).

investigation into extensions of balanced truncation to nonlinear models, or utilising

nonlinear model reduction methods such as POD may lead to improved performance

for this problem. The improvement shown by the multivariate Gaussian projection

method and balanced truncation over the first half of the assimilation window may

suggest that if a shorter assimilation window were taken, more effective forecasts

may be obtained in comparison to using the full model.

5.7 | Conclusions

The minimisation problem within weak constraint four-dimensional variational data

assimilation usually needs to be solved in very large dimensions. In this chapter we

have proposed projecting this problem to a space with a reduced dimension, which

results in a reduction of computational expense. In particular we have applied

projection methods to the problem, extending the use of balanced truncation to the

weak constraint case. Furthermore we introduced randomised projection methods

which are very cheap to implement, yet resulted in an effective method for some

examples.

We considered the error resulting from these projection methods, and observe

that in some scenarios we can obtain a small error for the projection, dependent on

the system which we are considering. In the case of balanced truncation, which has
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additional requirements on the model operator being stable, there exists a tractable

error bound which can be applied here.

Numerical experiments have demonstrated that some randomised projections

can compete with the balanced truncation method of model reduction within the

data assimilation setting. Furthermore in these examples we achieved close levels of

error to those obtained using the full scale minimisation, significantly better than

not applying data assimilation despite the reduced space being significantly smaller.

The nonlinear and chaotic Lorenz-95 system does not respond well to the pro-

jection approaches investigated here. As such, further investigation is required into

applying projection methods, both randomised and deterministic to these problems.

Despite this, we have shown there are potential savings to be made by considering

projections within weak constraint 4D-Var.
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CHAPTER 6

CONCLUSION AND FURTHER WORK

Data assimilation is an important method for incorporating data (typically obser-

vations) into a model in order to create more accurate estimates of the actual state

of the system. Performing data assimilation can typically be an expensive process

with the models used in the data assimilation method often arising from physical

processes and are often computationally expensive to evaluate themselves. A further

property which majority of applications share is the vast dimensionality of the state

vectors involved.

In this thesis we have introduced methods to reduce the size of the state space

within the data assimilation process in order to reduce storage requirements and

computation time. In particular we considered the weak constraint four dimensional

variational data assimilation approach (weak constraint 4D-Var) and achieved this

reduction in two different ways. In this final chapter we briefly summarise the

findings from the previous chapters.

In Chapter 3 we considered the saddle point formulation of weak constraint four-

dimensional variational data assimilation. We proposed a low-rank approach which

approximates the solution to the saddle point system, with significant reductions in

the storage needed. This was achieved by considering the structure of this saddle

point system and using techniques from the theory of matrix equations. Using the

properties of the Kronecker product we showed that low-rank solutions to the data

assimilation problem exist under certain assumptions, with numerical experimen-

tation demonstrating that this may be the case even when these assumptions are

relaxed. We introduced a low-rank GMRES solver and considered the requirements

for implementing this algorithm. Numerical experiments demonstrated that the low-

rank approach introduced here is successful using both linear and nonlinear models.
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In these examples we achieved close approximations to the full-rank solutions with

storage requirements as low as 1% of those needed by the full-rank approach, which

can be obtained in less time than through GMRES.

In Chapter 4 we presented three different preconditioners and applied them to

the data assimilation saddle point problem, using both GMRES and the low-rank

GMRES method introduced in Chapter 3. We considered the inexact constraint

preconditioner [17, 18], and block diagonal and triangular Schur complement pre-

conditioners. In order to apply these tractably, approximations for the (2, 1) block

of the saddle point matrix were necessary.

We observed that when solving the data assimilation saddle point problem using

either approach, the most effective preconditioner was the inexact constraint pre-

conditioner approximating the model operator with the identity, and not including

the observation operator. We also considered using the exact model operator and

using properties of the Kronecker product to approximate the inverse, and whilst

we did achieve superior results for close approximations to the inverse, it resulted

in a larger number of matrix vector products and greater computational expense.

Preconditioning was not as effective in LR-GMRES when compared to GMRES.

In our numerical examples, we observed that for the preconditioned and unprecon-

ditioned system, the convergence of the residual stagnated. A possible explanation

for this is that the low-rank approach acts like a regularisation, and hence in some

sense like a projected preconditioner itself. In majority of examples using no pre-

conditioner returned the smallest residual for the first 10 or more iterations. This

may be due to the structure of the data assimilation saddle point matrix, with the

more computationally expensive blocks being the (1, 2)/(2, 1) blocks in contrast to

the (1, 1) block as in other applications of saddle point matrices. As a result, fur-

ther investigation into different types of preconditioners for this problem may be

required.

Lastly in Chapter 5 we proposed projecting the minimisation problem within

weak constraint 4D-Var to a space with a reduced dimension, which results in a

reduction of computational expense. In particular we extended the use of balanced

truncation to the weak constraint case, and introduced randomised projection meth-

ods which are very cheap to implement, yet resulted in an effective method for some

examples.

We considered the error resulting from these projection methods, and observed

that in some scenarios we can obtain a small error for the projection, dependent on

the system which we are considering. In the case of balanced truncation, which has

additional requirements on the model operator being stable, there exists a tractable
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error bound which can be applied here.

Numerical experiments demonstrated that some randomised projections can com-

pete with the balanced truncation method of model reduction within the data as-

similation setting. Furthermore in these examples we achieved close levels of error

to those obtained using the full scale minimisation, significantly better than not

applying data assimilation despite the reduced space being significantly smaller.

The nonlinear and chaotic Lorenz-95 system did not respond well to the projection

approaches investigated here. As such, further investigation is required into ap-

plying projection methods, both randomised and deterministic to these problems.

Despite this, we have shown there are potential savings to be made by considering

projections within weak constraint 4D-Var.

Finally, we suggest some possible avenues for future research, building on, or

extending some of the ideas raised in this thesis.

From Chapter 3, we consider the following topics.

• There has been recent development of iterative solvers designed specifically

for saddle point problems, a family of saddle point minimum residual solvers

(SPMR) introduced in [47]. The ideas used here for LR-GMRES could be ex-

tended to form low-rank SPMR methods, which may be more effective solvers

for the data assimilation saddle point problem.

• As noted in Chapter 3, the LR-GMRES method leads to an inexact Krylov

subspace method. Due to the truncation steps during the algorithm the ma-

trix vector products are inexactly applied and thus this method does not sat-

isfy standard GMRES and Krylov subspace properties. Analysis of the LR-

GMRES method using inexact Krylov subspace literature [119] may lead to

further understanding of the method.

Preconditioning the data assimilation problem as considered in Chapter 4 moti-

vates a number of ideas for further research:

• The preconditioners considered here are used for saddle point problems across

different applications. The data assimilation saddle point problem introduces

an unusual situation where the (1, 2) block is more computationally expensive

than the (1, 1) block. Further investigation into preconditioners for problems

with this structure may result in better performance of iterative solvers.

• Due to the prevalence of problems where the (1, 1) block is more computation-

ally expense, much analysis of Schur complement preconditioners makes the

assumption that the exact (1, 2) block is used in the preconditioner. Analysis
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of Schur complement preconditioners when using the exact (1, 1) block, but

an approximation to the (1, 2) block may lead to further understanding of the

convergence properties observed in Section 4.3 for these preconditioners.

• When considering the convergence of preconditioners for LR-GMRES in Sec-

tion 4.5, we suggested that a ”hybrid” approach, where no preconditioner is

used for the first 10−20 iterations before applying a preconditioner may yield

better convergence, however was not considered in this work.

• The reduced model matrices generated in Chapter 5 provide an approximation

of the matrices in the data assimilation saddle point problem. These could

result in effective (and in the case of the randomised projection method, cheap)

preconditioners for the data assimilation problem solved using GMRES.

Further topics which build on Chapter 5 include the following:

• For majority of applications of data assimilation, assimilations are performed

in cycles, with the previous forecast informing the background estimate for

the subsequent assimilation. Reusing the projection matrices constructed in

Chapter 5 for a second cycle of assimilation may lead to improved performance

for nonlinear problems.

• The model reduction method POD for nonlinear problems has previously been

considered for the data assimilation problem [30]. A comparison between the

projection methods considered here and projections obtained using a POD

basis for linear and nonlinear examples would be interesting, in particular for

a cycled data assimilation process as suggested above.

In addition we suggest some other investigations which could be undertaken:

• In this thesis new reduced rank approaches to the data assimilation problem

have been proposed. In Chapter 2 we outlined a number of previous reduced

rank methods for data assimilation. A comparison between the approaches

proposed here and existing methods would be of interest. Furthermore, it is

possible that the methods proposed in this thesis would work effectively in

tandem with a reduced sequential method as a hybrid approach.

• There are many other model reduction techniques such as dynamic mode de-

composition, reduced basis approaches, and IRKA (Iterative rational Krylov

algorithm) which have not been considered in this thesis. These methods may

yield more effective reduced models when applied to the data assimilation

problem.
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Low rank updates in preconditioning the saddle point systems arising from data

assimilation problems, Optim. Method. Softw., 0 (2016), pp. 1–25. (Cited on

page 66.)
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[53] M. Fisher, Y. Trémolet, H. Auvinen, D. Tan, and P. Poli, Weak-

constraint and long-window 4D-Var, Tech. Rep. 655, ECMWF, 2011. (Cited

on pages 7, 8, 18, 29, 66, and 67.)

[54] G. M. Flagg and S. Gugercin, On the ADI method for the Sylvester

equation and the optimal-H2 points, Appl. Numer. Math., 64 (2013), pp. 50–

58. (Cited on page 31.)

[55] M. A. Freitag and D. L. H. Green, A low-rank approach to the solution

of weak constraint variational data assimilation problems, J. Comput. Phys.,

357 (2018), pp. 263–281. (Cited on pages 7, 8, 14, 25, and 57.)

[56] , Projection methods for weak constraint variational data assimilation,

submitted, (2019). (Cited on page 99.)

[57] M. A. Freitag and R. Potthast, Synergy of inverse problems and data

assimilation techniques, vol. 13, Walter de Gruyter, 2013, pp. 1–53. (Cited on

pages 6, 10, 52, and 128.)

[58] A. Gelb, ed., Applied optimal estimation, MIT Press, 1974. (Cited on pages 4

and 5.)

140



[59] M. Ghil, Meteorological data assimilation for oceanographers. part I: Descrip-

tion and theoretical framework, Dynam. Atmos. Oceans, 13 (1989), pp. 171–

218. (Cited on page 1.)

[60] G. H. Golub and C. F. Van Loan, Matrix computations, vol. 3, Johns

Hopkins University Press, 2012. (Cited on page 36.)

[61] L. Grasedyck, Existence and computation of low Kronecker-rank approxi-

mations for large linear systems of tensor product structure, Computing, 72

(2004), pp. 247–265. (Cited on pages 33 and 34.)

[62] , Existence of a low rank or H-matrix approximant to the solution of

a Sylvester equation, Numer. Linear Algebra Appl., 11 (2004), pp. 371–389.

(Cited on pages 26 and 31.)
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A. Bučánek, M. Mile, R. Hamdi, M. Lindskog, J. Barkmeijer,

M. Dahlbom, B. Macpherson, S. Ballard, G. Inverarity, J. Car-

ley, C. Alexander, D. Dowell, S. Liu, Y. Ikuta, and T. Fujita,

Survey of data assimilation methods for convective-scale numerical weather

prediction at operational centres, Q. J. R. Meteorol. Soc., 144 (2018), pp. 1218–

1256. (Cited on page 1.)

[67] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with

randomness: Probabilistic algorithms for constructing approximate matrix de-

compositions, SIAM Rev., 53 (2011), pp. 217–288. (Cited on page 100.)

141



Chapter 7. Bibliography

[68] T. M. Hamill and C. Snyder, A hybrid ensemble Kalman filter – 3D

variational analysis scheme, Mon. Weather Rev., 128 (2000), pp. 2905–2919.

(Cited on page 18.)

[69] D. Hinrichsen and A. Pritchard, An improved error estimate for

reduced-order models of discrete-time systems, IEEE Trans. Autom. Control,

35 (1990), pp. 317–320. (Cited on page 117.)

[70] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University

Press, 2012. (Cited on page 36.)

[71] K. Ide, P. Courtier, M. Ghil, and A. C. Lorenc, Unified notation

for data assimilation: operational, sequential and variational, J. Meteor. Soc.

Japan, 75 (1997), pp. 181–189. (Cited on pages 20 and 23.)

[72] A. Jazwinski, Stochastic processes and filtering theory, Academic Press,

1970. (Cited on page 5.)

[73] K. Jbilou, Low rank approximate solutions to large Sylvester matrix equa-

tions, Appl. Math. Comput., 177 (2006), pp. 365–376. (Cited on page 105.)

[74] W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings

into a Hilbert space, Contemp. Math., 26 (1984), p. 1. (Cited on page 111.)

[75] R. E. Kalman, A new approach to linear filtering and prediction problems,

J. Basic Eng., 82 (1960), pp. 35–45. (Cited on page 4.)

[76] S. Kim, N. Shepherd, and S. Chib, Stochastic volatility: Likelihood infer-

ence and comparison with ARCH models, Rev. Econ. Stud., 65 (1998), pp. 361–

393. (Cited on page 1.)

[77] D. Kressner and C. Tobler, Krylov subspace methods for linear sys-

tems with tensor product structure, SIAM J. Matrix Anal. Appl., 31 (2010),

pp. 1688–1714. (Cited on pages 25 and 33.)

[78] M. Krysta, E. Blayo, E. Cosme, and J. Verron, A consistent hy-

brid variational-smoothing data assimilation method: Application to a simple

shallow-water model of the turbulent midlatitude ocean, Mon. Weather Rev.,

139 (2011), pp. 3333–3347. (Cited on page 22.)

[79] S. Lall and C. Beck, Error-bounds for balanced model-reduction of linear

time-varying systems, IEEE Trans. Automat. Control, 48 (2003), pp. 946–956.

(Cited on page 108.)

142



[80] S. Lall, J. E. Marsden, and S. Glavaški, A subspace approach to bal-
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