5,187 research outputs found

    Introduction to Gestural Similarity in Music. An Application of Category Theory to the Orchestra

    Full text link
    Mathematics, and more generally computational sciences, intervene in several aspects of music. Mathematics describes the acoustics of the sounds giving formal tools to physics, and the matter of music itself in terms of compositional structures and strategies. Mathematics can also be applied to the entire making of music, from the score to the performance, connecting compositional structures to acoustical reality of sounds. Moreover, the precise concept of gesture has a decisive role in understanding musical performance. In this paper, we apply some concepts of category theory to compare gestures of orchestral musicians, and to investigate the relationship between orchestra and conductor, as well as between listeners and conductor/orchestra. To this aim, we will introduce the concept of gestural similarity. The mathematical tools used can be applied to gesture classification, and to interdisciplinary comparisons between music and visual arts.Comment: The final version of this paper has been published by the Journal of Mathematics and Musi

    Ideal-quasi-Cauchy sequences

    Get PDF
    An ideal II is a family of subsets of positive integers N\textbf{N} which is closed under taking finite unions and subsets of its elements. A sequence (xn)(x_n) of real numbers is said to be II-convergent to a real number LL, if for each \;ε>0 \varepsilon> 0 the set {n:xnLε}\{n:|x_{n}-L|\geq \varepsilon\} belongs to II. We introduce II-ward compactness of a subset of R\textbf{R}, the set of real numbers, and II-ward continuity of a real function in the senses that a subset EE of R\textbf{R} is II-ward compact if any sequence (xn)(x_{n}) of points in EE has an II-quasi-Cauchy subsequence, and a real function is II-ward continuous if it preserves II-quasi-Cauchy sequences where a sequence (xn)(x_{n}) is called to be II-quasi-Cauchy when (Δxn)(\Delta x_{n}) is II-convergent to 0. We obtain results related to II-ward continuity, II-ward compactness, ward continuity, ward compactness, ordinary compactness, ordinary continuity, δ\delta-ward continuity, and slowly oscillating continuity.Comment: 16 pages. arXiv admin note: text overlap with arXiv:1005.494

    On algebraic supergroups, coadjoint orbits and their deformations

    Get PDF
    In this paper we study algebraic supergroups and their coadjoint orbits as affine algebraic supervarieties. We find an algebraic deformation quantization of them that can be related to the fuzzy spaces of non commutative geometry.Comment: 37 pages, AMS-LaTe

    Countable Fuzzy Topological Space and Countable Fuzzy Topological Vector Space

    Get PDF
    This paper deals with countable fuzzy topological spaces, a generalization of the notion of fuzzy topological spaces. A collection of fuzzy sets F on a universe X forms a countable fuzzy topology if in the definition of a fuzzy topology, the condition of arbitrary supremum is relaxed to countable supremum. In this generalized fuzzy structure, the continuity of fuzzy functions and some other related properties are studied. Also the class of countable fuzzy topological vector spaces as a generalization of the class of fuzzy topological vector spaces has been introduced and investigated

    pp-I\mathcal{I}-generator and p1p_1-i\mathcal{i}-generator in bitopology

    Get PDF

    Gauge Theories on Deformed Spaces

    Full text link
    The aim of this review is to present an overview over available models and approaches to non-commutative gauge theory. Our main focus thereby is on gauge models formulated on flat Groenewold-Moyal spaces and renormalizability, but we will also review other deformations and try to point out common features. This review will by no means be complete and cover all approaches, it rather reflects a highly biased selection.Comment: v2 references added; v3 published versio

    The structure of classical extensions of quantum probability theory

    Get PDF
    On the basis of a suggestive definition of a classical extension of quantum mechanics in terms of statistical models, we prove that every such classical extension is essentially given by the so-called Misra–Bugajski reduction map. We consider how this map enables one to understand quantum mechanics as a reduced classical statistical theory on the projective Hilbert space as phase space and discuss features of the induced hidden-variable model. Moreover, some relevant technical results on the topology and Borel structure of the projective Hilbert space are reviewed

    Duality Symmetries and Noncommutative Geometry of String Spacetime

    Get PDF
    We examine the structure of spacetime symmetries of toroidally compactified string theory within the framework of noncommutative geometry. Following a proposal of Frohlich and Gawedzki, we describe the noncommutative string spacetime using a detailed algebraic construction of the vertex operator algebra. We show that the spacetime duality and discrete worldsheet symmetries of the string theory are a consequence of the existence of two independent Dirac operators, arising from the chiral structure of the conformal field theory. We demonstrate that these Dirac operators are also responsible for the emergence of ordinary classical spacetime as a low-energy limit of the string spacetime, and from this we establish a relationship between T-duality and changes of spin structure of the target space manifold. We study the automorphism group of the vertex operator algebra and show that spacetime duality is naturally a gauge symmetry in this formalism. We show that classical general covariance also becomes a gauge symmetry of the string spacetime. We explore some larger symmetries of the algebra in the context of a universal gauge group for string theory, and connect these symmetry groups with some of the algebraic structures which arise in the mathematical theory of vertex operator algebras, such as the Monster group. We also briefly describe how the classical topology of spacetime is modified by the string theory, and calculate the cohomology groups of the noncommutative spacetime. A self-contained, pedagogical introduction to the techniques of noncommmutative geometry is also included.Comment: 70 pages, Latex, No Figures. Typos and references corrected. Version to appear in Communications in Mathematical Physic

    Mathematical problems for complex networks

    Get PDF
    Copyright @ 2012 Zidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This article is made available through the Brunel Open Access Publishing Fund.Complex networks do exist in our lives. The brain is a neural network. The global economy is a network of national economies. Computer viruses routinely spread through the Internet. Food-webs, ecosystems, and metabolic pathways can be represented by networks. Energy is distributed through transportation networks in living organisms, man-made infrastructures, and other physical systems. Dynamic behaviors of complex networks, such as stability, periodic oscillation, bifurcation, or even chaos, are ubiquitous in the real world and often reconfigurable. Networks have been studied in the context of dynamical systems in a range of disciplines. However, until recently there has been relatively little work that treats dynamics as a function of network structure, where the states of both the nodes and the edges can change, and the topology of the network itself often evolves in time. Some major problems have not been fully investigated, such as the behavior of stability, synchronization and chaos control for complex networks, as well as their applications in, for example, communication and bioinformatics
    corecore