103,981 research outputs found

    Survey Paper: Mobility Management in Heterogeneous Wireless Networks

    Get PDF
    AbstractEver increasing user demands and development of modern communication technologies have led to the evolution of communication networks from 1st Generation (1G) network to 4G heterogeneous networks. Further, 4G with heterogeneous network environment will provide features such as, “Always Best Connected”, “Anytime Anywhere” and seamless communication. Due to diverse characteristics of heterogeneous networks such as bandwidth, latency, cost, coverage and Quality of Service (QoS) etc., there are several open and unsolved issues namely mobility management, network administration, security etc. Hence, Designing proficient mobility management to seamlessly integrate heterogeneous wireless networks with all-IP is the most challenging issue in 4G networks. Mobile IPv6 (MIPv6) developed by Internet Engineering Task Force (IETF) has mobility management for the packet-switched devices of homogeneous wireless networks. Further, mobility management of homogeneous networks depends on network related parameter i.e., Received Signal Strength (RSS). However the mobility management of heterogeneous networks, not only depends on network related parameters, but also on terminal-velocity, battery power, location information, user-user profile & preferences and service-service capabilities & QoS etc. Designing mobility management with all-IP, while, considering issues such as context of networks, terminal, user and services is the main concern of industry and researchers in the current era

    HWN* Mobility Management Considering QoS, Optimisation and Cross Layer Issues

    Get PDF
    In this paper, we address mobility management for 4th generation heterogeneous networks from a quality of service (QoS), optimisation and cross layer design perspective. Users are classified as high profile, normal profile and low profile according to their differentiated service requirements. Congestion avoidance control and adaptive handover mechanisms are implemented for efficient cooperation within the mobile heterogeneous network environment consisting of a TDMA network, ad hoc network and relay nodes. A previous proposed routing algorithm is also revised to include mobility management

    A Unified Mobility Management Architecture for Interworked Heterogeneous Mobile Networks

    Get PDF
    The buzzword of this decade has been convergence: the convergence of telecommunications, Internet, entertainment, and information technologies for the seamless provisioning of multimedia services across different network types. Thus the future Next Generation Mobile Network (NGMN) can be envisioned as a group of co-existing heterogeneous mobile data networking technologies sharing a common Internet Protocol (IP) based backbone. In such all-IP based heterogeneous networking environments, ongoing sessions from roaming users are subjected to frequent vertical handoffs across network boundaries. Therefore, ensuring uninterrupted service continuity during session handoffs requires successful mobility and session management mechanisms to be implemented in these participating access networks. Therefore, it is essential for a common interworking framework to be in place for ensuring seamless service continuity over dissimilar networks to enable a potential user to freely roam from one network to another. For the best of our knowledge, the need for a suitable unified mobility and session management framework for the NGMN has not been successfully addressed as yet. This can be seen as the primary motivation of this research. Therefore, the key objectives of this thesis can be stated as: To propose a mobility-aware novel architecture for interworking between heterogeneous mobile data networks To propose a framework for facilitating unified real-time session management (inclusive of session establishment and seamless session handoff) across these different networks. In order to achieve the above goals, an interworking architecture is designed by incorporating the IP Multimedia Subsystem (IMS) as the coupling mediator between dissipate mobile data networking technologies. Subsequently, two different mobility management frameworks are proposed and implemented over the initial interworking architectural design. The first mobility management framework is fully handled by the IMS at the Application Layer. This framework is primarily dependant on the IMS’s default session management protocol, which is the Session Initiation Protocol (SIP). The second framework is a combined method based on SIP and the Mobile IP (MIP) protocols, which is essentially operated at the Network Layer. An analytical model is derived for evaluating the proposed scheme for analyzing the network Quality of Service (QoS) metrics and measures involved in session mobility management for the proposed mobility management frameworks. More precisely, these analyzed QoS metrics include vertical handoff delay, transient packet loss, jitter, and signaling overhead/cost. The results of the QoS analysis indicates that a MIP-SIP based mobility management framework performs better than its predecessor, the Pure-SIP based mobility management method. Also, the analysis results indicate that the QoS performances for the investigated parameters are within acceptable levels for real-time VoIP conversations. An OPNET based simulation platform is also used for modeling the proposed mobility management frameworks. All simulated scenarios prove to be capable of performing successful VoIP session handoffs between dissimilar networks whilst maintaining acceptable QoS levels. Lastly, based on the findings, the contributions made by this thesis can be summarized as: The development of a novel framework for interworked heterogeneous mobile data networks in a NGMN environment. The final design conveniently enables 3G cellular technologies (such as the Universal Mobile Telecommunications Systems (UMTS) or Code Division Multiple Access 2000 (CDMA2000) type systems), Wireless Local Area Networking (WLAN) technologies, and Wireless Metropolitan Area Networking (WMAN) technologies (e.g., Broadband Wireless Access (BWA) systems such as WiMAX) to interwork under a common signaling platform. The introduction of a novel unified/centralized mobility and session management platform by exploiting the IMS as a universal coupling mediator for real-time session negotiation and management. This enables a roaming user to seamlessly handoff sessions between different heterogeneous networks. As secondary outcomes of this thesis, an analytical framework and an OPNET simulation framework are developed for analyzing vertical handoff performance. This OPNET simulation platform is suitable for commercial use

    Review of minimizing a vertical handover in a heterogeneous wireless network.

    Get PDF
    Nowadays many different types of networks communicate among themselves to form heterogeneous ­networks. Vertical handovers between them are required to supply ongoing internet access to mobile nodes who switch from one coverage area to another with different characteristics. Mobility management techniques between heterogeneous network are necessary to reduce latency time and professionally treat the insufficient radio access resources to indemnity specific quality of service. This paper reviews literatures that are related to minimizing a ­vertical ­handover in heterogeneous wireless networks. This paper reviews literatures that are related to minimizing a vertical handover in heterogeneous wireless networks. This review investigated various handover management technologies for providing pure mobility between different access techniques such as GPRS, UMTS, and WI-FI. More of these solutions used mobile IP (MIP), transmission control protocol (TCP), stream control transmission protocol (SCTP) and session initiation protocol (SIP) to support integration between WLAN and UMTS. From the review we conclude that SCTP is much more robust against packet loss and delay ­compared to TCP, SIP, and MIP. This fact makes SCTP a potential scheme for heterogeneous wireless networks

    Fully distributed mobility management scheme for future heterogeneous wireless networks

    Get PDF
    Mobile network operators urgently need to scalable and reliable mobility management solutions to cope with the explosive increase of the mobile users and internet traffic. Although the network-based PMIPv6 protocol is considered the favorable solution to solve the problems of host-based MIP protocol, these protocols are based on centralized mobility management CMM scheme. Current mobility solutions posing several challenges due to heavily centralized architecture. Furthermore, the future 5G networks are based on flat infrastructures to reduce the load in the network core. The distributed mobility management DMM scheme is introduced recently to overcome the problems of CMM. Additionally, to maintain the heterogeneity of future wireless networks, IEEE 802.21 Media Independent Handover (MIH) framework identifies the structure and services to provide seamless handover in heterogeneous networks. In this paper, we develop an efficient network-based fully DMM scheme based on the cross layer design of layer 2 MIH and layer 3 PMIPv6 protocols. The proposed approach removes any central anchor node in the network infrastructure and also eliminates any layer 2 and layer 3 signaling between the mobile node and the access networks. The numerical evaluation shows that the efficient approach gives enhance handover performance in terms of signaling cost, handover latency, and packet loss

    Mobility and Network Management in Heterogeneous Networks

    Full text link

    Multihomed mobile network architecture

    Get PDF
    IP mobility ensures network reachability and session continuity while IPv6 networks are on the move. In the Network Mobility (NEMO) model, the potential for NEMO Mobile Routers (MRs) to interconnect and extend Internet connectivity allows the formation Nested NEMO networks. With MANEMO, nested MRs can be efficiently interconnected in a tree-based structure with Internet access being maintained via a designated Gateway. However, this only supports single-homed Internet connectivity. With the span of wireless access technologies and the popularity of multi-interfaced devices, multihoming support in this scenario becomes critical. A Nested Mobile Network with heterogeneous available Internet access options would allow better overall network performance and optimal utilisation of available resources. In this paper, we present the Multihomed Mobile Network Architecture (MMNA), a comprehensive multihomed mobility solution. It provides a multihoming management mechanism for Gateway Discovery and Selection on top of a multihomed mobility model integrating different mobility and multihoming protocols. It enables a complex nested multihomed topology to be established with multiple gateways supporting heterogeneous Internet access. The results demonstrate that the proposed solution achieves better overall throughput, load sharing, and link failure recovery
    corecore