248 research outputs found

    A Nonconvex Splitting Method for Symmetric Nonnegative Matrix Factorization: Convergence Analysis and Optimality

    Get PDF
    Symmetric nonnegative matrix factorization (SymNMF) has important applications in data analytics problems such as document clustering, community detection and image segmentation. In this paper, we propose a novel nonconvex variable splitting method for solving SymNMF. The proposed algorithm is guaranteed to converge to the set of Karush-Kuhn-Tucker (KKT) points of the nonconvex SymNMF problem. Furthermore, it achieves a global sublinear convergence rate. We also show that the algorithm can be efficiently implemented in parallel. Further, sufficient conditions are provided which guarantee the global and local optimality of the obtained solutions. Extensive numerical results performed on both synthetic and real data sets suggest that the proposed algorithm converges quickly to a local minimum solution.Comment: IEEE Transactions on Signal Processing (to appear

    Algorithms, applications and systems towards interpretable pattern mining from multi-aspect data

    Get PDF
    How do humans move around in the urban space and how do they differ when the city undergoes terrorist attacks? How do users behave in Massive Open Online courses~(MOOCs) and how do they differ if some of them achieve certificates while some of them not? What areas in the court elite players, such as Stephen Curry, LeBron James, like to make their shots in the course of the game? How can we uncover the hidden habits that govern our online purchases? Are there unspoken agendas in how different states pass legislation of certain kinds? At the heart of these seemingly unconnected puzzles is this same mystery of multi-aspect mining, i.g., how can we mine and interpret the hidden pattern from a dataset that simultaneously reveals the associations, or changes of the associations, among various aspects of the data (e.g., a shot could be described with three aspects, player, time of the game, and area in the court)? Solving this problem could open gates to a deep understanding of underlying mechanisms for many real-world phenomena. While much of the research in multi-aspect mining contribute broad scope of innovations in the mining part, interpretation of patterns from the perspective of users (or domain experts) is often overlooked. Questions like what do they require for patterns, how good are the patterns, or how to read them, have barely been addressed. Without efficient and effective ways of involving users in the process of multi-aspect mining, the results are likely to lead to something difficult for them to comprehend. This dissertation proposes the M^3 framework, which consists of multiplex pattern discovery, multifaceted pattern evaluation, and multipurpose pattern presentation, to tackle the challenges of multi-aspect pattern discovery. Based on this framework, we develop algorithms, applications, and analytic systems to enable interpretable pattern discovery from multi-aspect data. Following the concept of meaningful multiplex pattern discovery, we propose PairFac to close the gap between human information needs and naive mining optimization. We demonstrate its effectiveness in the context of impact discovery in the aftermath of urban disasters. We develop iDisc to target the crossing of multiplex pattern discovery with multifaceted pattern evaluation. iDisc meets the specific information need in understanding multi-level, contrastive behavior patterns. As an example, we use iDisc to predict student performance outcomes in Massive Open Online Courses given users' latent behaviors. FacIt is an interactive visual analytic system that sits at the intersection of all three components and enables for interpretable, fine-tunable, and scrutinizable pattern discovery from multi-aspect data. We demonstrate each work's significance and implications in its respective problem context. As a whole, this series of studies is an effort to instantiate the M^3 framework and push the field of multi-aspect mining towards a more human-centric process in real-world applications

    Data Fusion for MaaS: Opportunities and Challenges

    Get PDF
    © 2018 IEEE. Computer Supported Cooperative Work (CSCW) in design is an essential facilitator for the development and implementation of smart cities, where modern cooperative transportation and integrated mobility are highly demanded. Owing to greater availability of different data sources, data fusion problem in intelligent transportation systems (ITS) has been very challenging, where machine learning modelling and approaches are promising to offer an important yet comprehensive solution. In this paper, we provide an overview of the recent advances in data fusion for Mobility as a Service (MaaS), including the basics of data fusion theory and the related machine learning methods. We also highlight the opportunities and challenges on MaaS, and discuss potential future directions of research on the integrated mobility modelling

    Matrix Factorization at Scale: a Comparison of Scientific Data Analytics in Spark and C+MPI Using Three Case Studies

    Full text link
    We explore the trade-offs of performing linear algebra using Apache Spark, compared to traditional C and MPI implementations on HPC platforms. Spark is designed for data analytics on cluster computing platforms with access to local disks and is optimized for data-parallel tasks. We examine three widely-used and important matrix factorizations: NMF (for physical plausability), PCA (for its ubiquity) and CX (for data interpretability). We apply these methods to TB-sized problems in particle physics, climate modeling and bioimaging. The data matrices are tall-and-skinny which enable the algorithms to map conveniently into Spark's data-parallel model. We perform scaling experiments on up to 1600 Cray XC40 nodes, describe the sources of slowdowns, and provide tuning guidance to obtain high performance

    Anomaly detection in spatiotemporal data via regularized non-negative tensor analysis

    Get PDF
    Anomaly detection in multidimensional data is a challenging task. Detecting anomalous mobility patterns in a city needs to take spatial, temporal, and traffic information into consideration. Although existing techniques are able to extract spatiotemporal features for anomaly analysis, few systematic analysis about how different factors contribute to or affect the anomalous patterns has been proposed. In this paper, we propose a novel technique to localize spatiotemporal anomalous events based on tensor decomposition. The proposed method employs a spatial-feature-temporal tensor model and analyzes latent mobility patterns through unsupervised learning. We first train the model based on historical data and then use the model to capture the anomalies, i.e., the mobility patterns that are significantly different from the normal patterns. The proposed technique is evaluated based on the yellow-cab dataset collected from New York City. The results show several interesting latent mobility patterns and traffic anomalies that can be deemed as anomalous events in the city, suggesting the effectiveness of the proposed anomaly detection method
    corecore