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Abstract: Community or group is an important structure in disciplines such as social networks, biology gene 

expression, and physics systems. Community detections for different types of networks have attracted considerable 

interest. However, it is still challenging to find meaningful community structures in various networks. In particular, 

accurate community description and implementation of effective detection algorithms with huge datasets are still 

not solved. In this paper, we present a novel community detection algorithm based on the theory of sparse subspace 

clustering (SSC) with mixed-norm constraints. Inspired by the sparse representation of subspace, each community 

in a given network can span a subspace in some similarity measure space. If the basis of subspaces can be solved, 

all of the nodes can be represented as a linear combination of the nodes that span the same subspace. By introducing 

a novel mixed-norm constraint in SCC, the connections of nodes among different communities are modeled as noise 

to improve the clustering accuracy. The formulation of the basis of subspaces is derived from the self-representation 

property of data by using SSC. Then, the alternating directions method of multipliers (ADMM) framework is used 

to solve the formulation. Finally, communities are detected by subspace clustering method. The proposed method is 

compared with state-of-the-art algorithms on synthetic networks and real-world networks. The experimental results 

show the effectiveness of the proposed algorithm in accurately describing the community. The results also show that 

the mixed-norm SSC is a practical approach for detecting communities in huge datasets.  

Keywords: Community detection, sparse subspace clustering, sparse representation, mixed-norm, similarity 

measure 

1 Introduction 

Networks and graph theory have made significant contributions to the understanding of complex systems 

such as human social networks. A complex system can be represented as a network or graph with a set 

of vertices joined in pairs by edges. The Pareto principle (a.k.a. the 80–20 rule) [1] exists almost 

everywhere. It has been found that different types of networks are usually inhomogeneous, that is, they 

do not consist of undifferentiated vertices but rather of distinct groups. In other words, typically, not all 

the vertices or autos play the same roles. Within the groups, many edges exist between vertices but fewer 

exist between groups. Community detection in large and complex networks is essential to understanding 

the structure of real networks because intrinsic community structures influence the dynamics of many 

real-world networks [2-4]. For example, an Internet community could consist of several websites that 

address related topics. Communities in biochemical networks or electronic circuits refer to functional 

units. Social networks such can be represented as graphs in which a node represents a user and an edge 

represents the user’s affiliation with another user. These affiliations can represent friendships, followings, 

or information flows. Nodes with similar affiliations tend to group into dense communities, which further 

formulate the network structures. Three characteristics of social network structures have been found: the 

small world phenomenon, the power structure, and the community structure [5].  

Community detection is an important task in different research fields such as social networks, computer 

science, biology gene expression, and physics systems. The rapid growth of big data theory over the past 

decade has caused community detection to become prominent in terms of both theory and practice. 

However, detecting meaningful, inherent and hidden community structures in networks remains a 

challenge work. Although cluster theory was initially adopted to address the community detection 

problem, no unified quantitative definition has thus far emerged for the conception of communities [2]. 

Because network structures can usually easily be represented as graphs, community detection can also 

be formulated as a graph partition problem in the fields of graph theory [2, 5]. Communities are usually 

considered as groups of nodes in which intra-group connections are much denser than inter-group 

connections. Therefore, the problem of community detection can be simply defined as clustering the 
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vertices of a given underlying graph of the network into groups based on certain predefined similarity 

measures. Many solutions have emerged in the literature to solve this problem from various disciplines 

and perspectives. Community structure analysis was first proposed by Weiss and Jacobson in 1955 [6]. 

In 2002, Girvan and Newman proposed a new iterative algorithm to identify the edges between different 

communities [3]. Then, Newman separated the methods of community detection into two categories: 

sociology approaches and top-down computer science approaches [7]. The author observed that both 

sociological and computer science approaches performed well, but most algorithms are computationally 

expensive. In addition, their scalability is limited within  few thousands nodes. 

Community detection can reveal  the relationships of nodes in a network such as common interests 

between people or similar structures between genes. Community detection is intuitively easy at first 

glance but proves to be an intricate problem [8]. In undirected and un-weighted networks, the adjacency 

matrix of the corresponding graph is determined by the nodes of networks using one-to-one mapping. 

Most existing community detection methods operate on the adjacency matrix and use modularity 

maximization optimization techniques [4]. If there are N nodes in a network, the dimensionality of the 

adjacency matrix is N*N. The dimensionality of the eigenvectors of the adjacency matrix is N. All the 

nodes in the network are presented in N-dimensional feature spaces from the original adjacency matrix. 

Most similarity measures are ineffective in high-dimensional feature spaces because the differences 

between the nearest and farthest neighbor of one data point becomes negligible[9]. High dimensionality 

not only increases computational time but also adversely affects performance, which is commonly 

referred to as the “curse of dimensionality”[10-11]. The nodes in a community are clearly not uniformly 

distributed in the ambient space. Nodes in networks with high-dimensionality must lie in some low-

dimensional subspaces determined by nodes in the same community structures. The actual dimensions 

of nodes could be significantly smaller than they seem to be if there are several communities. Low-

dimensional representation of the data on one hand could reduce computation cost; on the other hand, it 

could reduce the impact  of high-dimension while improve recognition performance. If the nodes can 

be represented by other nodes in the same community, the dimensions of the nodes are then dependent 

upon the size of the same community spanned by those nodes. 

Based on the sparse representation theory, we proposed a novel community detection method by using 

the mixed-norm sparse subspace clustering (SSC). The contributions of this paper are as follows: 1) the 

problem of community detection is formulated as detecting low-dimensional subspace from original 

dataset space based on SSC; 2) by using the alternating directions method of multipliers (ADMM) 

framework, each community is solved in the similarity measure space; 3) by introducing a novel mixed-

norm constraint in SCC, the connections of nodes between different communities are modeled as noises 

to improve the clustering accuracy. The remainder of this paper is organized as follows. State-of-the-art 

studies on community detection and sparse subspace clustering are reviewed in Section 2. The proposed 

method is described into three parts in Section 3:1) similarity measures for network nodes derived from 

the adjective matrix; 2) vertices  sparsely represented using the sparse representation theory; 3) the  

community detection method  based on mixed-norm SSC. Experiments on synthetic and real networks 

are reported in Section 4, followed by the conclusions in Section 5.  

2 Related works 

The state-of-the-art in community detection and SSC is reviewed in this section. Community detection 

methods are discussed with a focus on graph-based methods.  Furthermore both theoretical studies  

and application of SSC are discussed in this section .  

2.1 Community detection methods 

A network is a collection of nodes that represent individual objects with different relationships among 

them. It can be represented by a graph G (V, E), where V is the set of vertices representing individuals 

in the network, and E is the set of edges representing the relationships between vertices. Networks are 

normally analyzed on the micro-, meso- or macroscopic levels [12-13]. At the microscopic level, the 

properties of edges between any two or more vertices in the network are investigated. At the macro level, 
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the degree of distribution or the diameter of the network are investigated. At the meso level, it is 

considered that how the network is structured. For example, how vertices group together into dense 

clusters, which are known as communities. The vertices in one cluster or community are formulated such 

that more edges join the vertices of that cluster, whereas fewer edges join vertices in different clusters. 

The aim of community detection is 1) to divide the vertex set of a network into subsets whose internal 

connections are denser than those of other subsets and 2) to identify these modules and their hierarchical 

organization using the information encoded in the graph topology [14]. Therefore, community detection 

is an important means of analyzing networks at the mesoscopic level.  

A network that contains nodes with various connections  can be represented as a graph-based structure. 

There is no fixed order or form to network structures because they arise in different shapes and sizes [2]. 

The sizes of networks can be extremely variable, and a network can be sparse or dense. How to detect 

communities accurately remains a challenge [15]. Main community detection algorithms include label 

propagation method [2], density analysis method [16], spectral bisection method [17], clique percolation 

method [18], modularity measure method [2], cut- and conductance-based method [19-20], spectral 

clustering method [21-22], ( , )  -clustering method [23], topic modeling method [24], and K-means 

method [25].. From the community coverage point of view, the existing algorithms can be classified into 

local and global community detection methods [12, 26]. Dynamic community detection has also been 

researched with techniques such as dynamic clustering methods [27], the objective-function optimization 

method [28], and the dynamic probability modeling method [29-30]. Overlapping community detection 

methods have also been studied [31].  

Graph theory is a mature and useful tool for community detection. Most community detection algorithms 

associated with graph theory operate directly on the adjacency matrix of the networks. Lim et al. 

proposed a seed-centric community detection algorithm based on the clique percolation method [32]. 

Palsetiay et al. proposed an improved global community based CNM algorithm [33]. Correa et al. 

proposed a local community detection method based on modularity optimization from a graph [34]. Dang 

et al. proposed a k-nearest-neighbor-based vertex similarity approach to partition a graph into a network 

[35]. Natarajan et al. proposed user-specific interest identification based on interest similarity for 

community detection [36]. Dongen proposed a Markov cluster algorithm based on the idea of current 

flow in graphs [37]. Girvan and Newman proposed an edge betweenness-based community detection 

algorithm [4]. Deritei et al. represented the distance between two nodes using an edge-clustering 

coefficient and constructed Voronoi diagrams for community detection [25]. Methods of community 

detection in graphs can be divided into five major categories: graph partitioning, hierarchical clustering, 

partition clustering, spectral clustering, and divisive algorithm based on factors such as vertex similarity, 

edge density and distance between vertices [2, 12, 15, 17, 27-28].  

The graph-based methods for community detection are intuitive and have a solid theoretical base. In most 

clustering-based methods for community detection, networks are not globally mapped to a space, which 

can cause issues in algorithm implementation. Following problems should be considered when these 

algorithms are applied in community detection: 1) how to detect and describe a community accurately 

when the difference between the degrees of internal and external nodes does not exceed the detection 

threshold; 2) how to address the imbalance problem in modularity maximization algorithm when the 

sizes of communities vary significantly; and 3) how to address the algorithm scalability when community 

detection algorithms are used in practice with huge datasets. Sparse subspace representation methods 

based on compressed sensing theory provide opportunities to address those above issues. A novel 

community detection algorithm based on SSC theory with mixed-norm constraints is proposed to solve 

these problems in this work. If nodes of networks are mapped to some similarity measure space, 

communities in networks can be refined as sets of nodes that span a same subspace. The formulation of 

subspaces is derived from the self-representation property of dataset by using SSC. Then the ADMM 

framework is used to solve the formulation, and communities are detected by clustering method.  

2.2 Sparse subspace clustering 



4 

 

Compared with compression and reconstruction by transform coding with some known transform, 

compressed sensing uses fewer measures to infer more details of compressible objects even when the 

objects are under-sampled [38-39]. Many high-dimensional datasets, such as social networks, images 

and video, and DNA micro-array data, lie close to low-dimensional structures such as communities, 

moving objectives and a functional mass of genes [2-4]. SSC clusters datasets that lie in some low-

dimensional subspaces [40]. By using sparse representation theory, a node in a network can be sparsely 

represented by other nodes from the same subspace based on the self-representation ability of data. The 

problem of sparse representation is formulated as an NP-hard sparse optimization program, and convex 

relaxation is used to approximate its solution [41-42]. Based on subspace clustering algorithms, , SSC is 

effective in sparse representations and reconstruction under appropriate conditions with respect to the 

arrangement of subspaces.  

Subspace clustering (SC) provides primary clustering methods used in SSC-based community detection. 

An early review of SC methods was performed in the data mining community in 2004 [11]. Review of 

SC methods in the machine learning and computer vision community was written in 2011 [40]. In [40], 

SC methods are classified into algebraic algorithms [43-44], iterative algorithms [45], statistical 

algorithms [46], and spectral clustering algorithms [47-48]. Algebraic approach such as generalized 

principal component analysis fits the data with some polynomial where gradient at a point provides the 

normal vector to the subspace containing that point [49]. Iterative approaches such as k-subspaces 

alternates between assigning data points to subspaces and fitting a subspace to each cluster [50-51]. 

Statistical approach such as agglomerative lossy compression seeks to segment the data by minimizing 

the coding length to fit the points with a mixture of degenerate Gaussians [52]. In spectral clustering, 

local spectral clustering approach such as local similarity subspace and local linear manifold clustering 

use local information around each point to build a similarity between pairs of points [10]. Global spectral 

clustering approach solves the issue by building similarity between data points using global information 

[53]. Spectral curvature clustering uses multi-way similarity that captures the curvature of a collection 

of points in an affine subspace [48]. SC approaches give computation techniques for SSC. 

SSC methods adopt sparse representation of high-dimensional data. The reason is that high-dimensional 

data usually lie in the unions of low-dimensional subspaces. The subspace clustering result can then be 

obtained through standard clustering method. By using sparse representation [54], low-rank 

reconstruction [55-56], low-rank recovery [57], low-rank subspace clustering [58], and SSC [10, 59], the 

problem of cluster identification can be formulated into finding the sparse or low-rank representation of 

the data by the data itself. Then, global optimization algorithms are adopted to build a similarity graph 

from which the data segmentation is obtained. In recent few years, simultaneously sparse coding and 

low-rank representation method has attracted  much attention [60-64].  Parallel SSC [65], structured 

SSC [66], structured sparse representation [67] and local constrained low-rank representation [68] were 

further proposed. SSC has been successfully applied to different pattern recognition fields such as face 

recognition [62-63, 69], motion detection [70-71], gene expression clustering [72], system identification 

[10].SCC related methods have advantages in addressing noisy datasets as well as dimensions-and 

number of subspaces not necessarily to be known -. 

Communities are usually defined as groups of nodes having more intra-group and fewer inter-group links. 

Thus, the value of similarity measure between two nodes in the same community will be greater than 

that of two nodes in two different communities. Therefore, in some similarity measure space, each 

community will span a subspace. In [73], each node is represented by a column of an adjacency matrix. 

Then, several eigenvalues and eigenvectors of Laplacian matrix are computed, and communities are 

determined based on a complete link-clustering algorithm. In [74], each node is represented by a vector 

of the geodesic distances with other nodes. The similarity matrix is computed by using sparse linear 

coding. The community is then detected using the spectral clustering algorithm. We think each 

community spans a low-dimensional subspace with some similarity measure. Different similarity 

measure can be adopted to present the relationship of each node to other nodes in a network. All the 
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nodes are represented by the linear combination of the other nodes that span the same subspaces. By 

introducing a novel mixed-norm constraint, the coefficients of node representation can be used to cluster 

different communities, in which the connections of nodes between different communities are modeled 

as noises to improve the clustering accuracy. By using SCC theory, each community is identified as a 

concrete low-dimensional subspace in measure space. Experiments in section 4 demonstrate the 

effectiveness of the proposed method.  

3 The proposed method 

3.1 Outline 

Subspace theory provides a new direction for pattern recognition, where a low-dimensional 

representation can be found for high-dimensional dataset. For example, the principal component analysis 

(PCA) method assumes that all the data are drawn from a single low-dimensional subspace of a high-

dimensional space. However, different subspaces are needed to describe different objects in practical 

uses such as detecting multiple moving objects from a video sequence [71]. Due to data points in each 

subspace being distributed randomly most of the time, standard clustering method that adopts  spatial 

proximity measure to identify the data points in each cluster is not suitable to subspace clustering 

anymore. Therefore, the dataset should be simultaneously clustered into multiple subspaces, and each 

subset should be fitted by a low-dimensional subspace. SSC addresses the clustering problem by finding 

sparse representations of the dataset itself.  

The proposed method is outlined as Figure 1. A community is considered as a group of nodes that have 

more intra-group and fewer inter-group link similarities, which can be denoted as different subspace. To 

this end, a similarity measure between all pairs of nodes in the network is initially adopted to formulate 

the problem. The similarity measure is smaller between nodes in a same community than that between 

nodes in two different communities. By mapping the adjacency matrix to similarity measure space, each 

community will span a different subspace. Based on the similarity measure, the apparent dimensionality 

of each node is as same as the total number of nodes in the network, which is represented by a vector 

determined by the similarity measure between each node  and all the other nodes in the network. Actual 

dimensionality of a node in the corresponding subspace may be smaller than its apparent dimensionality. 

A node can be represented as a linear combination of other nodes which spanning the subspace of the 

same community. If a network is decomposed into several communities, the coefficients of the vector 

representation in different other subspaces will become zeros. But different communities in a network 

are usually not separated rigidly. Linear decomposition approaches using base functions with least square 

error may result in some non-zero coefficients of small magnitudes for some nodes in different 

communities. In order to deal with the problem, the connections of nodes between different communities 

are modeled as noise. Community detection is formulated as an estimation of the coefficients of sparse 

linear representation, which minimizes representation error by the mixed-norm constraints. Then, each 

node in the network is represented as a linear combination of all the other nodes, and the coefficients of 

measures make up a similarity matrix. Finally, spectral clustering is used to partition the graph 

represented by the similarity matrix into several clusters. The number of clusters is estimated by the 

reduction rate of clustering error. In reality, complex networks show the small world phenomenon [2], 

which makes it more challenging to identify the accurate community. To address this challenge, mixed-

norm SSC with noise is proposed  to improve the accuracy of community detection. 

Similarity/

distance 

Measures

Sparse 

Linear

Representation

Subspace 

Clustering

Original networks Similarity measure matrix Sparse linear representation of similar matrix Subspace  partition of ommunity 

 

Fig. 1 Outline of the proposed community detection method 

3.2 Similarity measure matrix 
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Almost all clustering algorithms rely on similarity or distance measures to determine the assignment of 

vertices to a cluster. Similarity measures are the basis of community detection methods such as 

hierarchical, partition and spectral clustering. Similarity can be computed based on some reference 

property of the measures such as Euclidean distance, Manhattan distance, maximum distance, or angle 

cosine similarity. 

Considering an un-weighted and undirected network G  with n  vertices and m  edges denoted by 

an adjacency matrix 
n n

A , if there exists an edge between two vertices { , }i jv v , then , 1i j A ; 

otherwise, , 0i j A . Adjacency matrix A  is symmetric, and each vertex iv G  is determined by 

the corresponding column or row vector of the adjacency matrix in{0,1}n
, 1,2,..., .i n  Different 

similarity measures derive different spaces. Distance measures usually satisfy the following three 

properties: non-negativity, symmetry and triangular inequality. Similarity between a pair of vertices 

usually is the function of their distance. Given two vertices iv and jv denoted by 

,1 ,2 ,( , ,..., )T

i i i i nV a a a  and ,1 ,2 ,( , ,..., )T

j j j j nV a a a , norm ,m m Z L can be used to define a 

distance such as the Euclidean distance ( 2L -norm)  

2 1/ 2

, ,

1

( ( ) )
i j

n
E

v v i k j k

k

d a a


  ,                            (1) 

the Manhattan distance ( 1L -norm)  

, ,

1

| |
i j

n
M

v v i k j k

k

d a a


  ,                               (2) 

and the L -norm  

, ,
[1, ]

max | |
i jv v i k j k

k n
d a a


  .                               (3) 

Another similarity measure is angle similarity, defined as 

, ,

1

2 1/ 2 2 1/ 2

, ,

1 1

( ( ) ) ( ( ) )
i j

n

i k j k

k
v v n n

i k j k

k k

a a

a a

 

 




 

,                           (4) 

where the variable
i jv v is in the range [0, ) .  

Based on the concept of structural equivalence [2], a distance measure can be notated as  

2 1/ 2

, ,

,

( ( ) )
i jv v i k j k

k i j

d a a


  .                            (5) 

The measure (5) denotes that vertices with large degrees and different neighbors are considered quite far 

from each other, while two vertices are structurally equivalent if they have the same neighbors, even 

when they are not adjacent. 

Other measures of vertex structural equivalence include the Pearson correlation between the columns or 

rows of the adjacency matrix, the number of edge- (or vertex-) independent paths between two vertices, 

and so on [14]. Geodesic distance is used to represent the similarity of vertices in [74]. The similarities 

of each vertex to all others are represented by a column in a matrix of similarity scores in which geodesic 

distances are mapped to a similarity measure by a Gaussian kernel function. 

In community detection, distance (or similarity) measures are deduced from the adjacency matrix of a 

network. Let the vector ,1 ,2 ,( , ,..., )T

i i i i nd d d d  be the set of distance measures for iv  from all jv  

in network G . In general, the map from the adjacency matrix to similarity measures matrix one-by-one. 

However, the latter provides additional clearly inferred information about the structure of the dataset. 

The similarity measures matrix can be easily constructed. For example, in our work, similarity measure

,i js between iv  and jv  deduced from ,i jd  is  
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,

, 1
i j

i j

d
s

n
  ,                                  (6) 

where n  is the number of vertices in network G . And ,i id  is defined as zero because it is assumed 

there are no self-loops in the network.  

Subspace method provides a new direction for community detection of networks. Although any one-to-

one mapping can affect the form of the original dataset, the intrinsic information will not change. An 

adjacency matrix of networks can initially be mapped into different similarity matrix in which each vertex 

is mapped to a unique point in a similarity measure space. Then, SSC is used to approximate each 

community by spanning subspace determined by the similarity measure. In SSC method, FL -norm is 

used to formulate the similarity measure spaces. Furthermore, all the nodes are represented by a linear 

combination of the nodes which spanning the same subspace by introducing a mixed-norm constraint. In 

the proposed method, 1L -norm and FL -norm of matrix A  are denoted as  

,1 ,2 ,1
1 1 1

max{ , ,..., }
n n n

i i i n

i i i  

   A A A A                      (7) 

and 

1

2 2

1 1

( )
n n

ijF
i j 

 A A                               (8) 

are adopted to formulate the sparse linear representation model, because 1L -norm Eqw.(7) and FL -

norm Eq.(8) have lower computation cost than 2L -norm of matrix [75].  

3.3 Sparse representation of similarity measure 

If each node in a network is represented by a column vector in the similarity measure matrix S , the 

problem of community detection in networks can be solved as the sparse subspace clustering formulation. 

The general representation-based clustering methods initially solve a coefficient matrix 
n nC R  for 

data matrix 1 2[ , ,... ] d n

n

 Y y y y R , where d  denotes the feature dimension and n  is the 

number of data points. The matrix S , of which entries measure the similarity, is reconstructed. SC is 

then further performed on the coefficient matrix C  to segment data. The coefficient matrix C  can be 

obtained by solving the following general minimization problem [71] 

min ( ) ( - )f gC Y YC ,                                (9) 

where ( )f C denotes a penalty function, ( - )g Y YC corresponds to a loss function, and   is a 

parameter used to trade off the two terms. The domain of the values of parameter   is estimated in [76] 

for a concrete linear case of f and g .  

In community detection, SSC algorithm is used as clustering similarity measure of multi-subspaces by 

using sparse linear representation. The similarity measure of each pair of nodes is assumed to lie in a 

union of linear subspaces. Let 1{ }N

k kS  be an arrangement of N  linear subspaces of 
n

R  with the 

dimensions dimk , 1,2,...,k N . Consider a given matrix of similarity measure [0,1]n nS ; the 

linear representation formulation of the similarity measure S  is  

1 2 1 2[ , ,... ] [ , ,..., ]n Ny y y S Y Y Y C@ ,                        (10) 

where k kY S  is a rank dimk  matrix of the similarity measures that lie in kS , 1,2,...,k N  

and C is an unknown coefficient matrix. In community detection, neither a priori information about the 

basis of the subspaces nor the data belong to the subspaces is known. The formulation of the subspace 

clustering method for community detection is intended to find the number of subspaces, their dimensions, 

a basis for each subspace, and the segmentation of the dataset S . 

To solve the community detection problem by SSC, the similarity measure of each data is initially 
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represented by a few other similarity measure vectors that belong to the same subspace. To this end, a 

global sparse optimization program is adopted. Then, a spectral clustering framework is used to infer the 

clustering of the matrix of similarity measure. By taking the advantage of self-representation property of 

the data in SSC, the data for each community are assumed to lie in a union of subspaces where each data 

point can be efficiently represented by a combination of other points in the dataset [10]. Let each data be 

denoted by 1{ }N

i k ky  S , 1,2,...,i n , and written as 

i iy  YC , 0iic                                  (11) 

where 1 2[ , ,..., ]T

i i i inc c cC  and 1 2[ , ,..., ]NY Y Y Y . The constraint 0iic   eliminates the 

trivial solution of representing a node as a linear combination of itself. The similarity measure matrix S  

is a self-representation dictionary where each similarity measure vector is a linear combination of other 

points. The representation of iy  in the dictionary Y  is not generally unique because the number of 

data points in a subspace is often greater than its dimensions. In other words, a nontrivial null-space can 

provide an infinite number of representations of each data point. However, by using sparse subspace 

representation theory, a data point iy  that lies in subspace kS  with dimensions dimk  can be 

written as a linear combination of other points from kS . Then, Eq. (11) can be solved by minimizing 

qL -norm objective function such as 

                   min | |i qC   s.t. i iy  YC , 0iic  .                        (12) 

Different values of q  have different effects on the solution. Because the values of q  decrease from 

infinity toward zero, then the sparsity of the solution increases. The 0L -norm counts the number of 

nonzero elements of the solution and corresponds to finding the sparsest representation, which is 

generally an NP-hard problem [69, 71]. In practice, the convex relaxation formulation 1L -norm of the 

0L -norm is adopted to approximate the nontrivial sparse representation of iy  in subspace kS  such 

as 

          1m i n | |iC  s.t. i iy  YC , 0iic                          (13) 

Eq. (13) can be solved efficiently by using convex programming [64-67, 69] and can be rewritten as the 

2L -norm of the representation error 

     2min | |i iy YC  s.t. 1| |i C , 0iic                       (14) 

where   is positive constant. Ideally, the solution of Eq. (14) corresponds to the subspace sparse 

representations of the matrix of similarity measures. However, in the problem of community detection 

with real networks, some connections always exist between different communities. We modeled the 

clustering of different communities which are contaminated with sparse noise entries denoted as the 

connections between different communities. Let error-free point iy  lie perfectly in some subspace 

shown as 

0 0

i ij j

j i

y c y


 ,                               (15) 

and iy  be a node that is obtained by corrupting an error-free point 
0

iy  with a vector of sparse noise 

entries iE that has only a few large nonzero elements. Then, we have  

0

i ij j i

j i

y c y


  E .                               (16) 

This situation in community detection corresponds to the case that data are contaminated by the noise 

from connections between different communities. SSC does not attempt to present a node based on a 

linear combination of other nodes. Instead, a penalty noted with 2L -norm of the error is added to the 

1L  norm of coefficient. The corresponding objective function is  
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1 2min | | | |i iC E  s.t.
i iy  YC , 0iic  ,                    (17) 

where   is a Lagrange parameter. Then, Eq.(17) can be rewritten as the 2L -norm of the 

representation error  

      2m i n | |i iy YC  s.t. 1 1| |i C , 2 2| |i E , 0iic                    (18) 

where 1  and 2  are positive constants. Eq. (13) and Eq.(17) can be rewritten in matrix form as  

1min || ||C  s.t. Y = YC , diag( ) 0C                         (19) 

and  

1min || || || ||FC E  s.t. Y = YC E , diag( ) 0C .                (20) 

Following, the ADMM framework is used to solve Eq. (20) or Eq. (19), which iteratively solves convex 

optimization problem by introducing auxiliary variables [77]. The solution of optimal problem Eq. (20) 

is formulated as   

2

1 1
arg min

2
eF


 

C,E,U,Z

Y - YC- E Z U  s.t. C = Z , E = U , diag( ) 0C       (21) 

where Z and U are auxiliary variables. And the augmented Lagrangian function ( )f C,E,U,Z is 

denoted as 

2

1 1
( ) - diag

2
eF

f


     Y
CC,E,U,Z Y - YC- E Z U A ,C (Z - (Z))          

 
2 2

E-diag
2 2F F

 
    C EC-(Z (Z)) A ,E- U E- U             (22) 

where CA and EA  are the multiplier matrixes, constant Y , C , e and E are positive penalty 

parameters and 1 2 A , A is the trace 1 2

T
A A . The alternating directions iterations of multipliers are 

described as the following updating steps.  

Step one: Updating C  

When other parameters are given in the k th iteration, and the objective function ( )f C,E,U,Z  is 

minimized with respect to C . The linear equation of the 
( 1)k

C  can be given as  

      ( 1) ( ) ( ) ( ) ( 1)λ λ diagk k k k k  T T

Y C Y C C
Y Y + I C = Y Y - E + Z Z - A        (23) 

where I is the suitable identity matrix. If the k th value of other parameters are given, the 1k  th 

value 
( 1)k

C of C  can be computed by the operation of matrix inversion or conjugate gradient methods.  

Step two: Updating E  

Similar with Eq.(23), when other parameters are fixed, and the objective function ( )f C,E,U,Z  is 

minimized with respect to E . The 1k  th value 
( 1)k

E is computed as  

   
1( 1) ( 1) ( ) ( )k k k k    
    

Y E Y Y E E
E Y - YC U A              (24) 

Step three: Updating auxiliary variable Z  

The value of variable Z  is computed by the shrinkage-thresholding operator for each element of the 

given matrix [69, 77] as 

( 1) diag( )k J J  Z                             (25) 
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where 

( 1) ( )

2

2
( )k kJ




  

C

c

C

C A                         (26) 

and ( ) : max{ ,0}sgn( )       is the shrinkage-thresholding operator. 

Step 4: Updating auxiliary variable U  

Similarly with variable Z , the value of variable U  is computed as   

( 1) ( )2
( )

e

k keJ 







  

E

E

E

E A                           (27) 

Step 5: Updating the multipliers matrix 
CA and EA  

The multipliers matrix 
CA and EA are updated by gradient ascent method such as 

 

( 1) ( ) ( 1) ( 1)( )k k k k   C C CA A C - Z                        (28) 

( 1) ( ) ( 1) ( 1)( )k k k k   E E EA A E - U                        (29) 

The solution of Eq.(19) is a simple version of that of Eq. (20). Furthermore the solutions of Eq. (19) and 

Eq.(20) correspond to subspace sparse representation coefficients of the similarity measure matrix, which 

will be used to infer the clustering. 

3.4 SC of the sparse representation coefficients 

After solving the optimization program of Eq. (19) or Eq. (20), a sparse representation for each node is 

obtained in which the nonzero elements correspond to nodes from the same subspace. Then, the data are 

divided into different subspaces using the sparse coefficients. A community containing a node iy  is a 

set of nodes containing the support set of iy  as its subset. The support set is the collection of nodes that 

correspond to those large coefficients. Two nodes belong to the same community if their similarity 

measure is greater than some given thresholds. Therefore, all nodes sharing a larger similarity measure 

correspond to the common community. Community is then the union of the support set of each pair of 

nodes. To detect different communities in a network, the sparse linear coefficient vectors of C  are 

clustered.  

Because ijc  may be slightly different from those of jic , the normalization and symmetry operations 

are adopted to modify the representation matrix C as 

                   ,

1
( )

2 | | | |

ij ji

i j

i j

c c
 F

C C
,                             (30) 

where ijc  and jic  are the j th and i th entry of the i th and j th row iC  and jC  of C . Then, F  

is a symmetric matrix, and the SC method is adopted to detect communities. For this purpose, a degree 

matrix D  is computed as 

,

1,

    

0   if         

n

i j

ii j

if i j

i j






 
 

F
D .                            (31) 

Using F  and D , a Laplacian matrix sL is computed as 

1/ 2 1/ 2

s L I - D FD .                               (32) 
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The eigenvectors of sL  embed the vertices of a graph into the Euclidean space. The second-least-

significant eigenvector of sL  is the Fiedler vector. Based on the NCut criterion [2, 4, 78], the network 

can be divided into two partitions. The Fiedler vector is used to discover the hierarchical structure of 

networks. The above process can be repeated to divide each part into two new partitions. Alternatingly, 

one can select the k  least-significant eigenvectors of sL  and directly compute k  clusters. 

3.5 Details of community detection 

From pervious analysis, the proposed community detection method can be drawn as the following 

algorithm.  
                                                                                    

Algorithm 1: Community detection based on the mixed-norm SSC 

Input: {0,1} {0,1}n n n n   A L  adjacency matrix of network 

Step 1: Compute the similarity measure matrix S  from the adjacency matrix A ;  

Step 2: Solve the coefficients matrix C of sparse linear representation by the optimization program (19) or (20); 

Step 3: Normalize and symmetry the matrix C  to obtain the symmetric linear coefficients matrix F ; 

Step 4: Apply spectral clustering to the similarity matrix F . 

Output: Segmentation of the original dataset denoted by the network adjacency matrix 

                                                                                   

In the ideal situation that a network contains some isolated communities with no inter-community links, 

the subspace spanned by each community is independent. As a result, a node in a particular community 

has nonzero coefficients in those nodes within the same community. The coefficients corresponding to 

nodes in other communities are zero. In such cases, SSC associated with the optimization program Eq.(19) 

is adopted. However, for community detection in practical complex networks such as human 

relationships, the small-world phenomenon of dense networks generally makes accurate community 

detection challengeable or even impossible. Traditional spectral clustering algorithm is fused with the 

geodesic distance-based algorithm to mitigate the effect of inter-community links in [74]. However, 

information for the both comes from the adjacency matrix. Computation of double cluster and inverse 

exponential operation take a significant amount of time. In the proposed method, different distance 

measures can increase the flexibility of similar descriptions. Furthermore, FL -norm of error E  is 

added to the 1L -norm of the coefficients matrix C , which improves the accuracy of community 

detection. In the case of community detection for networks in the following experiments, SSC associated 

with optimization program Eq.(20) is suitable. The proposed algorithms have shown excellent 

performance, particularly in computation cost. FL -norm of error E  and 1L -norm of the coefficients 

matrix C  are used in the optimization program Eq.(20). Therefore, the proposed method is denoted as 

mixed-norm SSC.  

Among the computation processes in the proposed Algorithm 1, step one and step three are facile. In step 

two, the sparse linear representation of Eq.(19) or Eq.(20) can be solved using implementations of various 

techniques such as ADMM, the augmented Lagrange multiplier (ALM) method, and the iterative 

shrinkage/thresholding (IST) method [41, 69]. In this work, ADMM method is adopted. ADMM 

iteratively solves convex optimization problems with a global solution by breaking them into smaller, 

easier-to-solve problems. The parameter   in Eq.(20) balances the two terms in the objective function. 

The domains and the roles of the parameters in the Lagrange objective function are also estimated in [76]. 

MATLAB code of ADMM is available from us or in the SPArse Modeling Software (SPAMS) package 

[79]. In step four, SSC need not initially know the number of subspaces. We select the K  least-

significant eigenvectors of sL  to determine the number of clusters. The eigenvectors are normalized 

to be unit magnitude and then clustered by the linear clustering algorithm.  

The average clustering error is used to determine an appropriate value for K . Let km  be the center 

of cluster kC  and i k C  be the eigenvectors of cluster kC . The average error of clustering is 
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2

1 :

| |
i k

K

i k

k i C

 
 

   m .                            (33) 

When the values of K increase, the values of clearly decrease significantly at first. When K is 1, 

reaches maximum. When K is the number of nodes,   is 0. Experimental results in the next section 

show that after a specific value of K , the error will decreases slowly. The error reduction rate gives the 

efficient number approximation of clustering.  

4 Experimental Results and Discussion 

Experiments are performed on real labeled networks, real unlabeled networks and synthetic networks to 

evaluate the efficiency of the proposed approach. Two versions of the proposed method, denoted as the 

noise-free SSC model Eq.(19) and the mixed-norm SSC model Eq.(20) are implemented. The proposed 

algorithms are compared with the state-of-the-art methods such as the sparse linear coding method (SLC) 

[74], the GN algorithm [3], the Newman fast greedy algorithm (FG) [8], and the Infomap algorithm (IM) 

[20]. The performance of the proposed algorithms is compared with those of the state-of-the-art methods 

on both standard benchmark networks with 4 real labeled networks, 2 real unlabeled networks and 2 

synthetic networks such as GN Benchmark [4] and LFR Benchmark [81]. Information about the 

benchmark networks is shown in table 1. In the labeled networks, each node has a ground-truth 

community label. The detected communities are compared with the ground-truth communities using 

precision rate, recall rate and normalized mutual information (NMI). In the unlabeled networks, each 

node does not have a ground-truth label. The algorithm cannot be compared with existing algorithms 

directly based on precision rate and recall rate. Therefore, an evaluation of modularity is used. For most 

of the algorithms, experimental results are reported from the original authors or from comparative studies 

[5, 15]. Then experiments on synthetic networks of GN Benchmark mainly show how the number of 

clustering is determined by the reconstruction error of the community detection schemes. Experiments 

on LFR Benchmark show that the proposed algorithm is effective with different sizes of networks. At 

last, convergences of the noise-free SSC model Eq.(19) and the mixed-norm SSC model Eq.(20) are 

compared. All of the programming is processed using MATLAB 2013 on an Intel(R) Core(TM) i5 3.10 

GHz CPU with 3 GB RAM. 

Table 1 Benchmark networks used in the experiments 

Network Abbreviation Vector Edge Label 

Zachary’s Karate club [74] Karate 34 78 Yes 

Dolphin social network [82] Dolphin 62 159 Yes 

American college football [15] Football 115 616 Yes 

Books about US politics [3] Politics 105 441 Yes 

Email communication network [83] Email 1133 5451 No 

Co-authorships in network science [84] Net science 1589 2742 No 

GN Benchmark [4] GN Not given Not given No 

LFR Benchmark [81] LFR Not given Not given No 

4.1 Results on labeled networks 

In the datasets of labeled networks, Zachary Karate Club is a benchmark social network of friendships 

in a karate club. There are 34 nodes and 78 links in the network. The club splits into two new groups 

named Mr. Hi and John A [74]. The wide Kiss dolphin network provides the social relationships of 62 

wide Kiss dolphins with 159 links. The network contains two small communities [82]. The American 

college football dataset is a network of football games between Division IA colleges during the regular 

season in 2000 [15]. There are 115 nodes and 616 links in the network. The network is divided into 12 

groups, corresponding to the 12 leagues. The network of US political books is based on political book 

sales records from Amazon and includes 105 nodes and 441 edges [3]. In accordance with the political 

leanings of the books, the network is divided into three groups: freedom, neutrality and conservative. As 
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for the labeled networks, precision rate, recall rate and NMI are used to compare the proposed algorithms 

with the reference algorithms. Table 2 presents the community detection results of the proposed 

algorithm and the reference algorithms on the labeled networks. Fig. 2 shows the reconstruction results 

of two communities from four datasets through the proposed method using Eq.(20). Table 2 shows that 

all the algorithms perform better on the Karate and Dolphin datasets than on the Football and Politics 

datasets. Fig. 2 shows that the community structures of the first two networks are clearer than are those 

of the last two. The numerical comparing results are shown in table 2. There are fewer connections 

between communities in the first two networks than in the last two. We can see that the proposed method 

modeled with Eq.(20) performs well, particularly on the first dataset. The number of communities in 

these experiments is set in advance to be two. The results illustrate that the proposed method effectively 

addresses the problem of community detection in networks.  

Table 2 Community detection results of the proposed algorithm and the state-of-art algorithms on labeled networks 

   

(a)                                       (b) 

Network Evaluation GN FG IM SLC Eq. (19) Eq. (20) 

Karate 

 

precision  0.971 0.971 0.971 0.971 0.971 1 

recall  0.969 0.971 0.971 0.971 0.971 1 

NMI 0.836 0.837 0.837 0.837 0.837 1 

Dolphin precision  0.984 0.935 0.968 0.984 0.984 0.968 

recall  0.977 0.94 0.954 0.977 0.977 0.954 

NMI 0.89 0.652 0.814 0.89 0.89 0.814 

Football precision  0.834 0.573 0.930 0.878 0.887 0.896 

recall  0.772 0.49 0.891 0.816 0.832 0.825 

NMI 0.878 0.697 0.936 0.793 0.821 0.865 

Politics precision  0.857 0.838 0.848 0.857 0.876 0.876 

recall  0.765 0.639 0.721 0.747 0.765 0.786 

NMI 0.568 0.568 0.571 0.584 0.588 0.597 
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(c)                                       (d) 

Fig. 2 Community structures of four benchmark networks: (a) Karate, (b) Dolphin, (c) Football and (d) Politics 

4.2 Results on unlabeled networks 

In the unlabeled real networks, there is no ground-truth label for each node in the networks. Therefore, 

comparison of different algorithms is difficult. Indexes such as precision rate, recall rate and NMI cannot 

be used to compare the performance of different algorithms. Comparisons have typically been made 

based on the modularity function [3]. The unlabeled networks contain a Spanish university email 

communication network and a network of web science collaboration. The email communication network 

consists of 1133 nodes and 5451 edges. The cooperative network describes the cooperative relationships 

of 1589 scientists from the field of web of Science, which consists of 1589 nodes and 2742 edges. In the 

dataset of the Email communication network, the number of communities is set as 11. In the dataset of 

the cooperative network, the number of communities is set as 12. Experimental results on the modularity 

of different algorithms for the two unlabeled networks are shown in Table 3. We see that the proposed 

algorithm is as good as the SLC algorithm from Table 3, and both outperform the others algorithms. For 

the dataset of cooperative network, the GN algorithm cannot divide the network societies because the 

network is not connected. The corresponding value of the modularity function is not shown. 

Table 3 Values of modularity of community detection results on unlabeled networks 

 

 

 

 

4.3 Results on the GN benchmark 

The modularity function may not be an especially appropriate measure for the effect of community 

detection, particularly in situations that the sizes of the communities vary significantly [5]. Therefore, 

apart from the modularity function, average error of clustering is used to evaluate the performance of the 

community detection algorithm. Experiments using the GN benchmark illustrate how to determine the 

number of communities for a given network. The GN benchmark has 128 nodes and four communities, 

each with 32 nodes. Each node has one probability of being connected to the nodes in the same 

community and another probability of being connected to the nodes of different communities. The total 

degree of each node is 16. The mixing parameter m  is defined as the ratio of the external degree of a 

node to its total degree. The structure is well defined for small values of m [4]. When m  is less than 

6/16, almost all community detection algorithms yield a 100% correct result. However, when m  is 

greater than 9/16, the community structure becomes subtle, and most algorithms cannot find any 

Network GN FG IM SLC Eq. (19) Eq. (20) 

Email 0.532 0.506 0.52 0.545 0.538 0.544 

Network science - 0.955 0.931 0.957 0.951 0.958 
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meaningful communities. We report on the proposed method when m  is 8/16. Average error of 

clustering along with the number of clustering using Eqs. (19) and Eq.(20) is shown in Fig. 3. The average 

error variation rate of clustering along with the number of clustering using Eq.(19) and Eq.(20) is shown 

in Fig. 4. Fig. 3 and Fig. 4 show that average error decreases with an increase in the number of 

communities. The rate of average error of clustering reduces significantly when the number is less than 

4, which is the truth number of communities in the network. Experiments are repeated ten times. Fig. 3 

and Fig. 4 show that the average error-reduction rate can be used as a measure to determine the number 

of communities. In addition, the mixed-norm of Eq. (20) yielded a slightly clearer result than did the 

basic model denoted as Eq.(19).  

 

Fig. 3 Average error versus the number of clustering using Eq.(19) and (20) on the GN benchmark 

 

Fig. 4 Average error variation rate versus the number of clustering using Eq.(19) and (20) on the GN benchmark 

4.4 Results on LFR benchmark 

Experiments are performed on LFR synthetic benchmark networks to show the proposed method is 

effective for different scales of networks. The degree of distribution and community scale distribution of 

nodes in the LFR network follow the power-law distribution, which makes it closer to real networks [81]. 

The following parameters should be set to generate synthetic complex networks: the number of nodes in 

the network, n ; the average degree of network nodes, k ; the maximum degree of network nodes, 

maxk ; the network topological mixing parameter  , which specifies the structure of the communities; 

the power law distribution parameter for the node degree, 1 ; the power law distribution parameter for 

community size index, 2 ; the minimum community size, minR , which specifies the minimum size of 

each generated community; and the maximum community size, maxR , which designates the maximum 

size of each generated community. In the experiments, n  ranges from 1000 to 10000 according to the 

interval of 1000, and k  is 20, maxk is 50,   is 0.6, 1  is -2, 2  is -1, minR  is 10, and maxR is 

50, all of which are typical suggested values [81]. Fig. 5 and Fig. 6 show the average error and their 
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variation rate along with the number of clusters using Eqs. (19) and (20) when n  is 1000. Other 

parameters are the same as description previously. We deduced that there are 12 communities in the 

networks. Fig. 7 shows the average error as n  changes from 1000 to 10000 in intervals of 1000 when 

there are 12 communities in the networks. The result shows that the method can address different sizes 

of networks. The results from Eq. (20) of the proposed method are more accurate than are those from Eq. 

(19). Because of the performance limitations of our computer, how to test the proposed method on 

significantly larger networks is our future work. Sparse subspace representation theory and fast solution 

of a linear matrix equation provide useful tools and directions for community detection.  

 

Fig. 5 Average error versus the number of clustering using Eq.(19) and (20) on LFR benchmark 

 

Fig. 6 Average error variation rate versus the number of clustering using Eq.(19) and (20) on LFR benchmark  

 

Fig. 7 Average error along with different network sizes 

Finally, the time costs of two versions of the proposed method are compared with recently proposed 

similar method [74]. There are two versions marked as geodesic sparse subspace communities (GSSC) 

and sparse subspace communities with fusion (SSCF) in the reference method. Table 4 shows that the 
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time cost of the proposed method is superior to those of reference method because there is no kernel 

function mapping or nonlinear geometry distance computation in the proposed method, which is 

necessary in the reference. The experiment condition is as same as the previous when the number of 

nodes in the network n is 1000 for the LFR dataset. 

Table 4 Time cost of the proposed method compared with similar method 

4.5 Convergence comparing 

As previously discussed, key steps in the proposed method are to solve the coefficients matrix of the 

optimization program Eq.(19) or Eq.(20) and to apply spectral clustering to the similarity matrix. The 

latter has standard processes. We mainly verified that AMDD frameworks used in Eq.(19) or Eq.(20) is 

convergent, and the mixed-norm SSC model Eq.(20) is more accurate than the noise-free SSC model 

Eq.(19) in community detection. In fact, it is found that the ADMM framework can converge to modest 

accuracy within dozens of iterations even though it is slow to converge to high accuracy [69]. This 

property of ADMM can deal with community detection challenges with huge datasets. From experiments, 

we see that this level of accuracy is sufficient enough for community detection. Fig. 8 shows the values 

of the objective functions of Eq.(19) and Eq.(20) along with the number of iteration of the ADMM 

framework for the Zachary Karate Club dataset. From table 2, table 3, Fig. 4, Fig. 6 and Fig. 7, we see 

that average errors of clustering using Eq.(20) is smaller than those of using Eq.(19). From Fig. 8, we 

noticed that solutions of the mixed-norm SSC model Eq.(20) converge faster than those of the error-free 

SSC model Eq.(19). After 20 iterations, the values of the objective functions of Eq.(20) is stable between 

0.723  0.054. While after 31 iterations, the values of the objective functions of Eq.(19) is stable 

between 0.786 0.052. Compared with the noise-free SSC model, the mixed-norm SSC model is more 

accurate for community detection because the connections of nodes between different communities in 

networks always exist and are modeled as noises suitably.  

 

Fig. 8 Values of the objective functions of Eq.(19) and Eq.(20) versus iteration 

5 Conclusions 

Community detection is a challenging problem in various research fields such as social networks, biology 
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Evaluation GSSC of ref. [19] SSCF of ref. [19]  Eq. (19) Eq. (20) 

Karate 4.41 4.67 4.06 4.23 

Dolphin 6.14 6.85 5.48 5.64 

Football 3.36 3.64 2.95 3.18 

Politics 5.73 6.29 5.25 5.59 

Email 89.47 95.16 82.92 86.74 

Net science 103.52 118.73 94.96 99.81 

GN 6.50 6.726 5.88 6.02 

LFR 98.14 105.83 89.30 92.76 
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gene expressions, physics systems. A new community detection method based on the theory of SSC with 

mixed-norm constrains is proposed in this paper. By using the approach of sparse subspace representation 

theory, each community in a given network can be considered as a subspace in some similarity measure 

space. Moreover, each node can be represented by a linear combination of the other nodes in the same 

subspace. The connections of nodes between different communities are modeled as noises to improve 

the clustering accuracy. By introducing mixed-norm constraint condition, the representation coefficients 

of each node in the subspace are formulated. The ADMM framework is used to solve the formulation. 

Finally, the proposed community detection method is compared with the state-of-the-art algorithms on 

both labeled and unlabeled real benchmark networks and on synthetic networks. Experimental results 

show that the proposed method is effective. The self-representation ability of SSC provides a kind of 

suitable description of the community in the network. The proposed method gives a new way of 

addressing community detection challenges in different networks with huge datasets. 
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