4,483 research outputs found

    The Programmable City

    Get PDF
    AbstractThe worldwide proliferation of mobile connected devices has brought about a revolution in the way we live, and will inevitably guide the way in which we design the cities of the future. However, designing city-wide systems poses a new set of challenges in terms of scale, manageability and citizen involvement. Solving these challenges is crucial to making sure that the vision of a programmable Internet of Things (IoT) becomes reality. In this article we will analyse these issues and present a novel programming approach to designing scalable systems for the Internet of Things, with an emphasis on smart city applications, that addresses these issues

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    4Sensing - decentralized processing for participatory sensing data

    Get PDF
    Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática.Participatory sensing is a new application paradigm, stemming from both technical and social drives, which is currently gaining momentum as a research domain. It leverages the growing adoption of mobile phones equipped with sensors, such as camera, GPS and accelerometer, enabling users to collect and aggregate data, covering a wide area without incurring in the costs associated with a large-scale sensor network. Related research in participatory sensing usually proposes an architecture based on a centralized back-end. Centralized solutions raise a set of issues. On one side, there is the implications of having a centralized repository hosting privacy sensitive information. On the other side, this centralized model has financial costs that can discourage grassroots initiatives. This dissertation focuses on the data management aspects of a decentralized infrastructure for the support of participatory sensing applications, leveraging the body of work on participatory sensing and related areas, such as wireless and internet-wide sensor networks, peer-to-peer data management and stream processing. It proposes a framework covering a common set of data management requirements - from data acquisition, to processing, storage and querying - with the goal of lowering the barrier for the development and deployment of applications. Alternative architectural approaches - RTree, QTree and NTree - are proposed and evaluated experimentally in the context of a case-study application - SpeedSense - supporting the monitoring and prediction of traffic conditions, through the collection of speed and location samples in an urban setting, using GPS equipped mobile phones

    Incentive Mechanisms for Participatory Sensing: Survey and Research Challenges

    Full text link
    Participatory sensing is a powerful paradigm which takes advantage of smartphones to collect and analyze data beyond the scale of what was previously possible. Given that participatory sensing systems rely completely on the users' willingness to submit up-to-date and accurate information, it is paramount to effectively incentivize users' active and reliable participation. In this paper, we survey existing literature on incentive mechanisms for participatory sensing systems. In particular, we present a taxonomy of existing incentive mechanisms for participatory sensing systems, which are subsequently discussed in depth by comparing and contrasting different approaches. Finally, we discuss an agenda of open research challenges in incentivizing users in participatory sensing.Comment: Updated version, 4/25/201

    A Collaborative Mobile Crowdsensing System for Smart Cities

    Get PDF
    Nowadays words like Smart City, Internet of Things, Environmental Awareness surround us with the growing interest of Computer Science and Engineering communities. Services supporting these paradigms are definitely based on large amounts of sensed data, which, once obtained and gathered, need to be analyzed in order to build maps, infer patterns, extract useful information. Everything is done in order to achieve a better quality of life. Traditional sensing techniques, like Wired or Wireless Sensor Network, need an intensive usage of distributed sensors to acquire real-world conditions. We propose SenSquare, a Crowdsensing approach based on smartphones and a central coordination server for time-and-space homogeneous data collecting. SenSquare relies on technologies such as CoAP lightweight protocol, Geofencing and the Military Grid Reference System

    Program your city: Designing an urban integrated open data API

    Get PDF
    Cities accumulate and distribute vast sets of digital information. Many decision-making and planning processes in councils, local governments and organisations are based on both real-time and historical data. Until recently, only a small, carefully selected subset of this information has been released to the public – usually for specific purposes (e.g. train timetables, release of planning application through websites to name just a few). This situation is however changing rapidly. Regulatory frameworks, such as the Freedom of Information Legislation in the US, the UK, the European Union and many other countries guarantee public access to data held by the state. One of the results of this legislation and changing attitudes towards open data has been the widespread release of public information as part of recent Government 2.0 initiatives. This includes the creation of public data catalogues such as data.gov.au (U.S.), data.gov.uk (U.K.), data.gov.au (Australia) at federal government levels, and datasf.org (San Francisco) and data.london.gov.uk (London) at municipal levels. The release of this data has opened up the possibility of a wide range of future applications and services which are now the subject of intensified research efforts. Previous research endeavours have explored the creation of specialised tools to aid decision-making by urban citizens, councils and other stakeholders (Calabrese, Kloeckl & Ratti, 2008; Paulos, Honicky & Hooker, 2009). While these initiatives represent an important step towards open data, they too often result in mere collections of data repositories. Proprietary database formats and the lack of an open application programming interface (API) limit the full potential achievable by allowing these data sets to be cross-queried. Our research, presented in this paper, looks beyond the pure release of data. It is concerned with three essential questions: First, how can data from different sources be integrated into a consistent framework and made accessible? Second, how can ordinary citizens be supported in easily composing data from different sources in order to address their specific problems? Third, what are interfaces that make it easy for citizens to interact with data in an urban environment? How can data be accessed and collected
    corecore