2,738 research outputs found

    Handover mechanisms in 3GPP long term evolution (LTE)

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.The Long-Term Evolution (LTE) network is a new radio access technology (RAT) proposed by the Third Generation Partnership Project (3GPP) to provide a smooth migration towards the fourth generation (4G) network. Long Term Evolution-Advanced (LTE-A) is a major enhancement of the LTE standard proposed by the 3GPP to meet the 4G mobile communication standards. Handover is one of the key components in cellular network mobility management. Handover is a mechanism that transfers an on-going call or data session from one base station (BS) to another BS or one sector to another sector within the same BS. Hard handover has been adopted in LTE and LTE-A systems by 3GPP due to the flat IP-based architecture and the lack of a centralized controller. The use of hard handovers reduces the complexity of the handover mechanism and minimizes the handover delay. However, the hard handover approach causes call drops that may result in lost data during a session. The objective of this thesis is to provide the basis for improving handover performance in the LTE and LTE-A systems. A C++ system level simulator that can dynamically model the large and complex downlink LTE and LTE-A was developed as part of this research work followed by a proposed handover parameters optimization method. The simulation results show that the handover parameters optimization method can effectively minimize the unnecessary number of handovers while maximizing the system throughput. Under an initial assumption of an ideal mobile cellular channel (i.e. the mobile cellular channel is not subject to any impairment), this thesis proposes a new handover algorithm in the LTE system and three new Coordinated Multiple Transmission and Reception (CoMP) handover algorithms in the LTE-A system. The simulation results show that the proposed handover algorithm outperforms well-known handover algorithms in the LTE system by having less number of handovers, shorten total system delay whilst maintaining a higher total system throughput. The performance of the proposed CoMP handover algorithms are evaluated and compared with open literature CoMP handover algorithm via simulation. It is shown via simulation that the proposed CoMP handover algorithms can improve the system throughput and minimize the system delay in a saturated system scenario in the LTE-A system. A more practical LTE-A system where the mobile cellular channels are subject to impairments is considered for performance testing of selected CoMP handover algorithms. The impairments for a practical LTE-A system are assumed to be in two scenarios: outdated feedback and missing feedback. It is shown via computer simulations that the system throughput and system delay are very sensitive against outdated Channel Quality Information (CQI) feedback and missing CQI feedback. Furthermore, a handover failure caused by an inappropriate feedback increases the number of unnecessary handovers which require additional resources in the network and may significantly degrade the system performance

    Self-organising comprehensive handover strategy for multi-tier LTE-advanced heterogeneous networks

    Get PDF
    Long term evolution (LTE)-advanced was introduced as real fourth generation (4G) with its new features and additional functions, satisfying the growing demands of quality and network coverage for the network operators' subscribers. The term muti-tier has also been recently used with respect to the heterogeneity of the network by applying the various subnetwork cooperative systems and functionalities with self-organising capabilities. Using indoor short-range low-power cellular base stations, for example, femtocells, in cooperation with existing long-range macrocells are considered as the key technical challenge of this multi-tier configuration. Furthermore, shortage of network spectrum is a major concern for network operators which forces them to spend additional attentions to overcome the degradation in performance and quality of services in 4G HetNets. This study investigates handover between the different layers of a heterogeneous LTE-advanced system, as a critical attribute to plan the best way of interactive coordination within the network for the proposed HetNet. The proposed comprehensive handover algorithm takes multiple factors in both handover sensing and decision stages, based on signal power reception, resource availability and handover optimisation, as well as prioritisation among macro and femto stations, to obtain maximum signal quality while avoiding unnecessary handovers

    Optimized Performance Evaluation of LTE Hard Handover Algorithm with Average RSRP Constraint

    Full text link
    Hard handover mechanism is adopted to be used in 3GPP Long Term Evolution (3GPP LTE) in order to reduce the complexity of the LTE network architecture. This mechanism comes with degradation in system throughput as well as a higher system delay. This paper proposes a new handover algorithm known as LTE Hard Handover Algorithm with Average Received Signal Reference Power (RSRP) Constraint (LHHAARC) in order to minimize number of handovers and the system delay as well as maximize the system throughput. An optimized system performance of the LHHAARC is evaluated and compared with three well-known handover algorithms via computer simulation. The simulation results show that the LHHAARC outperforms three well-known handover algorithms by having less number of average handovers per UE per second, shorter total system delay whilst maintaining a higher total system throughput.Comment: 16 pages, 9 figures, International Journal of Wireless & Mobile Networks (IJWMN

    Improved Handover Through Dual Connectivity in 5G mmWave Mobile Networks

    Full text link
    The millimeter wave (mmWave) bands offer the possibility of orders of magnitude greater throughput for fifth generation (5G) cellular systems. However, since mmWave signals are highly susceptible to blockage, channel quality on any one mmWave link can be extremely intermittent. This paper implements a novel dual connectivity protocol that enables mobile user equipment (UE) devices to maintain physical layer connections to 4G and 5G cells simultaneously. A novel uplink control signaling system combined with a local coordinator enables rapid path switching in the event of failures on any one link. This paper provides the first comprehensive end-to-end evaluation of handover mechanisms in mmWave cellular systems. The simulation framework includes detailed measurement-based channel models to realistically capture spatial dynamics of blocking events, as well as the full details of MAC, RLC and transport protocols. Compared to conventional handover mechanisms, the study reveals significant benefits of the proposed method under several metrics.Comment: 16 pages, 13 figures, to appear on the 2017 IEEE JSAC Special Issue on Millimeter Wave Communications for Future Mobile Network

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Context-Aware Handover Policies in HetNets

    Get PDF
    Next generation cellular systems are expected to entail a wide variety of wireless coverage zones, with cells of different sizes and capacities that can overlap in space and share the transmission resources. In this scenario, which is referred to as Heterogeneous Networks (HetNets), a fundamental challenge is the management of the handover process between macro, femto and pico cells. To limit the number of handovers and the signaling between the cells, it will hence be crucial to manage the user's mobility considering the context parameters, such as cells size, traffic loads, and user velocity. In this paper, we propose a theoretical model to characterize the performance of a mobile user in a HetNet scenario as a function of the user's mobility, the power profile of the neighboring cells, the handover parameters, and the traffic load of the different cells. We propose a Markov-based framework to model the handover process for the mobile user, and derive an optimal context-dependent handover criterion. The mathematical model is validated by means of simulations, comparing the performance of our strategy with conventional handover optimization techniques in different scenarios. Finally, we show the impact of the handover regulation on the users performance and how it is possible to improve the users capacity exploiting context information

    Performance Comparison of Dual Connectivity and Hard Handover for LTE-5G Tight Integration in mmWave Cellular Networks

    Get PDF
    MmWave communications are expected to play a major role in the Fifth generation of mobile networks. They offer a potential multi-gigabit throughput and an ultra-low radio latency, but at the same time suffer from high isotropic pathloss, and a coverage area much smaller than the one of LTE macrocells. In order to address these issues, highly directional beamforming and a very high-density deployment of mmWave base stations were proposed. This Thesis aims to improve the reliability and performance of the 5G network by studying its tight and seamless integration with the current LTE cellular network. In particular, the LTE base stations can provide a coverage layer for 5G mobile terminals, because they operate on microWave frequencies, which are less sensitive to blockage and have a lower pathloss. This document is a copy of the Master's Thesis carried out by Mr. Michele Polese under the supervision of Dr. Marco Mezzavilla and Prof. Michele Zorzi. It will propose an LTE-5G tight integration architecture, based on mobile terminals' dual connectivity to LTE and 5G radio access networks, and will evaluate which are the new network procedures that will be needed to support it. Moreover, this new architecture will be implemented in the ns-3 simulator, and a thorough simulation campaign will be conducted in order to evaluate its performance, with respect to the baseline of handover between LTE and 5G.Comment: Master's Thesis carried out by Mr. Michele Polese under the supervision of Dr. Marco Mezzavilla and Prof. Michele Zorz
    corecore