1,673 research outputs found

    Prospective on Automation for Omnichannel Services and the Need for New Robotic Solutions for Store Fulfillment Operations

    Get PDF
    As businesses offer omnichannel services, such as buy-online-pickup-in-store, more logistical processes need to be conducted within or close to a retail environment. For retailers who adopt a store fulfillment concept, order picking for online orders is conducted inside a store environment and is in addition to the logistic processes required to support in-store customer requests. A store fulfillment approach has the advantage of enabling inventory, labor, infrastructure, and automation to be pooled for online orders, in-store customers, and return processing. Yet, the design and operation of logistical tasks completed in a retail environment is more challenging and requires considering the salient features that vary from a distribution environment. This work provides an overview of omnichannel logistical processes and connects their unique features to open challenges in automating these processes. A benchmarking and classification study describes the state of the practice in 2022 in automated picking solutions. We find that the current market for automated picking solutions that could support a microfulfillment strategy is more mature than solutions that could support a store fulfillment strategy. We identify a set of design and technical requirements for an automated picking solution deployed in a retail environment to support store fulfillment. Moveable robotic piece-level picking solutions need to become more flexible so that they can accommodate different item types, store shelf designs, facility layouts, logistical tasks, and human interactions, as well as more agile so they can robustly operate in uncertain and new environments

    RUR53: an Unmanned Ground Vehicle for Navigation, Recognition and Manipulation

    Full text link
    This paper proposes RUR53: an Unmanned Ground Vehicle able to autonomously navigate through, identify, and reach areas of interest; and there recognize, localize, and manipulate work tools to perform complex manipulation tasks. The proposed contribution includes a modular software architecture where each module solves specific sub-tasks and that can be easily enlarged to satisfy new requirements. Included indoor and outdoor tests demonstrate the capability of the proposed system to autonomously detect a target object (a panel) and precisely dock in front of it while avoiding obstacles. They show it can autonomously recognize and manipulate target work tools (i.e., wrenches and valve stems) to accomplish complex tasks (i.e., use a wrench to rotate a valve stem). A specific case study is described where the proposed modular architecture lets easy switch to a semi-teleoperated mode. The paper exhaustively describes description of both the hardware and software setup of RUR53, its performance when tests at the 2017 Mohamed Bin Zayed International Robotics Challenge, and the lessons we learned when participating at this competition, where we ranked third in the Gran Challenge in collaboration with the Czech Technical University in Prague, the University of Pennsylvania, and the University of Lincoln (UK).Comment: This article has been accepted for publication in Advanced Robotics, published by Taylor & Franci

    CHARMIE: a collaborative healthcare and home service and assistant robot for elderly care

    Get PDF
    The global population is ageing at an unprecedented rate. With changes in life expectancy across the world, three major issues arise: an increasing proportion of senior citizens; cognitive and physical problems progressively affecting the elderly; and a growing number of single-person households. The available data proves the ever-increasing necessity for efficient elderly care solutions such as healthcare service and assistive robots. Additionally, such robotic solutions provide safe healthcare assistance in public health emergencies such as the SARS-CoV-2 virus (COVID-19). CHARMIE is an anthropomorphic collaborative healthcare and domestic assistant robot capable of performing generic service tasks in non-standardised healthcare and domestic environment settings. The combination of its hardware and software solutions demonstrates map building and self-localisation, safe navigation through dynamic obstacle detection and avoidance, different human-robot interaction systems, speech and hearing, pose/gesture estimation and household object manipulation. Moreover, CHARMIE performs end-to-end chores in nursing homes, domestic houses, and healthcare facilities. Some examples of these chores are to help users transport items, fall detection, tidying up rooms, user following, and set up a table. The robot can perform a wide range of chores, either independently or collaboratively. CHARMIE provides a generic robotic solution such that older people can live longer, more independent, and healthier lives.This work has been supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. The author T.R. received funding through a doctoral scholarship from the Portuguese Foundation for Science and Technology (Fundação para a Ciência e a Tecnologia) [grant number SFRH/BD/06944/2020], with funds from the Portuguese Ministry of Science, Technology and Higher Education and the European Social Fund through the Programa Operacional do Capital Humano (POCH). The author F.G. received funding through a doctoral scholarship from the Portuguese Foundation for Science and Technology (Fundação para a Ciência e a Tecnologia) [grant number SFRH/BD/145993/2019], with funds from the Portuguese Ministry of Science, Technology and Higher Education and the European Social Fund through the Programa Operacional do Capital Humano (POCH)

    A Cost-Effective Haptic Device for Assistive and Rehabilitation Purposes

    Get PDF
    With the growing population of elderly, the need for assistance has also increased considerably especially for the tasks such as cleaning, reaching and grasping objects among others. There are numerous assistive devices in the market for this group of people. However, they are either too expensive or require overwhelming user effort for manipulation. Therefore, the presented research is primarily concerned with developing a low-cost, easy to use assistive device for elderly to reach and grasp objects through intuitive interface for the control of a slave anthropomorphic robotic arm (tele operator). The system also implements haptic feedback technology that enables the user to maneuver the grasping task in a realistic manner. A bilateral master-slave robotic system combined with the haptic feedback technology has been designed, built and tested to determine the suitability of this device for the chosen application. The final prototype consists of primarily off the shelf components programmed in such a way as to provide accurate teleoperation and haptic feedback to the user. While the nature of the project as a prototype precluded any patient trials, testing of the final system has shown that a fairly low cost device can be capable of providing the user an ability to remotely control a robotic arm for reaching and grasping objects with accurate force feedback

    Automated Order Picking Systems and the Links between Design and Performance: A Systematic Literature Review

    Get PDF
    With new market developments and e-commerce, there is an increased use of and interest in automation for order picking. This paper presents a systematic review and content analysis of the literature. It has the purpose of understanding the relevant performance aspects for automated, or partly automated, OPSs and identifying the studied links between design and performance, i.e. identifying which combinations of design aspects and performance aspects have been studied in previous research. For this purpose, 74 papers were selected and reviewed. From the review, it is clear that there has been an increased number of papers dealing with the performance of automated, or partly automated, OPSs in recent years. Moreover, there are differences between the different OPS types, but, overall, the performance categories of throughput, lead time, and operational efficiency have received the most attention in the literature. The paper identifies links between design and performance that have been studied, as well as links that appear to be under-researched. For academics, this paper synthesises the current knowledge on the performance of automation in OPSs and identifies opportunities for future research. For practitioners, the paper provides knowledge that can support the decision-making process of automation in OPSs
    • …
    corecore