1,784 research outputs found

    Biplane Fluoroscopy for Hindfoot Motion Analysis during Gait: A Model-based Evaluation

    Get PDF
    The purpose of this study was to quantify the accuracy and precision of a biplane fluoroscopy system for model-based tracking of in vivo hindfoot motion during over-ground gait. Gait was simulated by manually manipulating a cadaver foot specimen through a biplane fluoroscopy system attached to a walkway. Three 1.6-mm diameter steel beads were implanted into the specimen to provide marker-based tracking measurements for comparison to model-based tracking. A CT scan was acquired to define a gold standard of implanted bead positions and to create 3D models for model-based tracking. Static and dynamic trials manipulating the specimen through the capture volume were performed. Marker-based tracking error was calculated relative to the gold standard implanted bead positions. The bias, precision, and root-mean-squared (RMS) error of model-based tracking was calculated relative to the marker-based measurements. The overall RMS error of the model-based tracking method averaged 0.43 ± 0.22 mm and 0.66 ± 0.43° for static and 0.59 ± 0.10 mm and 0.71 ± 0.12° for dynamic trials. The model-based tracking approach represents a non-invasive technique for accurately measuring dynamic hindfoot joint motion during in vivo, weight bearing conditions. The model-based tracking method is recommended for application on the basis of the study results

    Physical simulation for monocular 3D model based tracking

    Get PDF
    The problem of model-based object tracking in three dimensions is addressed. Most previous work on tracking assumes simple motion models, and consequently tracking typically fails in a variety of situations. Our insight is that incorporating physics models of object behaviour improves tracking performance in these cases. In particular it allows us to handle tracking in the face of rigid body interactions where there is also occlusion and fast object motion. We show how to incorporate rigid body physics simulation into a particle filter. We present two methods for this based on pose and force noise. The improvements are tested on four videos of a robot pushing an object, and results indicate that our approach performs considerably better than a plain particle filter tracker, with the force noise method producing the best results over the range of test videos

    Model-Based Tracking Initialization in Ship Building Environment

    Get PDF
    An augmented reality (AR) device must know observer’s location and orientation, i.e. observer’s pose, to be able to correctly register the virtual content to observer’s view. One possible way to determine and continuously follow-up the pose is model-based visual tracking. It supposes that a 3D model of the surroundings is known and that there is a video camera that is fixed to the device. The pose is tracked by comparing the video camera image to the model. Each new pose estimate is usually based on the previous estimate. However, the first estimate must be found out without a prior estimate, i.e. the tracking must be initialized, which in practice means that some model features must be identified from the image and matched to model features. This is known in literature as model-to-image registration problem or simultaneous pose and correspondence problem. This report reviews visual tracking initialization methods that are suitable for visual tracking in ship building environment when the ship CAD model is available. The environment is complex, which makes the initialization non-trivial. The report has been done as part of MARIN project.Siirretty Doriast

    Model-based tracking of complex articulated objects

    Full text link

    Accuracy of biplane x-ray imaging combined with model-based tracking for measuring in-vivo patellofemoral joint motion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurately measuring <it>in-vivo</it> motion of the knee's patellofemoral (PF) joint is challenging. Conventional measurement techniques have largely been unable to accurately measure three-dimensional, <it>in-vivo</it> motion of the patella during dynamic activities. The purpose of this study was to assess the accuracy of a new model-based technique for measuring PF joint motion.</p> <p>Methods</p> <p>To assess the accuracy of this technique, we implanted tantalum beads into the femur and patella of three cadaveric knee specimens and then recorded dynamic biplane radiographic images while manually flexing and extending the specimen. The position of the femur and patella were measured from the biplane images using both the model-based tracking system and a validated dynamic radiostereometric analysis (RSA) technique. Model-based tracking was compared to dynamic RSA by computing measures of bias, precision, and overall dynamic accuracy of four clinically-relevant kinematic parameters (patellar shift, flexion, tilt, and rotation).</p> <p>Results</p> <p>The model-based tracking technique results were in excellent agreement with the RSA technique. Overall dynamic accuracy indicated errors of less than 0.395 mm for patellar shift, 0.875° for flexion, 0.863° for tilt, and 0.877° for rotation.</p> <p>Conclusion</p> <p>This model-based tracking technique is a non-invasive method for accurately measuring dynamic PF joint motion under <it>in-vivo</it> conditions. The technique is sufficiently accurate in measuring clinically relevant changes in PF joint motion following conservative or surgical treatment.</p

    Recent advances in monocular model-based tracking: a systematic literature review

    Get PDF
    In this paper, we review the advances of monocular model-based tracking for last ten years period until 2014. In 2005, Lepetit, et. al, [19] reviewed the status of monocular model based rigid body tracking. Since then, direct 3D tracking has become quite popular research area, but monocular model-based tracking should still not be forgotten. We mainly focus on tracking, which could be applied to aug- mented reality, but also some other applications are covered. Given the wide subject area this paper tries to give a broad view on the research that has been conducted, giving the reader an introduction to the different disciplines that are tightly related to model-based tracking. The work has been conducted by searching through well known academic search databases in a systematic manner, and by selecting certain publications for closer examination. We analyze the results by dividing the found papers into different categories by their way of implementation. The issues which have not yet been solved are discussed. We also discuss on emerging model-based methods such as fusing different types of features and region-based pose estimation which could show the way for future research in this subject.Siirretty Doriast

    Skeleton Driven Non-rigid Motion Tracking and 3D Reconstruction

    Full text link
    This paper presents a method which can track and 3D reconstruct the non-rigid surface motion of human performance using a moving RGB-D camera. 3D reconstruction of marker-less human performance is a challenging problem due to the large range of articulated motions and considerable non-rigid deformations. Current approaches use local optimization for tracking. These methods need many iterations to converge and may get stuck in local minima during sudden articulated movements. We propose a puppet model-based tracking approach using skeleton prior, which provides a better initialization for tracking articulated movements. The proposed approach uses an aligned puppet model to estimate correct correspondences for human performance capture. We also contribute a synthetic dataset which provides ground truth locations for frame-by-frame geometry and skeleton joints of human subjects. Experimental results show that our approach is more robust when faced with sudden articulated motions, and provides better 3D reconstruction compared to the existing state-of-the-art approaches.Comment: Accepted in DICTA 201
    • …
    corecore