54,674 research outputs found

    Offline and online data: on upgrading functional information to knowledge

    Get PDF
    This paper addresses the problem of upgrading functional information to knowledge. Functional information is defined as syntactically well-formed, meaningful and collectively opaque data. Its use in the formal epistemology of information theories is crucial to solve the debate on the veridical nature of information, and it represents the companion notion to standard strongly semantic information, defined as well-formed, meaningful and true data. The formal framework, on which the definitions are based, uses a contextual version of the verificationist principle of truth in order to connect functional to semantic information, avoiding Gettierization and decoupling from true informational contents. The upgrade operation from functional information uses the machinery of epistemic modalities in order to add data localization and accessibility as its main properties. We show in this way the conceptual worthiness of this notion for issues in contemporary epistemology debates, such as the explanation of knowledge process acquisition from information retrieval systems, and open data repositories

    CALIPER: Continuous Authentication Layered with Integrated PKI Encoding Recognition

    Full text link
    Architectures relying on continuous authentication require a secure way to challenge the user's identity without trusting that the Continuous Authentication Subsystem (CAS) has not been compromised, i.e., that the response to the layer which manages service/application access is not fake. In this paper, we introduce the CALIPER protocol, in which a separate Continuous Access Verification Entity (CAVE) directly challenges the user's identity in a continuous authentication regime. Instead of simply returning authentication probabilities or confidence scores, CALIPER's CAS uses live hard and soft biometric samples from the user to extract a cryptographic private key embedded in a challenge posed by the CAVE. The CAS then uses this key to sign a response to the CAVE. CALIPER supports multiple modalities, key lengths, and security levels and can be applied in two scenarios: One where the CAS must authenticate its user to a CAVE running on a remote server (device-server) for access to remote application data, and another where the CAS must authenticate its user to a locally running trusted computing module (TCM) for access to local application data (device-TCM). We further demonstrate that CALIPER can leverage device hardware resources to enable privacy and security even when the device's kernel is compromised, and we show how this authentication protocol can even be expanded to obfuscate direct kernel object manipulation (DKOM) malwares.Comment: Accepted to CVPR 2016 Biometrics Worksho

    Multi-biometric templates using fingerprint and voice

    Get PDF
    As biometrics gains popularity, there is an increasing concern about privacy and misuse of biometric data held in central repositories. Furthermore, biometric verification systems face challenges arising from noise and intra-class variations. To tackle both problems, a multimodal biometric verification system combining fingerprint and voice modalities is proposed. The system combines the two modalities at the template level, using multibiometric templates. The fusion of fingerprint and voice data successfully diminishes privacy concerns by hiding the minutiae points from the fingerprint, among the artificial points generated by the features obtained from the spoken utterance of the speaker. Equal error rates are observed to be under 2% for the system where 600 utterances from 30 people have been processed and fused with a database of 400 fingerprints from 200 individuals. Accuracy is increased compared to the previous results for voice verification over the same speaker database
    corecore