43,913 research outputs found

    Mobility management of IP-based multi-tier network supporting mobile multimedia communication services

    Get PDF
    [[abstract]]Wireless communication that provides voice only is not sufficient to support the needs of users. It is an important feature of next generation wireless communication to offer this capability through mobile Internet. Mobile IP allows mobile hosts to change their location and reduce the probability of losing data packets in wireless communication networks. However, Mobile IP still has some defects in handoff and routing aspects. Therefore, the cellular IP protocol is proposed for routing of IP datagrams to mobile stations and fast handoff control in a limited geographical area. It can cooperate with mobile IP to provide wide area mobility support. In this paper, a handoff method is proposed to improve quality of service and resource switching management to reduce data packet loss for mobile multimedia communication in cellular IP and mobile IP networks.[[notice]]補正完畢[[conferencetype]]國際[[conferencedate]]20020702~20020705[[iscallforpapers]]Y[[conferencelocation]]Vienna, Austri

    Developing an application based on OpenFlow to enhance mobile IP networks

    Full text link
    Mobile Internet Protocol (IP) has been developed to maintain permanent IP addresses for mobile users while they are moving from one point to another where the Mobile Terminal (MT) device will have two IP addresses: a static home address and a care-of address which will be changed and re-attached at each point of the movement of the MT. However, a location update message is required to be sent to the home agent for each new connection. This will potentially increase the handoff latency and leads to high load on the global Internet. This paper presents the concepts and the challenges of Mobile IP networks and then proposes the use of OpenFlow approach as an alternate transport mechanism to perform routing and to provide network connectivity for Mobile IP networks. The proposed application determines calculations and reroutes the subsequent packets. OpenFlow aims to optimize routing path and handoff performance by using controller's application and exchanges controllers' information. © 2013 IEEE

    Secure Mobile IP with HIP Style Handshaking and Readdressing

    Full text link
    Mobile IP allows the mobile node roaming into a new IP network without losing its connection with its peer. Mobile IPv6 is using Mobile IP with Route Optimizationto improve performance by avoiding the triangle routing and adopting Return Routability as a secure process for binding update. Host Identity Protocol (HIP) is an experimental security protocol which provides mobility management and multi-homing by its new namespace. Its architecture is similar to that of Mobile IP with Route Optimization. In this paper, we have introduced a Secure Mobile IP with HIP Style Handshaking and Readdressing (SMIP), which has stronger security, better performance and lower binding cost in binding update process compared with Mobile IPv6. The dependence of home agent in the new scheme is also shown dramatically decreased. The initiated scheme integrated the primary features of two completely different mobility management solutions and has set up a migration path from mobile-IP based solution to a public-key based solution in mobile IP network

    Multipath optimized link state routing for mobile ad hoc networks

    Get PDF
    International audienceMultipath routing protocols for Mobile Ad hoc NETwork (MANET) address the problem of scalability, security (confidentiality and integrity), lifetime of networks, instability of wireless transmissions, and their adaptation to applications. Our protocol, called MP-OLSR (MultiPath OLSR), is a multipath routing protocol based on OLSR. The Multipath Dijkstra Algorithm is proposed to obtain multiple paths. The algorithm gains great flexibility and extensibility by employing different link metrics and cost functions. In addition, route recovery and loop detection are implemented in MP-OLSR in order to improve quality of service regarding OLSR. The backward compatibility with OLSR based on IP source routing is also studied. Simulation based on Qualnet simulator is performed in different scenarios. A testbed is also set up to validate the protocol in real world. The results reveal that MP-OLSR is suitable for mobile, large and dense networks with large traffic, and could satisfy critical multimedia applications with high on time constraints

    Designing of routing algorithms in autonomous distributed data transmission system for mobile computing devices with 'WiFi-Direct' technology

    Get PDF
    The results of the research of existent routing protocols in wireless networks and their main features are discussed in the paper. Basing on the protocol data, the routing protocols in wireless networks, including search routing algorithms and phone directory exchange algorithms, are designed with the 'WiFi-Direct' technology. Algorithms without IP-protocol were designed, and that enabled one to increase the efficiency of the algorithms while working only with the MAC-addresses of the devices. The developed algorithms are expected to be used in the mobile software engineering with the Android platform taken as base. Easier algorithms and formats of the well-known route protocols, rejection of the IP-protocols enables to use the developed protocols on more primitive mobile devices. Implementation of the protocols to the engineering industry enables to create data transmission networks among working places and mobile robots without any access points

    A DHCP-based IP address autoconfiguration for MANETs

    Get PDF
    Mobile Ad hoc Networks (MANETs) are expected to become more and more important in the upcoming years, playing a significant role in 4G networks. In order to enable the deployment of IP services in such networks, IP address autoconfiguration mechanisms are required. Although the ad hoc topic has been a very intense research area, with a plethora of published papers about routing, there is a lack of proposals of address autoconfiguration with enough support from the technical community. This paper presents a mechanism suited for MANETs connected to the Internet, reusing existing and widely deployed address autoconfiguration protocols, such as DHCPv6 and Router Advertisements

    Effective Mobile Routing Through Dynamic Addressing

    Get PDF
    Military communications has always been an important factor in military victory and will surely play an important part in future combat. In modern warfare, military units are usually deployed without existing network infrastructure. The IP routing protocol, designed for hierarchical networks cannot easily be applied in military networks due to the dynamic topology expected in military environments. Mobile ad-hoc networks (MANETs) represent an appropriate network for small military networks. But, most ad-hoc routing protocols suffer from the problem of scalability for large networks. Hierarchical routing schemes based on the IP address structure are more scalable than ad-hoc routing but are not flexible for a network with very dynamic topology. This research seeks a compromise between the two; a hybrid routing structure which combines mobile ad-hoc network routing with hierarchical network routing using pre-planned knowledge about where the various military units will be located and probable connections available. This research evaluates the performance of the hybrid routing and compares that routing with a flat ad-hoc routing protocol, namely the Ad-hoc On-demand Distance Vector (AODV) routing protocol with respect to goodput ratio, packet end to- end delay, and routing packet overhead. It shows that hybrid routing generates lower routing control overhead, better goodput ratio, and lower end-to-end packet delay than AODV routing protocol in situations where some a-priori knowledge is available

    Distributed All-IP Mobility Management Architecture Supported by the NDN Overlay

    Get PDF
    Two of the most promising candidate solutions for realizing the next-generation all-IP mobile networks are Mobile IPv6 (MIPv6), which is the host-based and global mobility supporting protocol, and Proxy MIPv6 (PMIPv6), which is the network-based and localized mobility supporting protocol. However, the unprecedented growth of mobile Internet traffic has resulted in the development of distributed mobility management (DMM) architecture by the Internet engineering task force DMM working group. The extension of the basic MIPv6 and PMIPv6 to support their distributed and scalable deployment in the future is one of the major goals of the DMM working group. We propose an all-IP-based mobility management architecture that leverages the concept of Named Data Networking (NDN), which is a distributed content management and addressing architecture. In the proposed solution, mobility support services are distributed among multiple anchor points at the edge of the network, thereby enabling a flat architecture that exploits name-based routing in NDN. Our approach overcomes some of the major limitations of centralized IP mobility management solutions, by extending existing routing protocol and mobility management architecture, to distribute the mobility management function of anchor points in the IP network and optimize the transmission path of mobile traffic
    corecore