487 research outputs found

    Divergence-Conforming Velocity and Vorticity Approximations for Incompressible Fluids Obtained with Minimal Facet Coupling

    Get PDF
    We introduce two new lowest order methods, a mixed method, and a hybrid discontinuous Galerkin method, for the approximation of incompressible flows. Both methods use divergence-conforming linear Brezzi–Douglas–Marini space for approximating the velocity and the lowest order Raviart–Thomas space for approximating the vorticity. Our methods are based on the physically correct viscous stress tensor of the fluid, involving the symmetric gradient of velocity (rather than the gradient), provide exactly divergence-free discrete velocity solutions, and optimal error estimates that are also pressure robust. We explain how the methods are constructed using the minimal number of coupling degrees of freedom per facet. The stability analysis of both methods are based on a Korn-like inequality for vector finite elements with continuous normal component. Numerical examples illustrate the theoretical findings and offer comparisons of condition numbers between the two new methods

    Adaptive low and high-order hybridized methods for unsteady incompressible flow simulations

    Get PDF
    Tesi en modalitat de cotutela: Universitat Politècnica de Catalunya i Università degli Studi di PaviaSimulations of incompressible flows are performed on a daily basis to solve problems of practical and industrial interest in several fields of engineering, including automotive, aeronautical, mechanical and biomedical applications. Although finite volume (FV) methods are still the preferred choice by the industry due to their efficiency and robustness, sensitivity to mesh quality and limited accuracy represent two main bottlenecks of these approaches. This is especially critical in the context of transient phenomena, in which FV methods show excessive numerical diffusion. In this context, there has been a growing interest towards high-order discretisation strategies in last decades. In this PhD thesis, a high-order adaptive hybidisable discontinuous Galerkin (HDG) method is proposed for the approximation of steady and unsteady laminar incompressible Navier-Stokes equations. Voigt notation for symmetric second-order tensors is exploited to devise an HDG method for the Cauchy formulation of the momentum equation with optimal convergence properties, even when low-order polynomial degrees of approximation are considered. In addition, a postprocessing strategy accounting for rigid translational and rotational modes is proposed to construct an element-by-element superconvergent velocity field. The discrepancy between the computed and postprocessed velocities is utilised to define a local error indicator to drive degree adaptivity procedures and accurately capture localised features of the flow. The resulting HDG solver is thus extended to the case of transient problems via high-order time integration schemes, namely the explicit singly diagonal implicit Runge-Kutta (ESDIRK) schemes. In this context, the embedded explicit step is exploited to define an inexpensive estimate of the temporal error to devise an efficient timestep control strategy. Finally, in order to efficiently solve the global problem arising from the HDG discretisation, a preconditioned iterative solver is proposed. This is critical in the context of high-order approximations in three-dimensional domains leading to large-scale problems, especially in transient simulations. A block diagonal preconditioner coupled with an inexpensive approximation of the Schur complement of the matrix is proposed to reduce the computational cost of the overall HDG solver. Extensive numerical validation of two and three-dimensional steady and unsteady benchmark tests of viscous laminar incompressible flows is performed to validate the proposed methodology.Simulaciones de flujo incompresible se emplean a diario para resolver problemas de interés práctico e industrial en varios campos de la ingeniería, p.ej. en aplicaciones automovilísticas, aeronáuticas, mecánicas y biomédicas. Aunque los métodos de volúmenes finitos (FV) siguen siendo la opción preferida por la industria debido a su eficiencia y robustez, la sensibilidad a la calidad de la malla y la baja precisión representan dos limitaciones importantes para estas técnicas. Estas limitaciones son todavía más críticas en el contexto de simulaciones de fenómenos transitorios, donde los FV están penalizados por su excesiva difusión numérica. En este contexto, las estrategias de discretización de alto orden han ganado una popularidad creciente en las últimas décadas para problemas transitorios dónde se necesitan soluciones precisas. Esta tesis propone un método de Galerkin discontinuo híbrido (HDG), de alto orden y adaptativo para la aproximación de las ecuaciones de Navier-Stokes incomprensible laminar, en el caso estacionario y transitorio en el entorno de aplicaciones ingenieriles. Para ello, la notación de Voigt para tensores simétricos de segundo orden (habituales en mecánica de los medios continuos) permite introducir un método HDG para la formulación de Cauchy de la ecuación de momento. La novedad de este resultado reside en la convergencia óptima alcanzada por el método, incluso para aproximaciones de orden polinómico bajo. Además, se desarrolla una estrategia de post-proceso local para construir elemento a elemento un campo de velocidad súper-convergente, tomando en cuenta los modos rígidos de traslación y rotación. La discrepancia entre el campo de velocidad calculado y el súper-convergente, obtenido a través del post-proceso, permite definir un indicador del error local. De esta forma, se desarrolla una estrategia para realizar adecuar elemento a elemento el grado de la aproximación polinómica y así mejorar la precisión adaptándose a las características localizadas del flujo. Seguidamente, se extiende el método HDG propuesto al tratamiento de problemas dependientes del tiempo. Más concretamente, se consideran los esquemas de integración temporal de alto orden explicit singly diagonal implicit Runge-Kutta (ESDIRK). En este contexto, se utiliza el paso explícito embedded para calcular una estimación computacionalmente eficiente del error temporal y definir una estrategia de adaptividad del paso de tiempo. Finalmente, se desarrolla un precondicionador adaptado a la estrategia HDG que acelera la convergencia del método iterativo empleado y, de esta forma, obtener resoluciones eficaces del problema global surgido de la discretización HDG. Es importante resaltar la importancia de una herramienta de resolución eficiente para problemas de gran escala en el contexto de aproximaciones de alto orden y en dominios tridimensionales. Estas herramientas se hacen aún más criticas en simulaciones transitorias. Más concretamente, se proponen un precondicionador diagonal por bloques y una aproximación eficiente del complemento Schur de la matriz para reducir el coste computacional del método HDG. Para validar la metodología propuesta, se realizan varias simulaciones numéricas de flujo incompresible laminar viscoso, para problemas estacionarios y transitorios, en dos y tres dimensiones.Postprint (published version

    Computational Engineering

    Get PDF
    This Workshop treated a variety of finite element methods and applications in computational engineering and expanded their mathematical foundation in engineering analysis. Among the 53 participants were mathematicians and engineers with focus on mixed and nonstandard finite element schemes and their applications

    Hybridizable discontinuous Galerkin method for nonlinear elasticity

    Get PDF
    University of Minnesota Ph.D. dissertation. November 2017. Major: Mathematics. Advisor: Bernardo Cockburn. 1 computer file (PDF); 1viii, 128 pages.Hybridizable discontinuous Galerkin method for nonlinear elasticit
    • …
    corecore