52,915 research outputs found

    The modal logic of set-theoretic potentialism and the potentialist maximality principles

    Full text link
    We analyze the precise modal commitments of several natural varieties of set-theoretic potentialism, using tools we develop for a general model-theoretic account of potentialism, building on those of Hamkins, Leibman and L\"owe, including the use of buttons, switches, dials and ratchets. Among the potentialist conceptions we consider are: rank potentialism (true in all larger VβV_\beta); Grothendieck-Zermelo potentialism (true in all larger VκV_\kappa for inaccessible cardinals κ\kappa); transitive-set potentialism (true in all larger transitive sets); forcing potentialism (true in all forcing extensions); countable-transitive-model potentialism (true in all larger countable transitive models of ZFC); countable-model potentialism (true in all larger countable models of ZFC); and others. In each case, we identify lower bounds for the modal validities, which are generally either S4.2 or S4.3, and an upper bound of S5, proving in each case that these bounds are optimal. The validity of S5 in a world is a potentialist maximality principle, an interesting set-theoretic principle of its own. The results can be viewed as providing an analysis of the modal commitments of the various set-theoretic multiverse conceptions corresponding to each potentialist account.Comment: 36 pages. Commentary can be made about this article at http://jdh.hamkins.org/set-theoretic-potentialism. Minor revisions in v2; further minor revisions in v

    Do we sense modalities with our sense modalities?1

    Get PDF
    It has been widely assumed that we do not perceive dispositional properties. I argue that there are two ways of interpreting this assumption. On the first, extensional, interpretation whether we perceive dispositions depends on a complex set of metaphysical commitments. But if we interpret the claim in the second, intensional, way, then we have no reason to suppose that we do not perceive dispositional properties. The two most important and influential arguments to the contrary fai

    The modal logic of arithmetic potentialism and the universal algorithm

    Full text link
    I investigate the modal commitments of various conceptions of the philosophy of arithmetic potentialism. Specifically, I consider the natural potentialist systems arising from the models of arithmetic under their natural extension concepts, such as end-extensions, arbitrary extensions, conservative extensions and more. In these potentialist systems, I show, the propositional modal assertions that are valid with respect to all arithmetic assertions with parameters are exactly the assertions of S4. With respect to sentences, however, the validities of a model lie between S4 and S5, and these bounds are sharp in that there are models realizing both endpoints. For a model of arithmetic to validate S5 is precisely to fulfill the arithmetic maximality principle, which asserts that every possibly necessary statement is already true, and these models are equivalently characterized as those satisfying a maximal Σ1\Sigma_1 theory. The main S4 analysis makes fundamental use of the universal algorithm, of which this article provides a simplified, self-contained account. The paper concludes with a discussion of how the philosophical differences of several fundamentally different potentialist attitudes---linear inevitability, convergent potentialism and radical branching possibility---are expressed by their corresponding potentialist modal validities.Comment: 38 pages. Inquiries and commentary can be made at http://jdh.hamkins.org/arithmetic-potentialism-and-the-universal-algorithm. Version v3 has further minor revisions, including additional reference

    Gestalt Shifts in the Liar Or Why KT4M Is the Logic of Semantic Modalities

    Get PDF
    ABSTRACT: This chapter offers a revenge-free solution to the liar paradox (at the centre of which is the notion of Gestalt shift) and presents a formal representation of truth in, or for, a natural language like English, which proposes to show both why -- and how -- truth is coherent and how it appears to be incoherent, while preserving classical logic and most principles that some philosophers have taken to be central to the concept of truth and our use of that notion. The chapter argues that, by using a truth operator rather than truth predicate, it is possible to provide a coherent, model-theoretic representation of truth with various desirable features. After investigating what features of liar sentences are responsible for their paradoxicality, the chapter identifies the logic as the normal modal logic KT4M (= S4M). Drawing on the structure of KT4M (=S4M), the author proposes that, pace deflationism, truth has content, that the content of truth is bivalence, and that the notions of both truth and bivalence are semideterminable

    Bisimulation in Inquisitive Modal Logic

    Full text link
    Inquisitive modal logic, InqML, is a generalisation of standard Kripke-style modal logic. In its epistemic incarnation, it extends standard epistemic logic to capture not just the information that agents have, but also the questions that they are interested in. Technically, InqML fits within the family of logics based on team semantics. From a model-theoretic perspective, it takes us a step in the direction of monadic second-order logic, as inquisitive modal operators involve quantification over sets of worlds. We introduce and investigate the natural notion of bisimulation equivalence in the setting of InqML. We compare the expressiveness of InqML and first-order logic, and characterise inquisitive modal logic as the bisimulation invariant fragments of first-order logic over various classes of two-sorted relational structures. These results crucially require non-classical methods in studying bisimulations and first-order expressiveness over non-elementary classes.Comment: In Proceedings TARK 2017, arXiv:1707.0825

    Evidence and plausibility in neighborhood structures

    Full text link
    The intuitive notion of evidence has both semantic and syntactic features. In this paper, we develop an {\em evidence logic} for epistemic agents faced with possibly contradictory evidence from different sources. The logic is based on a neighborhood semantics, where a neighborhood NN indicates that the agent has reason to believe that the true state of the world lies in NN. Further notions of relative plausibility between worlds and beliefs based on the latter ordering are then defined in terms of this evidence structure, yielding our intended models for evidence-based beliefs. In addition, we also consider a second more general flavor, where belief and plausibility are modeled using additional primitive relations, and we prove a representation theorem showing that each such general model is a pp-morphic image of an intended one. This semantics invites a number of natural special cases, depending on how uniform we make the evidence sets, and how coherent their total structure. We give a structural study of the resulting `uniform' and `flat' models. Our main result are sound and complete axiomatizations for the logics of all four major model classes with respect to the modal language of evidence, belief and safe belief. We conclude with an outlook toward logics for the dynamics of changing evidence, and the resulting language extensions and connections with logics of plausibility change
    • …
    corecore