2,753 research outputs found

    Energy Efficient Clustering and Routing in Mobile Wireless Sensor Network

    Get PDF
    A critical need in Mobile Wireless Sensor Network (MWSN) is to achieve energy efficiency during routing as the sensor nodes have scarce energy resource. The nodes' mobility in MWSN poses a challenge to design an energy efficient routing protocol. Clustering helps to achieve energy efficiency by reducing the organization complexity overhead of the network which is proportional to the number of nodes in the network. This paper proposes a novel hybrid multipath routing algorithm with an efficient clustering technique. A node is selected as cluster head if it has high surplus energy, better transmission range and least mobility. The Energy Aware (EA) selection mechanism and the Maximal Nodal Surplus Energy estimation technique incorporated in this algorithm improves the energy performance during routing. Simulation results can show that the proposed clustering and routing algorithm can scale well in dynamic and energy deficient mobile sensor network.Comment: 9 pages, 4 figure

    Approximation Algorithm for Line Segment Coverage for Wireless Sensor Network

    Full text link
    The coverage problem in wireless sensor networks deals with the problem of covering a region or parts of it with sensors. In this paper, we address the problem of covering a set of line segments in sensor networks. A line segment ` is said to be covered if it intersects the sensing regions of at least one sensor distributed in that region. We show that the problem of finding the minimum number of sensors needed to cover each member in a given set of line segments in a rectangular area is NP-hard. Next, we propose a constant factor approximation algorithm for the problem of covering a set of axis-parallel line segments. We also show that a PTAS exists for this problem.Comment: 16 pages, 5 figures

    Foundations of coverage algorithms in autonomic mobile sensor networks

    Get PDF
    Drones are poised to become a prominent focus of advances in the near future as hardware platforms manufactured via mass production become accessible to consumers in higher quantities at lower costs than ever before. As more ways to utilize such devices become more popular, algorithms for directing the activities of mobile sensors must expand in order to automate their work. This work explores algorithms used to direct the behavior of networks of autonomous mobile sensors, and in particular how such networks can operate to achieve coverage of a field using mobility. We focus special attention to the way limited mobility affects the performance (and other factors) of algorithms traditionally applied to area coverage and event detection problems. Strategies for maximizing event detection and minimizing detection delay as mobile sensors with limited mobility are explored in the first part of this work. Next we examine exploratory coverage, a new way of analyzing sensor coverage, concerned more with covering each part of the coverage field once, while minimizing mobility required to achieve this level of 1-coverage. This analysis is contained in the second part of this work. Extending the analysis of mobility, we next strive to explore the novel topic of disabled mobility in mobile sensors, and how algorithms might react to increase effectiveness given that some sensors have lost mobility while retaining other senses. This work analyzes algorithm effectiveness in light of disabled mobility, demonstrates how this particular failure mode impacts common coverage algorithms, and presents ways to adjust algorithms to mitigate performance losses. --Abstract, page iv

    Coverage Improvement for Wireless Sensor Networks using Grid Quorum based Node Mobility

    Get PDF

    PS-Sim: A Framework for Scalable Simulation of Participatory Sensing Data

    Full text link
    Emergence of smartphone and the participatory sensing (PS) paradigm have paved the way for a new variant of pervasive computing. In PS, human user performs sensing tasks and generates notifications, typically in lieu of incentives. These notifications are real-time, large-volume, and multi-modal, which are eventually fused by the PS platform to generate a summary. One major limitation with PS is the sparsity of notifications owing to lack of active participation, thus inhibiting large scale real-life experiments for the research community. On the flip side, research community always needs ground truth to validate the efficacy of the proposed models and algorithms. Most of the PS applications involve human mobility and report generation following sensing of any event of interest in the adjacent environment. This work is an attempt to study and empirically model human participation behavior and event occurrence distributions through development of a location-sensitive data simulation framework, called PS-Sim. From extensive experiments it has been observed that the synthetic data generated by PS-Sim replicates real participation and event occurrence behaviors in PS applications, which may be considered for validation purpose in absence of the groundtruth. As a proof-of-concept, we have used real-life dataset from a vehicular traffic management application to train the models in PS-Sim and cross-validated the simulated data with other parts of the same dataset.Comment: Published and Appeared in Proceedings of IEEE International Conference on Smart Computing (SMARTCOMP-2018

    Geometric sensitivity of beacon placement using airborne mobile anchors

    Get PDF
    Locating fixed sensing devices with a mobile anchor is attractive for covering larger deployment areas. However, the performance sensitivity to the geometric arrangement of anchor beacon positions remains unexplored. Therefore, localization using new RSSI-based localization algorithm, which uses a volumetric probability distribution function is proposed to find the most likely position of a node by information fusion from several mobile beacon radio packets to reduce error over deterministic approaches. This paper presents the guidelines of beacon selection that leads to design the most suitable trajectory, as a trade-off between the energy costs of travelling and transmitting the beacons versus the localization accuracy

    Distributed scheduling algorithms for LoRa-based wide area cyber-physical systems

    Get PDF
    Low Power Wide Area Networks (LPWAN) are a class of wireless communication protocols that work over long distances, consume low power and support low datarates. LPWANs have been designed for monitoring applications, with sparse communication from nodes to servers and sparser from servers to nodes. Inspite of their initial design, LPWANs have the potential to target applications with higher and stricter requirements like those of Cyber-Physical Systems (CPS). Due to their long-range capabilities, LPWANs can specifically target CPS applications distributed over a wide-area, which is referred to as Wide-Area CPS (WA-CPS). Augmenting WA-CPSs with wireless communication would allow for more flexible, low-cost and easily maintainable deployment. However, wireless communications come with problems like reduced reliability and unpredictable latencies, making them harder to use for CPSs. With this intention, this thesis explores the use of LPWANs, specifically LoRa, to meet the communication and control requirements of WA-CPSs. The thesis focuses on using LoRa due to its high resilience to noise, several communication parameters to choose from and a freely modifiable communication stack and servers making it ideal for research and deployment. However, LoRaWAN suffers from low reliability due to its ALOHA channel access method. The thesis posits that "Distributed algorithms would increase the protocol's reliability allowing it to meet the requirements of WA-CPSs". Three different application scenarios are explored in this thesis that leverage unexplored aspects of LoRa to meet their requirements. The application scenarios are delay-tolerant vehicular networks, multi-stakeholder WA-CPS deployments and water distribution networks. The systems use novel algorithms to facilitate communication between the nodes and gateways to ensure a highly reliable system. The results outperform state-of-art techniques to prove that LoRa is currently under-utilised and can be used for CPS applications.Open Acces

    Application of rasch model on resilience in higher education: an examination of validity and reliability of Malaysian academician happiness index (MAHI)

    Get PDF
    This preliminary study was conducted to examine and verify the validity and reliability of the instrument on the Malaysian Academician Happiness Index (MAHI) on resilience. MAHI could be seen as a tool to measure the level of happiness and stress of academicians before determining how resilient the academicians were. Resilience can be defined as a mental ability of a person to recover quickly from illness or depression. MAHI instrument consisted of 66 items. The instrument was distributed to 40 academicians from three groups of universities which were the Focus University, Comprehensive University and Research University is using a survey technique. The instrument was developed to measure three main constructs which were the organization, individual and social that would affect the happiness and stress levels of academicians. This preliminary study employed the Rasch Measurement Model uses Winsteps software version 3.69.1.11. to examine the validity and reliability of the items. The results of the analysis of the MAHI instrument showed that the item reliability was 0.87, person reliability was 0.83 and value of Alpha Cronbach was 0.84. Meanwhile, misfit analysis showed that only there was one item with 1.46 logit that could be considered for dropping or needed improvement. Therefore, it highlighted that most of the items met the constructs’ need and can be used as a measurement indicator of MAHI. The implication of this instrument can help Malaysian academicians to be more resilient in facing challenges in the future
    • …
    corecore