222 research outputs found

    Covert Bits Through Queues

    Full text link
    We consider covert communication using a queuing timing channel in the presence of a warden. The covert message is encoded using the inter-arrival times of the packets, and the legitimate receiver and the warden observe the inter-departure times of the packets from their respective queues. The transmitter and the legitimate receiver also share a secret key to facilitate covert communication. We propose achievable schemes that obtain non-zero covert rate for both exponential and general queues when a sufficiently high rate secret key is available. This is in contrast to other channel models such as the Gaussian channel or the discrete memoryless channel where only O(n)\mathcal{O}(\sqrt{n}) covert bits can be sent over nn channel uses, yielding a zero covert rate.Comment: To appear at IEEE CNS, October 201

    Securing Real-Time Internet-of-Things

    Full text link
    Modern embedded and cyber-physical systems are ubiquitous. A large number of critical cyber-physical systems have real-time requirements (e.g., avionics, automobiles, power grids, manufacturing systems, industrial control systems, etc.). Recent developments and new functionality requires real-time embedded devices to be connected to the Internet. This gives rise to the real-time Internet-of-things (RT-IoT) that promises a better user experience through stronger connectivity and efficient use of next-generation embedded devices. However RT- IoT are also increasingly becoming targets for cyber-attacks which is exacerbated by this increased connectivity. This paper gives an introduction to RT-IoT systems, an outlook of current approaches and possible research challenges towards secure RT- IoT frameworks

    A Survey of Techniques for Improving Security of GPUs

    Full text link
    Graphics processing unit (GPU), although a powerful performance-booster, also has many security vulnerabilities. Due to these, the GPU can act as a safe-haven for stealthy malware and the weakest `link' in the security `chain'. In this paper, we present a survey of techniques for analyzing and improving GPU security. We classify the works on key attributes to highlight their similarities and differences. More than informing users and researchers about GPU security techniques, this survey aims to increase their awareness about GPU security vulnerabilities and potential countermeasures

    A Novel Side-Channel in Real-Time Schedulers

    Full text link
    We demonstrate the presence of a novel scheduler side-channel in preemptive, fixed-priority real-time systems (RTS); examples of such systems can be found in automotive systems, avionic systems, power plants and industrial control systems among others. This side-channel can leak important timing information such as the future arrival times of real-time tasks.This information can then be used to launch devastating attacks, two of which are demonstrated here (on real hardware platforms). Note that it is not easy to capture this timing information due to runtime variations in the schedules, the presence of multiple other tasks in the system and the typical constraints (e.g., deadlines) in the design of RTS. Our ScheduLeak algorithms demonstrate how to effectively exploit this side-channel. A complete implementation is presented on real operating systems (in Real-time Linux and FreeRTOS). Timing information leaked by ScheduLeak can significantly aid other, more advanced, attacks in better accomplishing their goals

    Vulnerability Analysis and Mitigation of Directed Timing Inference Based Attacks on Time-Triggered Systems

    Get PDF
    Much effort has been put into improving the predictability of real-time systems, especially in safety-critical environments, which provides designers with a rich set of methods and tools to attest safety in situations with no or a limited number of accidental faults. However, with increasing connectivity of real-time systems and a wide availability of increasingly sophisticated exploits, security and, in particular, the consequences of predictability on security become concerns of equal importance. Time-triggered scheduling with offline constructed tables provides determinism and simplifies timing inference, however, at the same time, time-triggered scheduling creates vulnerabilities by allowing attackers to target their attacks to specific, deterministically scheduled and possibly safety-critical tasks. In this paper, we analyze the severity of these vulnerabilities by assuming successful compromise of a subset of the tasks running in a real-time system and by investigating the attack potential that attackers gain from them. Moreover, we discuss two ways to mitigate direct attacks: slot-level online randomization of schedules, and offline schedule-diversification. We evaluate these mitigation strategies with a real-world case study to show their practicability for mitigating not only accidentally malicious behavior, but also malicious behavior triggered by attackers on purpose
    corecore