7,462 research outputs found

    Quantum state tomography of molecular rotation

    Full text link
    We show how the rotational quantum state of a linear or symmetric top rotor can be reconstructed from finite time observations of the polar angular distribution under certain conditions. The presented tomographic method can reconstruct the complete rotational quantum state in many non-adiabatic alignment experiments. Our analysis applies for measurement data available with existing measurement techniques.Comment: 7 pages, 1 figur

    Ballistic matter waves with angular momentum: Exact solutions and applications

    Full text link
    An alternative description of quantum scattering processes rests on inhomogeneous terms amended to the Schroedinger equation. We detail the structure of sources that give rise to multipole scattering waves of definite angular momentum, and introduce pointlike multipole sources as their limiting case. Partial wave theory is recovered for freely propagating particles. We obtain novel results for ballistic scattering in an external uniform force field, where we provide analytical solutions for both the scattering waves and the integrated particle flux. Our theory directly applies to p-wave photodetachment in an electric field. Furthermore, illustrating the effects of extended sources, we predict some properties of vortex-bearing atom laser beams outcoupled from a rotating Bose-Einstein condensate under the influence of gravity.Comment: 42 pages, 8 figures, extended version including photodetachment and semiclassical theor

    Solving, Estimating and Selecting Nonlinear Dynamic Economic Models without the Curse of Dimensionality

    Get PDF
    A welfare analysis of a risky policy is impossible within a linear or linearized model and its certainty equivalence property. The presented algorithms are designed as a toolbox for a general model class. The computational challenges are considerable and I concentrate on the numerics and statistics for a simple model of dynamic consumption and labor choice. I calculate the optimal policy and estimate the posterior density of structural parameters and the marginal likelihood within a nonlinear state space model. My approach is even in an interpreted language twenty time faster than the only alternative compiled approach. The model is estimated on simulated data in order to test the routines against known true parameters. The policy function is approximated by Smolyak Chebyshev polynomials and the rational expectation integral by Smolyak Gaussian quadrature. The Smolyak operator is used to extend univariate approximation and integration operators to many dimensions. It reduces the curse of dimensionality from exponential to polynomial growth. The likelihood integrals are evaluated by a Gaussian quadrature and Gaussian quadrature particle filter. The bootstrap or sequential importance resampling particle filter is used as an accuracy benchmark. The posterior is estimated by the Gaussian filter and a Metropolis- Hastings algorithm. I propose a genetic extension of the standard Metropolis-Hastings algorithm by parallel random walk sequences. This improves the robustness of start values and the global maximization properties. Moreover it simplifies a cluster implementation and the random walk variances decision is reduced to only two parameters so that almost no trial sequences are needed. Finally the marginal likelihood is calculated as a criterion for nonnested and quasi-true models in order to select between the nonlinear estimates and a first order perturbation solution combined with the Kalman filter.stochastic dynamic general equilibrium model, Chebyshev polynomials, Smolyak operator, nonlinear state space filter, Curse of Dimensionality, posterior of structural parameters, marginal likelihood

    Image Local Features Description through Polynomial Approximation

    Get PDF
    This work introduces a novel local patch descriptor that remains invariant under varying conditions of orientation, viewpoint, scale, and illumination. The proposed descriptor incorporate polynomials of various degrees to approximate the local patch within the image. Before feature detection and approximation, the image micro-texture is eliminated through a guided image filter with the potential to preserve the edges of the objects. The rotation invariance is achieved by aligning the local patch around the Harris corner through the dominant orientation shift algorithm. Weighted threshold histogram equalization (WTHE) is employed to make the descriptor in-sensitive to illumination changes. The correlation coefficient is used instead of Euclidean distance to improve the matching accuracy. The proposed descriptor has been extensively evaluated on the Oxford's affine covariant regions dataset, and absolute and transition tilt dataset. The experimental results show that our proposed descriptor can categorize the feature with more distinctiveness in comparison to state-of-the-art descriptors. - 2013 IEEE.This work was supported by the Qatar National Library.Scopu

    Efficient Implementation of Elliptic Curve Cryptography on FPGAs

    Get PDF
    This work presents the design strategies of an FPGA-based elliptic curve co-processor. Elliptic curve cryptography is an important topic in cryptography due to its relatively short key length and higher efficiency as compared to other well-known public key crypto-systems like RSA. The most important contributions of this work are: - Analyzing how different representations of finite fields and points on elliptic curves effect the performance of an elliptic curve co-processor and implementing a high performance co-processor. - Proposing a novel dynamic programming approach to find the optimum combination of different recursive polynomial multiplication methods. Here optimum means the method which has the smallest number of bit operations. - Designing a new normal-basis multiplier which is based on polynomial multipliers. The most important part of this multiplier is a circuit of size O(nlogn)O(n \log n) for changing the representation between polynomial and normal basis
    corecore