135,363 research outputs found

    Assurance of security and privacy requirements for cloud deployment models

    Get PDF
    Despite of the several benefits of migrating enterprise critical assets to the Cloud, there are challenges specifically related to security and privacy. It is important that Cloud Users understand their security and privacy needs, based on their specific context and select cloud model best fit to support these needs. The literature provides works that focus on discussing security and privacy issues for cloud systems but such works do not provide a detailed methodological approach to elicit security and privacy requirements neither methods to select cloud deployment models based on satisfaction of these requirements by Cloud Service Providers. This work advances the current state of the art towards this direction. In particular, we consider requirements engineering concepts to elicit and analyze security and privacy requirements and their associated mechanisms using a conceptual framework and a systematic process. The work introduces assurance as evidence for satisfying the security and privacy requirements in terms of completeness and reportable of security incident through audit. This allows perspective cloud users to define their assurance requirements so that appropriate cloud models can be selected for a given context. To demonstrate our work, we present results from a real case study based on the Greek National Gazette

    Evaluating cloud deployment scenarios based on security and privacy requirements

    Get PDF
    Migrating organisational services, data and application on the Cloud is an important strategic decision for organisations due to the large number of benefits introduced by the usage of cloud computing, such as cost reduction and on demand resources. Despite, however, of the many benefits, there are challenges and risks for cloud adaption related to (amongst others) data leakage, insecure APIs, and shared technology vulnerabilities. These challenges need to be understood and analysed in the context of an organisation relevant cloud computing deployment models. Although, the literature provides a large number of references to works that consider cloud computing security issues, no work has been provided, to our knowledge, which supports the elicitation of security and privacy requirements and the selection of an appropriate cloud deployment model based on such requirements. This work contributes towards this gap. In particular, we propose a requirements engineering framework to support the elicitation of security and privacy requirements and the selection of an appropriate deployment model based on the elicited requirements. Our framework provides a modelling language that builds on concepts from requirements, security, privacy and cloud engineering and a systematic process. We use a real case study, based on the Greek National Gazette, to demonstrate the applicability of our work

    Advanced Cloud Privacy Threat Modeling

    Full text link
    Privacy-preservation for sensitive data has become a challenging issue in cloud computing. Threat modeling as a part of requirements engineering in secure software development provides a structured approach for identifying attacks and proposing countermeasures against the exploitation of vulnerabilities in a system . This paper describes an extension of Cloud Privacy Threat Modeling (CPTM) methodology for privacy threat modeling in relation to processing sensitive data in cloud computing environments. It describes the modeling methodology that involved applying Method Engineering to specify characteristics of a cloud privacy threat modeling methodology, different steps in the proposed methodology and corresponding products. We believe that the extended methodology facilitates the application of a privacy-preserving cloud software development approach from requirements engineering to design

    Machine-Readable Privacy Certificates for Services

    Full text link
    Privacy-aware processing of personal data on the web of services requires managing a number of issues arising both from the technical and the legal domain. Several approaches have been proposed to matching privacy requirements (on the clients side) and privacy guarantees (on the service provider side). Still, the assurance of effective data protection (when possible) relies on substantial human effort and exposes organizations to significant (non-)compliance risks. In this paper we put forward the idea that a privacy certification scheme producing and managing machine-readable artifacts in the form of privacy certificates can play an important role towards the solution of this problem. Digital privacy certificates represent the reasons why a privacy property holds for a service and describe the privacy measures supporting it. Also, privacy certificates can be used to automatically select services whose certificates match the client policies (privacy requirements). Our proposal relies on an evolution of the conceptual model developed in the Assert4Soa project and on a certificate format specifically tailored to represent privacy properties. To validate our approach, we present a worked-out instance showing how privacy property Retention-based unlinkability can be certified for a banking financial service.Comment: 20 pages, 6 figure

    Mechatronics & the cloud

    Get PDF
    Conventionally, the engineering design process has assumed that the design team is able to exercise control over all elements of the design, either directly or indirectly in the case of sub-systems through their specifications. The introduction of Cyber-Physical Systems (CPS) and the Internet of Things (IoT) means that a design team’s ability to have control over all elements of a system is no longer the case, particularly as the actual system configuration may well be being dynamically reconfigured in real-time according to user (and vendor) context and need. Additionally, the integration of the Internet of Things with elements of Big Data means that information becomes a commodity to be autonomously traded by and between systems, again according to context and need, all of which has implications for the privacy of system users. The paper therefore considers the relationship between mechatronics and cloud-basedtechnologies in relation to issues such as the distribution of functionality and user privacy

    A survey on cyber security for smart grid communications

    Get PDF
    A smart grid is a new form of electricity network with high fidelity power-flow control, self-healing, and energy reliability and energy security using digital communications and control technology. To upgrade an existing power grid into a smart grid, it requires significant dependence on intelligent and secure communication infrastructures. It requires security frameworks for distributed communications, pervasive computing and sensing technologies in smart grid. However, as many of the communication technologies currently recommended to use by a smart grid is vulnerable in cyber security, it could lead to unreliable system operations, causing unnecessary expenditure, even consequential disaster to both utilities and consumers. In this paper, we summarize the cyber security requirements and the possible vulnerabilities in smart grid communications and survey the current solutions on cyber security for smart grid communications. © 2012 IEEE

    SensorCloud: Towards the Interdisciplinary Development of a Trustworthy Platform for Globally Interconnected Sensors and Actuators

    Get PDF
    Although Cloud Computing promises to lower IT costs and increase users' productivity in everyday life, the unattractive aspect of this new technology is that the user no longer owns all the devices which process personal data. To lower scepticism, the project SensorCloud investigates techniques to understand and compensate these adoption barriers in a scenario consisting of cloud applications that utilize sensors and actuators placed in private places. This work provides an interdisciplinary overview of the social and technical core research challenges for the trustworthy integration of sensor and actuator devices with the Cloud Computing paradigm. Most importantly, these challenges include i) ease of development, ii) security and privacy, and iii) social dimensions of a cloud-based system which integrates into private life. When these challenges are tackled in the development of future cloud systems, the attractiveness of new use cases in a sensor-enabled world will considerably be increased for users who currently do not trust the Cloud.Comment: 14 pages, 3 figures, published as technical report of the Department of Computer Science of RWTH Aachen Universit
    • …
    corecore