1,899 research outputs found

    Design of an infrared imaging system for robotic inspection of gas leaks in industrial environments

    Get PDF
    Gas detection can become a critical task in dangerous environments that involve hazardous or contaminant gases, and the use of imaging sensors provides an important tool for leakage location. This paper presents a new design for remote sensing of gas leaks based on infrared (IR) imaging techniques. The inspection system uses an uncooled microbolometer detector, operating over a wide spectral bandwidth, that features both low size and low power consumption. This equipment is boarded on a robotic platform, so that wide objects or areas can be scanned. The detection principle is based on the use of active imaging techniques, where the use of external IR illumination enhances the detection limit and allows the proposed system to operate in most cases independently from environmental conditions, unlike passive commercial approaches. To illustrate this concept, a fully radiometric description of the detection problem has been developed; CO, detection has been demonstrated; and simulations of typical gas detection scenarios have been performed, showing that typical industrial leaks of CI I, are well within the detection limits. The mobile platform where the gas sensing system is going to be implemented is a robot called TurtleBot. The control of the mobile base and of the inspection device is integrated in ROS architecture. The exploration system is based on the technique of Simultaneous Localization and Mapping (SLAM) that makes it possible to locate the gas leak in the map.The authors would like to thank the RoboCity2030-II project (S2009/DPI-1559), funded by Programas de Actividades I+D en la Comunidad de Madrid and co-funded by Structural Funds of the EU

    Robotics Senior Capstone Interim Report The Mobile Human Seeking Robot

    Get PDF

    Design and development of an autonomous duct inspection and mapping robot

    Get PDF
    Just a few years ago, the idea of having robots in factories and households was science fiction. But, as robotic technology develops, this is becoming reality. Nowadays, robots not only perform simple household chores, but are used in most production lines and are even employed by the army. Visual inspection robots are very common and are used in many industries, including inspecting the interior of duct systems. Duct systems are in place in almost all large buildings and require ongoing maintenance and cleaning. Systems that are not properly maintained can pose a health risk as dust and mold form and are then blown throughout the building. In some cases, access holes have to be cut to allow access for inspection to occur. A robotic system, small enough to enter a duct through any existing access panel, would be advantageous. An autonomous robot would be even more useful as no operator would be needed thus reducing operating costs. To this end, a robot was developed that could autonomously navigate through a duct system, recoding video images and mapping the internal profile. The development of which is discussed in this thesis, included the design of the robotic platform, the inclusion of appropriate sensors and accompanying circuitry, generation of a simulation to test the control algorithm and implementing embedded software to control the robot. From the testing of the entire system the following conclusions were drawn. The robot as a whole performed well and navigated autonomously through the duct with a success rate of 90%. The system tests were repeatable and the odometry data closely matched the actual paths for straight line travel. The sonar data closely corresponded to the duct walls but was hard to interpret when the odometry and actual paths diverged. These paths diverged from each other due to wheel slip caused as the robot turned. The simulation developed showed that the control algorithm would ensure that the robot recursively inspected any duct system and provided information about the system as a whole. Further work should concentrate on improving the correlation between the odometry path and the actual path, perhaps by adding in a bearing measurement system. Sensors with greater range and accuracy should be implemented and the entire system re-tested. The embedded controller allowed for expansion should additional requirements be needed and was more then adequate for the task
    corecore