4 research outputs found

    Coordination of Multirobot Systems Under Temporal Constraints

    Full text link
    Multirobot systems have great potential to change our lives by increasing efficiency or decreasing costs in many applications, ranging from warehouse logistics to construction. They can also replace humans in dangerous scenarios, for example in a nuclear disaster cleanup mission. However, teleoperating robots in these scenarios would severely limit their capabilities due to communication and reaction delays. Furthermore, ensuring that the overall behavior of the system is safe and correct for a large number of robots is challenging without a principled solution approach. Ideally, multirobot systems should be able to plan and execute autonomously. Moreover, these systems should be robust to certain external factors, such as failing robots and synchronization errors and be able to scale to large numbers, as the effectiveness of particular tasks might depend directly on these criteria. This thesis introduces methods to achieve safe and correct autonomous behavior for multirobot systems. Firstly, we introduce a novel logic family, called counting logics, to describe the high-level behavior of multirobot systems. Counting logics capture constraints that arise naturally in many applications where the identity of the robot is not important for the task to be completed. We further introduce a notion of robust satisfaction to analyze the effects of synchronization errors on the overall behavior and provide complexity analysis for a fragment of this logic. Secondly, we propose an optimization-based algorithm to generate a collection of robot paths to satisfy the specifications given in counting logics. We assume that the robots are perfectly synchronized and use a mixed-integer linear programming formulation to take advantage of the recent advances in this field. We show that this approach is complete under the perfect synchronization assumption. Furthermore, we propose alternative encodings that render more efficient solutions under certain conditions. We also provide numerical results that showcase the scalability of our approach, showing that it scales to hundreds of robots. Thirdly, we relax the perfect synchronization assumption and show how to generate paths that are robust to bounded synchronization errors, without requiring run-time communication. However, the complexity of such an approach is shown to depend on the error bound, which might be limiting. To overcome this issue, we propose a hierarchical method whose complexity does not depend on this bound. We show that, under mild conditions, solutions generated by the hierarchical method can be executed safely, even if such a bound is not known. Finally, we propose a distributed algorithm to execute multirobot paths while avoiding collisions and deadlocks that might occur due to synchronization errors. We recast this problem as a conflict resolution problem and characterize conditions under which existing solutions to the well-known drinking philosophers problem can be used to design control policies that prevents collisions and deadlocks. We further provide improvements to this naive approach to increase the amount of concurrency in the system. We demonstrate the effectiveness of our approach by comparing it to the naive approach and to the state-of-the-art.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162921/1/ysahin_1.pd

    Multi-Robot Persistent Coverage in Complex Environments

    Get PDF
    Los recientes avances en rob贸tica m贸vil y un creciente desarrollo de robots m贸viles asequibles han impulsado numerosas investigaciones en sistemas multi-robot. La complejidad de estos sistemas reside en el dise帽o de estrategias de comunicaci贸n, coordinaci贸n y controlpara llevar a cabo tareas complejas que un 煤nico robot no puede realizar. Una tarea particularmente interesante es la cobertura persistente, que pretende mantener cubierto en el tiempo un entorno con un equipo de robots moviles. Este problema tiene muchas aplicaciones como aspiraci贸n o limpieza de lugares en los que la suciedad se acumula constantemente, corte de c茅sped o monitorizaci贸n ambiental. Adem谩s, la aparici贸n de veh铆culos a茅reos no tripulados ampl铆a estas aplicaciones con otras como la vigilancia o el rescate.Esta tesis se centra en el problema de cubrir persistentemente entornos progresivamente mas complejos. En primer lugar, proponemos una soluci贸n 贸ptima para un entorno convexo con un sistema centralizado, utilizando programaci贸n din谩mica en un horizonte temporalnito. Posteriormente nos centramos en soluciones distribuidas, que son m谩s robustas, escalables y eficientes. Para solventar la falta de informaci贸n global, presentamos un algoritmo de estimaci贸n distribuido con comunicaciones reducidas. 脡ste permite a los robots teneruna estimaci贸n precisa de la cobertura incluso cuando no intercambian informaci贸n con todos los miembros del equipo. Usando esta estimaci贸n, proponemos dos soluciones diferentes basadas en objetivos de cobertura, que son los puntos del entorno en los que m谩s se puedemejorar dicha cobertura. El primer m茅todo es un controlador del movimiento que combina un t茅rmino de gradiente con un t茅rmino que dirige a los robots hacia sus objetivos. Este m茅todo funciona bien en entornos convexos. Para entornos con algunos obst谩culos, el segundom茅todo planifica trayectorias abiertas hasta los objetivos, que son 贸ptimas en t茅rminos de cobertura. Finalmente, para entornos complejos no convexos, presentamos un algoritmo capaz de encontrar particiones equitativas para los robots. En dichas regiones, cada robotplanifica trayectorias de longitud finita a trav茅s de un grafo de caminos de tipo barrido.La parte final de la tesis se centra en entornos discretos, en los que 煤nicamente un conjunto finito de puntos debe que ser cubierto. Proponemos una estrategia que reduce la complejidad del problema separ谩ndolo en tres subproblemas: planificaci贸n de trayectoriascerradas, c谩lculo de tiempos y acciones de cobertura y generaci贸n de un plan de equipo sin colisiones. Estos subproblemas m谩s peque帽os se resuelven de manera 贸ptima. Esta soluci贸n se utiliza en 煤ltimo lugar para una novedosa aplicaci贸n como es el calentamiento por inducci贸n dom茅stico con inductores m贸viles. En concreto, la adaptamos a las particularidades de una cocina de inducci贸n y mostramos su buen funcionamiento en un prototipo real.Recent advances in mobile robotics and an increasing development of aordable autonomous mobile robots have motivated an extensive research in multi-robot systems. The complexity of these systems resides in the design of communication, coordination and control strategies to perform complex tasks that a single robot can not. A particularly interesting task is that of persistent coverage, that aims to maintain covered over time a given environment with a team of robotic agents. This problem is of interest in many applications such as vacuuming, cleaning a place where dust is continuously settling, lawn mowing or environmental monitoring. More recently, the apparition of useful unmanned aerial vehicles (UAVs) has encouraged the application of the coverage problem to surveillance and monitoring. This thesis focuses on the problem of persistently covering a continuous environment in increasingly more dicult settings. At rst, we propose a receding-horizon optimal solution for a centralized system in a convex environment using dynamic programming. Then we look for distributed solutions, which are more robust, scalable and ecient. To deal with the lack of global information, we present a communication-eective distributed estimation algorithm that allows the robots to have an accurate estimate of the coverage of the environment even when they can not exchange information with all the members of the team. Using this estimation, we propose two dierent solutions based on coverage goals, which are the points of the environment in which the coverage can be improved the most. The rst method is a motion controller, that combines a gradient term with a term that drives the robots to the goals, and which performs well in convex environments. For environments with some obstacles, the second method plans open paths to the goals that are optimal in terms of coverage. Finally, for complex, non-convex environments we propose a distributed algorithm to nd equitable partitions for the robots, i.e., with an amount of work proportional to their capabilities. To cover this region, each robot plans optimal, nite-horizon paths through a graph of sweep-like paths. The nal part of the thesis is devoted to discrete environment, in which only a nite set of points has to be covered. We propose a divide-and-conquer strategy to separate the problem to reduce its complexity into three smaller subproblem, which can be optimally solved. We rst plan closed paths through the points, then calculate the optimal coverage times and actions to periodically satisfy the coverage required by the points, and nally join together the individual plans of the robots into a collision-free team plan that minimizes simultaneous motions. This solution is eventually used for a novel application that is domestic induction heating with mobile inductors. We adapt it to the particular setting of a domestic hob and demonstrate that it performs really well in a real prototype.<br /
    corecore