170 research outputs found

    Smart antennas: state of the art

    Get PDF
    Aim of this contribution is to illustrate the state of the art of smart antenna research from several perspectives. The bow is drawn from transmitter issues via channel measurements and modeling, receiver signal processing, network aspects, technological challenges towards first smart antenna applications and current status of standardization. Moreover, some future prospects of different disciplines in smart antenna research are given.Peer Reviewe

    Cyclic Prefix-Free MC-CDMA Arrayed MIMO Communication Systems

    No full text
    The objective of this thesis is to investigate MC-CDMA MIMO systems where the antenna array geometry is taken into consideration. In most MC-CDMA systems, cyclic pre xes, which reduce the spectral e¢ ciency, are used. In order to improve the spectral efficiency, this research study is focused on cyclic pre x- free MC-CDMA MIMO architectures. Initially, space-time wireless channel models are developed by considering the spatio-temporal mechanisms of the radio channel, such as multipath propaga- tion. The spatio-temporal channel models are based on the concept of the array manifold vector, which enables the parametric modelling of the channel. The array manifold vector is extended to the multi-carrier space-time array (MC-STAR) manifold matrix which enables the use of spatio-temporal signal processing techniques. Based on the modelling, a new cyclic pre x-free MC- CDMA arrayed MIMO communication system is proposed and its performance is compared with a representative existing system. Furthermore, a MUSIC-type algorithm is then developed for the estimation of the channel parameters of the received signal. This proposed cyclic pre x-free MC-CDMA arrayed MIMO system is then extended to consider the effects of spatial diffusion in the wireless channel. Spatial diffusion is an important channel impairment which is often ignored and the failure to consider such effects leads to less than satisfactory performance. A subspace-based approach is proposed for the estimation of the channel parameters and spatial spread and reception of the desired signal. Finally, the problem of joint optimization of the transmit and receive beam- forming weights in the downlink of a cyclic pre x-free MC-CDMA arrayed MIMO communication system is investigated. A subcarrier-cooperative approach is used for the transmit beamforming so that there is greater flexibility in the allocation of channel symbols. The resulting optimization problem, with a per-antenna transmit power constraint, is solved by the Lagrange multiplier method and an iterative algorithm is proposed

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions
    corecore