6 research outputs found

    Sparse representation for face images.

    Full text link
    This thesis address issues for face recognition with multi-view face images. Several effective methods are proposed and compared with current state of the art. A novel framework that generalises existing sparse representation-based methods in order to exploit the sharing information to against pose variations of face images is proposed

    Transform-domain sparse representation based classification for machinery vibration signals

    Get PDF
    The working state of machinery can be reflected by vibration signals. Accurate classification of these vibration signals is helpful for the machinery fault diagnosis. A novel classification method for vibration signals, named Transform Domain Sparse Representation-based Classification (TDSRC), is proposed. The method achieves high classification accuracy by three steps. Firstly, time-domain vibration signals, including training samples and test samples, are transformed to another domain, e.g. frequency-domain, wavelet-domain etc. Then, the transform coefficients of the training samples are combined as a dictionary and the transform coefficients of the test samples are sparsely coded on the dictionary. Finally, the class label of the test samples is identified by their minimal reconstruction errors. Although the proposed method is very similar to the Sparse Representation-based Classification (SRC), experimental results illustrates its performance is far superior to SRC in the classification of vibration signals. These experiments include: frequency-domain classification of bearing vibration data from the Case Western Reserve University (CWRU) Bearing Data Center and wavelet-domain classification of six fault-types gearbox vibration data from our rotating machinery experimental platform

    Transform-domain sparse representation based classification for machinery vibration signals

    Get PDF
    The working state of machinery can be reflected by vibration signals. Accurate classification of these vibration signals is helpful for the machinery fault diagnosis. A novel classification method for vibration signals, named Transform Domain Sparse Representation-based Classification (TDSRC), is proposed. The method achieves high classification accuracy by three steps. Firstly, time-domain vibration signals, including training samples and test samples, are transformed to another domain, e.g. frequency-domain, wavelet-domain etc. Then, the transform coefficients of the training samples are combined as a dictionary and the transform coefficients of the test samples are sparsely coded on the dictionary. Finally, the class label of the test samples is identified by their minimal reconstruction errors. Although the proposed method is very similar to the Sparse Representation-based Classification (SRC), experimental results illustrates its performance is far superior to SRC in the classification of vibration signals. These experiments include: frequency-domain classification of bearing vibration data from the Case Western Reserve University (CWRU) Bearing Data Center and wavelet-domain classification of six fault-types gearbox vibration data from our rotating machinery experimental platform

    Classification of machinery vibration signals based on group sparse representation

    Get PDF
    The working condition of mechanical equipment can be reflected by vibration signals collected from it. Accurate classification of these vibration signals is helpful for the machinery fault diagnosis. In recent years, the L1-norm regularization based sparse representation for classification (SRC) has obtained huge success in image recognition, especially in face recognition. However, the investigation of SRC for machinery vibration signals shows that the accuracy and sparsity concentration index are not high enough. In this paper, a new classification method for machinery vibration signals is proposed, in which the L1L2-norm regularization based sparse representation, i.e. group sparse representation, is recommended as a coding strategy. The method achieves its idea classification performance by three steps. Firstly, time-domain vibration signals, including training and test samples, are transformed to frequency-domain to reduce the influence of corrupting noise. Then, the transform coefficient vectors of the test samples are coded with a combination of L1-norm and L2-norm constrain on a dictionary, which is constructed by merging the transform coefficient vectors of the training samples. At last, the fault types of the test samples are labeled by identifying their minimal reconstruction errors. The classification results of simulated and experimental vibration signals demonstrate the superiority of proposed method in comparison with the state-of-the-art classifiers

    Mixed-norm sparse representation for multi view face recognition

    Get PDF
    Face recognition with multiple views is a challenging research problem. Most of the existing works have focused on extracting shared information among multiple views to improve recognition. However, when the pose variation is too large or missing, ‘shared information’ may not be properly extracted, leading to poor recognition results. In this paper, we propose a novel method for face recognition with multiple view images to overcome the large pose variation and missing pose issue. By introducing a novel mixed norm, the proposed method automatically selects candidates from the gallery to best represent a group of highly correlated face images in a query set to improve classification accuracy. This mixed norm combines the advantages of both sparse representation based classification (SRC) and joint sparse representation based classification (JSRC). A trade off between the ℓ1-normℓ1-norm from SRC and ℓ2,1-normℓ2,1-norm from JSRC is introduced to achieve this goal. Due to this property, the proposed method decreases the influence when a face image is unseen and has large pose variation in the recognition process. And when some face images with a certain degree of unseen pose variation appear, this mixed norm will find an optimal representation for these query images based on the shared information induced from multiple views. Moreover, we also address an open problem in robust sparse representation and classification which is using ℓ1-normℓ1-norm on the loss function to achieve a robust solution. To solve this formulation, we derive a simple, yet provably convergent algorithm based on the powerful alternative directions method of multipliers (ADMM) framework. We provide extensive comparisons which demonstrate that our method outperforms other state-of-the-arts algorithms on CMU-PIE, Yale B and Multi-PIE databases for multi-view face recognition
    corecore