1,184 research outputs found

    Inference and Evaluation of the Multinomial Mixture Model for Text Clustering

    Full text link
    In this article, we investigate the use of a probabilistic model for unsupervised clustering in text collections. Unsupervised clustering has become a basic module for many intelligent text processing applications, such as information retrieval, text classification or information extraction. The model considered in this contribution consists of a mixture of multinomial distributions over the word counts, each component corresponding to a different theme. We present and contrast various estimation procedures, which apply both in supervised and unsupervised contexts. In supervised learning, this work suggests a criterion for evaluating the posterior odds of new documents which is more statistically sound than the "naive Bayes" approach. In an unsupervised context, we propose measures to set up a systematic evaluation framework and start with examining the Expectation-Maximization (EM) algorithm as the basic tool for inference. We discuss the importance of initialization and the influence of other features such as the smoothing strategy or the size of the vocabulary, thereby illustrating the difficulties incurred by the high dimensionality of the parameter space. We also propose a heuristic algorithm based on iterative EM with vocabulary reduction to solve this problem. Using the fact that the latent variables can be analytically integrated out, we finally show that Gibbs sampling algorithm is tractable and compares favorably to the basic expectation maximization approach

    Priors for Random Count Matrices Derived from a Family of Negative Binomial Processes

    Full text link
    We define a family of probability distributions for random count matrices with a potentially unbounded number of rows and columns. The three distributions we consider are derived from the gamma-Poisson, gamma-negative binomial, and beta-negative binomial processes. Because the models lead to closed-form Gibbs sampling update equations, they are natural candidates for nonparametric Bayesian priors over count matrices. A key aspect of our analysis is the recognition that, although the random count matrices within the family are defined by a row-wise construction, their columns can be shown to be i.i.d. This fact is used to derive explicit formulas for drawing all the columns at once. Moreover, by analyzing these matrices' combinatorial structure, we describe how to sequentially construct a column-i.i.d. random count matrix one row at a time, and derive the predictive distribution of a new row count vector with previously unseen features. We describe the similarities and differences between the three priors, and argue that the greater flexibility of the gamma- and beta- negative binomial processes, especially their ability to model over-dispersed, heavy-tailed count data, makes these well suited to a wide variety of real-world applications. As an example of our framework, we construct a naive-Bayes text classifier to categorize a count vector to one of several existing random count matrices of different categories. The classifier supports an unbounded number of features, and unlike most existing methods, it does not require a predefined finite vocabulary to be shared by all the categories, and needs neither feature selection nor parameter tuning. Both the gamma- and beta- negative binomial processes are shown to significantly outperform the gamma-Poisson process for document categorization, with comparable performance to other state-of-the-art supervised text classification algorithms.Comment: To appear in Journal of the American Statistical Association (Theory and Methods). 31 pages + 11 page supplement, 5 figure

    Exchangeable Variable Models

    Full text link
    A sequence of random variables is exchangeable if its joint distribution is invariant under variable permutations. We introduce exchangeable variable models (EVMs) as a novel class of probabilistic models whose basic building blocks are partially exchangeable sequences, a generalization of exchangeable sequences. We prove that a family of tractable EVMs is optimal under zero-one loss for a large class of functions, including parity and threshold functions, and strictly subsumes existing tractable independence-based model families. Extensive experiments show that EVMs outperform state of the art classifiers such as SVMs and probabilistic models which are solely based on independence assumptions.Comment: ICML 201

    Altitude Training: Strong Bounds for Single-Layer Dropout

    Full text link
    Dropout training, originally designed for deep neural networks, has been successful on high-dimensional single-layer natural language tasks. This paper proposes a theoretical explanation for this phenomenon: we show that, under a generative Poisson topic model with long documents, dropout training improves the exponent in the generalization bound for empirical risk minimization. Dropout achieves this gain much like a marathon runner who practices at altitude: once a classifier learns to perform reasonably well on training examples that have been artificially corrupted by dropout, it will do very well on the uncorrupted test set. We also show that, under similar conditions, dropout preserves the Bayes decision boundary and should therefore induce minimal bias in high dimensions.Comment: Advances in Neural Information Processing Systems (NIPS), 201

    Stochastic Discriminative EM

    Full text link
    Stochastic discriminative EM (sdEM) is an online-EM-type algorithm for discriminative training of probabilistic generative models belonging to the exponential family. In this work, we introduce and justify this algorithm as a stochastic natural gradient descent method, i.e. a method which accounts for the information geometry in the parameter space of the statistical model. We show how this learning algorithm can be used to train probabilistic generative models by minimizing different discriminative loss functions, such as the negative conditional log-likelihood and the Hinge loss. The resulting models trained by sdEM are always generative (i.e. they define a joint probability distribution) and, in consequence, allows to deal with missing data and latent variables in a principled way either when being learned or when making predictions. The performance of this method is illustrated by several text classification problems for which a multinomial naive Bayes and a latent Dirichlet allocation based classifier are learned using different discriminative loss functions.Comment: UAI 2014 paper + Supplementary Material. In Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence (UAI 2014), edited by Nevin L. Zhang and Jian Tian. AUAI Pres
    corecore