
Vulnerability Analysis and Mitigation of Directed
Timing Inference Based Attacks on
Time-Triggered Systems
Kristin Krüger
Technische Universität Kaiserslautern
Kaiserslautern, Deutschland
krueger@eit.uni-kl.de

https://orcid.org/0000-0002-3201-5528

Marcus Völp1

SnT - Université du Luxembourg
Esch-sur-Alzette, Luxembourg
marcus.voelp@uni.lu

https://orcid.org/0000-0002-8020-4446

Gerhard Fohler
Technische Universität Kaiserslautern
Kaiserslautern, Deutschland
fohler@eit.uni-kl.de

https://orcid.org/0000-0001-6162-2653

Abstract
Much effort has been put into improving the predictability of real-time systems, especially in
safety-critical environments, which provides designers with a rich set of methods and tools to at-
test safety in situations with no or a limited number of accidental faults. However, with increasing
connectivity of real-time systems and a wide availability of increasingly sophisticated exploits,
security and, in particular, the consequences of predictability on security become concerns of
equal importance. Time-triggered scheduling with offline constructed tables provides determin-
ism and simplifies timing inference, however, at the same time, time-triggered scheduling creates
vulnerabilities by allowing attackers to target their attacks to specific, deterministically scheduled
and possibly safety-critical tasks. In this paper, we analyze the severity of these vulnerabilities
by assuming successful compromise of a subset of the tasks running in a real-time system and
by investigating the attack potential that attackers gain from them. Moreover, we discuss two
ways to mitigate direct attacks: slot-level online randomization of schedules, and offline schedule-
diversification. We evaluate these mitigation strategies with a real-world case study to show their
practicability for mitigating not only accidentally malicious behavior, but also malicious behavior
triggered by attackers on purpose.

2012 ACM Subject Classification Computer systems organization → Real-time systems, Soft-
ware and its engineering → Scheduling, Security and privacy → Operating systems security

Keywords and phrases real-time systems, time-triggered systems, security, vulnerability

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2018.22

Acknowledgements We want to thank the reviewers for their helpful comments which greatly
improved this paper. We are also gratefully indebted to Ali Syed, Florian Heilmann and Rodrigo

1 supported by Fonds National de la Recherche Luxembourg (FNR) through PEARL grant FN-
R/P14/8149128.

© Kristin Krüger, Marcus Völp, and Gerhard Fohler;
licensed under Creative Commons License CC-BY

30th Euromicro Conference on Real-Time Systems (ECRTS 2018).
Editor: Sebastian Altmeyer; Article No. 22; pp. 22:1–22:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:krueger@eit.uni-kl.de
https://orcid.org/0000-0002-3201-5528
mailto:marcus.voelp@uni.lu
https://orcid.org/0000-0002-8020-4446
mailto:fohler@eit.uni-kl.de
https://orcid.org/0000-0001-6162-2653
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Vulnerability Analysis and Mitigation of Directed Attacks on TT Systems

Coelho from the Technical University of Kaiserslautern and Martina Maggio from Lund University
for their comments on an earlier version of this paper. Their insights and expertise assisted
research, however, any errors found are our own.

1 Introduction

Real-time systems used to be closed systems running on specialized hardware. Consequently,
security had been given little thought, as no access from the outside to these systems
was assumed. However, recent trends show the reuse of more and more components for
real-time systems, e.g. the shift from federated avionics architectures to IMA (Integrated
Modular Avionics) [24], a growing need for connectivity, especially in the area of IoT and
networked systems, and a shift from single to multi- and manycore architectures. These
trends lead to an increase in the complexity of real-time systems in general and in particular
at the real-time application level. This increased complexity implies that real-time systems
cannot be considered closed and inaccessible anymore but instead demands anticipating more
vulnerabilities and in turn an increased risk of compromise. Security has to be considered
during system design and deployment to prevent unauthorized information disclosure and
exploitation of vulnerabilities by a potentially malicious, safety-threatening attacker [22].
This is especially true for systems in safety-critical environments, where real-time time-
triggered systems are often used. Research on security in the real-time domain, especially for
time-triggered systems, however, is still in its infancy [23].

Time-triggered real-time systems [12] provide highly predictable scheduling behavior to
meet strict timing constraints. While real-time online scheduling provides predictability,
i.e, guarantees that deadlines will be met, but not exact times of execution, time-triggered
systems provide determinism, i.e., given schedule and time, the task executing is known.
However, the very properties of determinism, periodicity, and timeliness can be exploited by
an attacker. Reusing complex components in a networked environment inherits all classical
security concerns and requires appropriate countermeasures. However, in addition, real-
time systems enable a class of attacks specifically targeting the timing of applications and
thereby the safety to which these tasks contribute. Security is therefore of high concern for
safety-critical real-time time-triggered systems.

Having compromised a large enough set of co-scheduled non real-time or low safety-critical
tasks, an attacker can make use of leaked scheduling-related information to fine-tune the
compromised tasks’ behavior such that they generate maximum interference on subsequently
executing victim tasks. In order to stay undetected, an attacker could continue normal
operation of the compromised tasks up to the point in time when one of the tasks is executed
immediately before a safety-critical task. At this time, the compromised task exploits
all of its accessible resources to create an access pattern that maximizes interference on
the safety-critical task. For example, writing all accessible memory instead of just the
locations accessed when executing as analyzed may result in a cache and/ or DRAM access
pattern that maximizes cache-related delays of the subsequently executed safety-critical task.
Alternatively, on a multicore system, the compromised task could issue the maximum number
of allowed memory requests. If memory requests are not handled properly, this may lead to
a deadline miss on another core competing for memory access.

Tools analyzing only the legitimate task behavior to determine, e.g., cache-related
preemption delays, are not aware of such malicious behavior. Unless the system designer
anticipates maximum preemption delays for all tasks, real-time schedules remain susceptible
to such attacks. Furthermore, due to its predictability, time-triggered scheduling is inherently

K. Krüger, M. Völp, and G. Fohler 22:3

vulnerable to timing inference based attacks [25]. In this paper, we analyze inference-based
vulnerabilities of time-triggered systems and investigate strategies to mitigate attacks based on
exploiting these vulnerabilities without violating the very properties that make time-triggered
systems attractive to system designers: timeliness and determinism.

Related Work. In literature, several security solutions for real-time systems exist. For
example, Völp et al. [21] prevent timing leaks in fixed-priority schedulers by exploiting the
idle task to mask early stops or blocks of a high priority task such that a low priority task
always has the same view of the high priority task. Naturally, time-triggered systems do not
require this modification since no two tasks coexist in the same time window on the same
processor. In [16], Mohan et al. focus on the problem of information leakage over shared
resources. They define security levels for tasks and prevent undesirable information flow
between tasks of different security levels by flushing the resource. Further, they discuss the
integration of security constraints into the design of fixed-priority schedulers. In contrast to
[21] and [16], we do not focus on preventing timing channels or information leakage. In fact,
we assume timing information may be infered.

Yoon et al. [25] introduce a schedule randomization protocol for task sets scheduled under
Rate Monotonic which provides obfuscation against timing inference attacks. As long as
deadline constraints are not violated, the next task is picked randomly from the ready queue.
Each task has a defined budget of tolerated priority inversions which do not violate the tasks
deadline constraints. In Section 3, we follow a similar approach for time-triggered systems.

Two examples for state-of-the-art research deal with security for time-triggered communic-
ation. In [19], Skopik et al. introduce a security architecture for time-triggered communication
which adds device authentication, secure clock synchronization and application level security.
Wasicek et al. [22] investigate the security of time-triggered transmission channels and shows
how an authentication protocol secures these channels without violating timeliness proper-
ties. In our work, we do not consider intended communication channels for infering timing
information, but instead focus on covert or side channels and the implication of attackers
learning timing information to coordinate their attacks.

Wasicek [23] further presents a threat model for real-time systems, explores security and
dependability in the Time-Triggered Architecture (TTA) in great depth and investigates how
to enhance TTA for security. In contrast, we do not focus on a specific architecture for time-
triggered systems. More precisely, we show how to mitigate directed attacks by randomizing
or changing the schedule without violating the timing constraints of time-triggered schedules.

Contributions.
We analyze vulnerabilities of time-triggered systems with regard to timing inference and
malicious behaviour, and show possible attacks which exploit these vulnerabilities.
We present two practical mitigation strategies for timing inference based attacks with
low implementation complexity: an online job randomization algorithm which is able to
preserve the timeliness and predictability properties of time-triggered systems, and offline
schedule-diversification.
We evaluate these mitigation strategies with a real-world case study to show that they
have low runtime overhead and are practical.

Paper Structure. The remainder of this paper is organized as follows: In Section 2, we
present the vulnerability analysis of time-triggered systems against directed timing inference

ECRTS 2018

22:4 Vulnerability Analysis and Mitigation of Directed Attacks on TT Systems

based attacks. In Section 3, we explore mitigation strategies for directed timing attacks, and
evaluate them in Section 4 with a real-world case study.

2 Threat Model and Vulnerabilities

In this section, we first describe our threat and system model, highlighting in particular the
assumptions we make on the attacker and how he or she is constrained by time-triggered
systems. After that, we analyze the vulnerabilities present in time-triggered systems.

2.1 Threat and System Model
For our vulnerability analysis we assume a time-triggered real-time system running on a
single core or a single partition with an offline constructed schedule, e.g. in the form of a
table. We assume the schedule has been validated and precautions (such as authenticated
boot) are in place to ensure that the validated schedule is correctly deployed to the real-time
system.

We assume attackers are able to successfully infiltrate the system through undetected
vulnerabilities and will eventually exploit infiltrated outposts to attack further parts of the
system. Less stringent evaluation requirements make non real-time tasks and low safety-
critical tasks primary targets, but we also do not preclude penetrations of higher-critical tasks.
Our concern is that attackers exploit these infiltration points to collect timing information
about the system and to coordinate subsequent directed attacks against critical, replicated
tasks. In particular, we assume that most critical tasks are sufficiently shielded against
direct attacks to require attackers to find a pathway through less critical tasks. Firewalls
and gateways in autonomous vehicles and planes support this assumption.

Even though we assume intrusion detection, hardening mechanisms and other defenses
against the common attack vectors (e.g., DoS attacks) are in place, we acknowledge that
these techniques are imperfect and compromises may go undetected. Of particular concern to
us are stealthy attackers that continue normal operation of the compromised tasks until these
tasks are executed in a manner where a directed attack is most effective, e.g., immediately
before a safety-critical victim task is run. Possible targets of such attacks in time-triggered
systems are the low-level control loops. Destabilizing these components (e.g., by increasing
the dead time or by introducing jitter in the control cycle) may provoke critical failure modes
and thus result in a continuing denial of service [23], or worse, unsafe control decisions.

The timing information required for coordinating such a stealthy attack can be infered
via side channels constructed using shared resources like cache or memory, or through covert
timing channels, such as the scheduling-covert-channel described by Boucher et al. [1].

While there exist mitigation strategies for closing side channels (for example in the real-
time context, the works of Völp et al. [21] or Mohan et al. [16] on fixed-priority schedulers),
they are incomplete. Additionally, systematically closing all side channels typically entails
significant performance overheads, e.g. when flushing caches prior to scheduling a lower
classified task [8]. Meltdown [15] and Spectre [10] are recent examples demonstrating
the difficulty of identifying and closing such channels in sufficiently complex architectures.
Exploiting non-architectural channels (cache allocation) as communication medium, Meltdown
and Spectre extract confidential information from speculative processor state, breaking
security on most Intel and many high-end ARM and AMD processors. While real-time
systems traditionally avoid such complex hardware, we cannot exclude an integration of
cores of this complexity in a real-time system on chip, e.g. for meeting the extended demand
of autonomous driving functionalities. Fixing the security flaws of Meltdown and Spectre

K. Krüger, M. Völp, and G. Fohler 22:5

results in up to 21 percent performance decrease for Intel client systems [3] and up 25 percent
for Intel data center systems [2].

We assume the real-time system features isolation mechanisms for enforcing the schedule
of tasks and for limiting direct access to the memory of other tasks. Real-time operating
systems (RTOS) that feature memory isolation support this assumption unless attackers
are able to penetrate the operating system. For the purpose of this paper, we assume the
deployed RTOS excludes this possibility.

One immediate consequence of this isolation assumption is that when the attacker has
infiltrated the system, he or she is inherently constrained by properties of the system and
its architecture for subsequent attacks on more critical tasks. In time-triggered systems,
table-driven scheduling prevents influencing other tasks by manipulating the execution time
of a compromised task. That is, in contrast to event-triggered scheduling, each task is
confined to its execution window and thus the actual task execution time has no influence
on subsequent tasks. Time-triggered systems therefore provide temporal isolation of CPU
time irrespective of the actual behavior of tasks and without having to revert to timing leak
transformations as described for example by Völp et al. [21]. Additionally, messages are only
accepted during a certain time window, i.e., if they are timely.

Operating system enforced schedules combined with the assumed impenetrability of the
OS ensure that the attacker can neither directly influence the scheduler nor can he read
the offline defined scheduling tables. Instead, the attacker has to infer the current schedule
from observations he or she makes about the system behavior. As we show in Section 2.2,
schedules typically carry too little information to remain secure over extended periods of
time even if this information is leaked only over low bandwidth channels. Furthermore, we
assume that the global clock remains under exclusive control of the operating system and
that it cannot be affected by the attacker.

Even though time-triggered systems eliminate CPU time as shared resource over which
information can be leaked and through which other tasks may be influenced, other resources
remain through which attackers may gain information and through which they can impact
the timing behavior of other tasks. One prominent example of such a resource is the processor
cache, which healthy tasks leave behind in a predictable state but which compromised tasks
can put into a state that may not be anticipated when computing the worst-case execution
time of subsequent tasks.

The use of time-triggered systems imposes further limitation on attackers. For example,
side channels and covert channels can only be constructed over explicitly or implicitly shared
resources, most of which time-triggered systems already multiplex with the table driven
schedule in a manner that is agnostic to the behaviour of executing tasks. Access controls
and partitioning techniques like cache [14] or bank coloring [26] further constrain the attacker.
However, each such countermeasure negatively impacts system performance. Moreover, as
we show in greater detail in Section 2.2, mitigating attacks may require cancelling tempting
optimizations such as bounding the delay a task can impose through the cache by evaluating
their execution patterns. Designers may be tempted to implement optimizations for the sake
of increasing performance while neglecting security.

2.2 Vulnerabilities
One of the main vulnerabilities of a time-triggered system lies in its deterministic behaviour.
The schedule is the same offline constructed schedule for every hyperperiod. For each point
in time, the task executing is known. An attacker who listens to the schedule over a side
channel is able to reconstruct the schedule in reasonable time even when the channel has

ECRTS 2018

22:6 Vulnerability Analysis and Mitigation of Directed Attacks on TT Systems

low bandwidth. The schedule comprises only a few bytes of information, thus even with a
very low channel bandwidth of, for example, 1 byte per second the schedule is found out in
a matter of a few minutes. As we show in Section 4.4, an offline schedule of a real-world
system can consist of just 52 bytes. Through the aforementioned channel, the attacker would
know the schedule after one minute. Therefore, we reason that timing information can be
infered and focus on mitigating directed attacks under this assumption.

Another vulnerability of real-time systems in general is that worst case execution time
(WCET) derivation does not take malicious behaviour into account. WCET estimated
through simulation of the expected behaviour of the system does not account for malicious
behaviour. If a task is infiltrated at runtime and, for example, starts accessing the cache
to create maximum interference for the next task execution, the tasks simulated worst case
does not account for this malicious behaviour if this behaviour is not encountered during
uncompromised execution. Prior research on abstract interpretation WCET derivation claims
the assumption of cold caches is too pessimistic for a real system and shows methods to
achieve tighter and less pessimistic WCET bounds [9], [5]. The assumption of cold caches
would nullify the described attack of delaying a task through cache misses. We have to
choose WCET estimates in a way that they also account for malicious behaviour and we
have to check the impact of performance optimizations on security.

In the next section, we show mitigation strategies for directed attacks which prevent an
attacker from exploiting the vulnerability that results if malicious behaviour has not been
taken into account.

3 Mitigation Strategies

An attacker’s goal is to predict as precisely as possible when a victim task gets scheduled
immediately after a compromised task to then mount a directed attack. Our primary
mitigation strategy is therefore to impede predictions about the point in time when the
victim is executed. While we do not prevent timing inference, i.e. we assume the attacker
may gain information about the schedule, we are able to counter predictions by changing
the points in time when tasks are executed at runtime. For this purpose, we present two
strategies to mitigate directed attacks in this section. The first strategy takes an offline
constructed time-triggered schedule as input and randomizes the schedule online at job-level
while maintaining deadline constraints. This approach is an extended version of the work
presented in [13]. The second strategy comprises a set of offline precomputed schedules one
of which is randomly chosen at the end of each hyperperiod.

3.1 Slot-level Online Randomization
This mitigation strategy impedes the ability of an attacker to make predictions by randomizing
job execution in a time-triggered system at runtime. Schedules for time-triggered systems
are typically constructed offline [4], where real-time constraints are resolved and represented
in a scheduling table. If not handled properly, online randomization may violate deadline
constraints. Therefore, our approach analyzes the scheduling table offline and maps timing
constraints of jobs onto execution windows. Execution windows are time intervals defined by
the earliest start time of a job and its deadline. Proper handling and, possibly, modification
of execution windows solves precedence constraints. Additionally, if one of the goals of the
system is to achieve low jitter, we can reduce the size of execution windows accordingly.

During runtime, we randomize job execution within their respective execution windows.
While we confine jobs to their execution windows, they still share the same processor so we

K. Krüger, M. Völp, and G. Fohler 22:7

i
0

i
1

τ1
2

τ1
3

i
4

τ2
5

τ3
6

τ3
7 8

? ? ?

6 6
� -I1 � -I2 �-I3 τi esti di Ci

τ1 0 4 2
τ2 0 7 1
τ3 4 8 2

Figure 1 Job set and capacity intervals derived from offline schedule.

also have to guarantee that their execution does not lead to a deadline miss of other jobs.
Slot shifting is a scheduling algorithm which introduces the concept of spare capacities to
ensure timely execution [6]. We adopt this concept to guarantee task execution within their
respective execution windows even though the scheduling decision is randomized.

3.1.1 Background
Slot shifting uses a discrete time model [11], where the time interval which separates two
successive events (i.e. the granularity of the system) is called a slot [18]. We analyze the
time-triggered schedule and its task set offline to determine available leeway and unused
resources in the schedule for subsequent online adjustment. In order to track the available
leeway of jobs in each execution window, a capacity interval is created for each distinct
deadline in the system. Jobs with the same deadline belong to the same capacity interval.
The start of a capacity interval Ij , start(Ij), is defined as the maximum of the earliest start
time est(Ij) of jobs τi in this interval and of the end of the previous capacity interval:

start(Ij) = max(end(Ij−1), est(Ij)) , with est(Ij) = min(est(τi)) ∀τi ∈ Ij (1)

The end of the capacity interval is determined by the common deadline of all τi ∈ Ij .
If needed, empty capacity intervals without assigned jobs are created to fill gaps between
capacity intervals with assigned jobs. Figure 1 shows an example job set derived from an
offline schedule with earliest start times esti, worst case execution times Ci and deadlines di.
We derive the presented schedule in Section 3.1.3. In the schedule on the left side of Figure 1,
i denotes the idle task.

Three distinct deadlines exist for that job set, thus at least three capacity intervals have
to be created. The first interval I1 starts at 0 and ends at the deadline of its assigned set of
jobs {τ1}, which is 4. The job assigned to next interval, τ2, shares the earliest start time of
τ1, but according to Equation 1, a capacity interval is not allowed to start before the end of
the previous interval. Note that capacity intervals do not overlap, while execution windows
may. Thus, I2 starts at 4 and ends at the deadline of its assigned set of jobs {τ2}, which is 7.
We create interval I3 accordingly. We show the resulting capacity intervals together with an
exemplary schedule in Figure 1.

The spare capacity sc(Ij) of a capacity interval Ij is equal to the amount of free slots in
Ij . sc(Ij) is defined as the interval length minus the sum of worst case execution times Ci of
all its jobs τi minus slots borrowed from the succeeding interval (denoted as negative spare
capacity), see Equation 2 below.

sc(Ij) = |Ij | −
∑
τi∈Ij

Ci +min(sc(Ij+1), 0) (2)

Spare capacities are calculated starting from the latest capacity interval in the hyperperiod
to the earliest. Borrowing occurs in those cases where the current capacity interval provides
insufficient slots to accommodate all its jobs, which results in a negative spare capacity (I3

ECRTS 2018

22:8 Vulnerability Analysis and Mitigation of Directed Attacks on TT Systems

in Figure 2). Capacity intervals with a negative spare capacity borrow the needed amount
of slots from the preceding interval. Negative spare capacities do not necessarily imply
infeasibility in the scheduling sense. Spare capacities are a means to track “free” slots in a
capacity interval. We show the resulting offline calculated spare capacities (for time t=0) in
Figure 2 of Section 3.1.3, where we present the spare capacity calculation.

If we have calculated all spare capacities, the first capacity interval has a non-negative
spare capacity provided the task set is feasible, i.e. its utilization is equal to or less than one
since we consider single core systems. Positive spare capacities represent the amount of unused
resources and leeway [6] of an interval which can be given to other tasks with overlapping
execution windows to adjust the schedule. Such adjustments may require updating spare
capacities. At runtime, we update the spare capacities after each slot to reflect the impact of
scheduling decisions on the availability of “free” slots.

We consider three different cases for spare capacity updates:
1. No job executes in a given slot. In this case we have to decrease the spare capacity of the

current capacity interval by one.
2. A job executes which belongs to the current capacity interval. In this case the spare

capacity of the current interval does not change because the WCET of this job is already
considered.

3. A job executes which belongs to a later capacity interval. In this case the current interval’s
spare capacity needs to be decreased by one, but executing the job ahead of time frees
resources in its assigned interval. We can therefore increase the spare capacity of the
job’s interval by one. If this capacity increase happened on a negative spare capacity
(i.e., the job’s interval is borrowing from another capacity interval), we also increase the
spare capacity from the interval from which it borrows, as it needs to lend one slot less.
Cascaded borrows are resolved recursively in a similar fashion.

The original slot shifting algorithm in [6] and [18] further integrates aperiodic tasks into
a time-triggered schedule. In this paper, we only adopt the concept of capacity intervals and
spare capacities to guarantee timely execution of periodic jobs within their execution windows
without violating constraints of other jobs. Thus, our offline algorithm needs to create only
one table with execution windows and a second one with intervals and their respective spare
capacities. For our online randomizing scheduler, we update the spare capacities at runtime
to keep track of scheduling decisions.

3.1.2 Slot-Level Randomization of Jobs
Our first attack mitigation strategy is to randomize job execution at runtime. Therefore,
at the beginning of each slot, we invoke the online scheduler to select the next job from
all tasks in the ready queue at random. We consider the idle task to be part of the ready
queue in order to allow for more permutations of the schedule. Even though we select tasks
randomly, we have to guarantee that no scheduled job violates the deadline constraints of
other jobs. Thus, before taking a scheduling decision, we check if the spare capacity of
the current capacity interval is greater than zero. If this condition is fulfilled, any job is
allowed to run, as sufficient time remains in the current and later intervals such that no job
misses its deadline. In other words, as long as the schedule has leeway, each ready job has
the same probability of getting selected for a slot. Otherwise, if the spare capacity of the
current interval drops to zero, there is no more leeway to schedule arbitrary jobs. However,
because we have already considered jobs of the current capacity interval in the spare capacity
computation and because all such jobs share the same deadline, we can still randomize their

K. Krüger, M. Völp, and G. Fohler 22:9

time t 0 1 2 3 4 5 6 7 8
sc(I1) 2 2 1 0 0 0 0 0 0
sc(I2) 1 1 1 2 2 1 1 0 0
sc(I3) -1 -1 -1 -1 -1 -1 0 0 0

τ1
0

i
1

τ2
2

τ1
3

i
4

τ3
5

i
6

τ3
7 8

? ? ?

6 6
� -I1 � -I2 �-I3

Figure 2 Left: Spare Capacities of I1, I2 and I3 over time, Right: Randomized Schedule.

execution. That is, in the case of zero leeway, the online scheduler randomly selects among
the jobs of the current capacity interval. After running a job, we update spare capacities as
shown in Section 3.1.1.

Combining time-triggered scheduling with our slot-level randomization impedes online
predictions about the schedule. Since the scheduler randomly selects the next job at runtime,
predictions about which job runs next are not possible as long as execution windows allow
for leeway. Furthermore, time-triggered scheduling inherently confines application-level
leakage to shared resources which are held across slots [20]. An investigation of leakage
countermeasures for such resources is out of the scope of this paper. While our randomization
algorithm does not allow for slot-level determinism typical for time-triggered systems, it still
allows for execution window determinism [7].

3.1.3 Example

Let us illustrate the proposed scheduling algorithm for our example jobset depicted in
Figure 1. First, we have to calculate the initial spare capacities of the capacity intervals.
Starting at the last capacity interval, I3, its spare capacity is the difference between the
interval length of 1 and the worst case execution time of its assigned jobs, here only τ3, which
results in a spare capacity of: −1. I2 has an interval length of 3, from which we substract
the worst case execution time of τ2 (i.e., C2 = 1) and the slots borrowed by the preceding
interval I3 (by adding sc(I3) = −1), which results in a spare capacity of 1. We calculate the
spare capacity of I1 accordingly. Figure 2 shows the resulting spare capacities in the column
for time t = 0.

At time t = 0, the scheduler sees that the spare capacity of the current interval I1 is
positive and picks τ1 randomly for the first slot at t = 0 from the list of ready jobs τ1, τ2,
plus the idle job (i). As τ1 executes within its own interval, the current spare capacity does
not change and remains positive. The idle job i is selected to execute during the next slot
starting at t = 1, necessitating a decrease of the spare capacity by one. τ2 is randomly
selected for time t = 2. τ2 does not execute within its own capacity interval, therefore we
reduce sc(I1) by one and increase sc(I2) by one, since τ2 belongs to interval I2 and I2 does
not borrow from I1. sc(I1) = 0 at t = 3 constrains the online scheduler to select from the
set of jobs {τ1} that are assigned to I1. At time t = 4, τ3 becomes active and is selected
to execute at time t = 5 after picking the idle thread to t = 4. This is valid, as sc(I2) is
positive, and thus we reduce sc(I2) by one and increase the capacity interval of τ3, I3, by
one. However, at this time, I3 is still borrowing one slot from I2. τ3 executed prior to its
own capacity interval, thus I3 needs to borrow one slot less from I2 and therefore we increase
sc(I2) by one, resulting in no change of sc(I2). In summary, sc(I2) stays at 1 and sc(I3)
is increased by one. We show further exemplary scheduling decisions and spare capacity
updates in Figure 2.

ECRTS 2018

22:10 Vulnerability Analysis and Mitigation of Directed Attacks on TT Systems

3.2 Offline Schedule-Diversification
The second mitigation strategy we investigate in this work constructs multiple offline precom-
puted schedules and switches between them at hyperperiod boundaries. Resolving scheduling
constraints offline ensures lower runtime overheads, but increases the chance of attackers
to guess the schedule and launch directed attacks. For example, repeating the same offline
computed schedule several times allows an attacker to deduce the schedule, as illustrated for
example in [16], and to coordinate directed attacks from compromised tasks scheduled later
in the same hyperperiod or in subsequent hyperperiods. To partially mitigate this threat
vector, we randomly switch schedules at the end of each hyperperiod. As a consequence, even
when the attacker is able to recognize different schedules and has enough memory available
to store them, the more schedules have been generated, the harder it is for the attacker
to recognize which schedule has been chosen for the current hyperperiod and the less time
remains to launch a directed attack. In particular, if the attacker is not able to identify
the current schedule in time for his attack, the attacker misses the opportunity to launch a
directed attack.

We show in Section 4.5 that computing and storing all possible, feasible schedules in
memory is impractical. However, in non-embedded systems (e.g., SCADA), we foresee
the continuing generation of schedules in a non real-time subsystem (e.g., in a sufficiently
protected external control station) and an update of the set of schedules downloaded to
the real-time device. This way, once a new set of schedules has been produced (possibly
by recombining precomputed and stored schedules), the real-time device can switch to
the new set at the end of the hyperperiod. Double buffering, signing and encryption of
schedules ensures that the current set of schedules remains valid while the system validates the
confidentiality and integrity of the new schedules (e.g., in a background task). Irrespective of
update possibilities, the selected subset of schedules out of the set of all feasible schedules for
a given task set should impede directed attacks as much as possible. We present two criteria
to select subsets that complicate directed attacks in addition to guaranteeing deadlines and
respecting task precedence constraints. Carefully created execution windows solve deadline
and precedence constraints.

Random Selection. For the sake of low implementation complexity, the subset can be
selected randomly. That is, schedules are created randomly and checked to meet all scheduling
constraints. The schedules fulfilling this requirement form the set of schedules for the system.
Schedule creation is stopped after a certain number of feasible schedules has been constructed.
We recommend this method for large subsets, when enough memory is provided to store
a large number of different schedules. If the subset is large enough, the random selection
process provides a set of schedules with a schedule entropy close to the set of all feasible
schedules. Other criteria impose more constraints on the selection process and therefore
increase its complexity.

Schedule Entropy. Another criterium for schedule selection is schedule entropy as presented
in [25]. This measure makes use of the Shannon entropy and is used to quantify the difference,
i.e. randomness, between schedules. A subset of feasible schedules is chosen in a way to
maximize the schedule entropy for the number of chosen schedules. However, Yoon et al. [25]
showed that calculating the schedule entropy has asymptotic exponential complexity because
it requires the enumeration of all possible schedules. They provide an approximation of the
schedule entropy over the sum of slot entropies called upper-approximated schedule entropy,
which is calculated using the probability mass function of a task appearing at a certain slot

K. Krüger, M. Völp, and G. Fohler 22:11

Vz_control
50 Hz

altitude_hold
50 Hz

h_filter
100 Hz

az_filter
100 Hz

Vz_filter
100 Hz

q_filter
100 Hz

Va_filter
100 HzVa_control

50 Hz

Airplane & Environment

Figure 3 Longitudinal flight controller design.

in the schedule. However, finding a subset with n schedules with the global maximal schedule
entropy for all subsets of size n also requires enumeration of all feasible schedules, which is
impractical. Therefore, we can apply heuristics for local maxima or select schedules such
that the entropy is above a tolerable threshold. For example, we first construct a subset of
randomly chosen, feasible schedules with size significantly greater than n, from which we
then select the smaller subset of size n with the highest entropy.

4 Evaluation

We evaluated our two directed attack mitigation strategies, which we presented in Section 3,
with the ROSACE case study [17]. ROSACE is a practical, real-world example of a real-time
system in a safety-critical environment: avionics. This section presents our results.

4.1 Case study: Flight Controller
Pagetti et al. [17] carried out a case study of a longitudinal flight controller of an aircraft.
The longitudinal flight controller helps the pilot to accurately track altitude, vertical speed
and airspeed of the aircraft. Pagetti et al. describe two control loops: the V a_control loop
handles airspeed control by maintaining the desired airspeed V a; the second control loop —
altitude control — combines altitude_hold and V z_control. First, altitude_hold translates
altitude commands to vertical speed commands. Then, V z_control tracks the vertical speed
V z of the aircraft. Both control loops are fed with filtered data: h, az and q for altitude,
vertical acceleration and pitch rate, respectively. Vertical V z and true airspeed V a are also
inputs to the control loops. We show the design of the controller in Figure 3.

According to Pagetti et al. [17], the closed-loop system with continuous-time controllers
can tolerate delays of up to roughly 1 second before destabilizing. To preserve stability as
well as to increase performance, Pagetti et al. chose lower sampling periods of 50 Hz for the
digitalization tasks of the three controller blocks and 100 Hz for the filter tasks which feed
the data to the controller. Pagetti et al. derived worst case execution times of all tasks using
a measurement-based approach by measuring the repeated execution of a task in isolation.
The granularity the authors chose for the measuring clock was 100µs, thus the worst case
execution times for the tasks shown are the same as they presumably finished execution in
that granule. Table 1 shows the task set with implicit deadlines for the longitudinal flight
controller. In this work, we do not consider environment simulation tasks as they are not
part of the controller but only of the test environment.

ECRTS 2018

22:12 Vulnerability Analysis and Mitigation of Directed Attacks on TT Systems

Table 1 Flight controller task set[17].

Taskname Frequency WCET
Vz_control 50Hz 100µs
Va_control 50Hz 100µs
altitude_hold 50Hz 100µs
h_filter 100Hz 100µs
az_filter 100Hz 100µs
Vz_filter 100Hz 100µs
q_filter 100Hz 100µs
Va_filter 100Hz 100µs

Table 2 Execution windows.

Name Start End WCET
h_filter 0 50 1
az_filter 0 50 1
Vz_filter 0 50 1
q_filter 0 50 1
Va_filter 0 50 1
h_filter 50 100 1
az_filter 50 100 1
Vz_filter 50 100 1
q_filter 50 100 1
Va_filter 50 100 1
altitude_hold 0 100 1
Vz_control 0 100 1
Va_control 0 100 1

We construct the execution windows of all tasks from the task set in Table 1. Schorr [18]
suggests 200,000 clock cycles as slot shifting slot length. The processor cores in ROSACE
run at 1.2GHz, which results in 167 µs for 200,000 clock cycles. We choose 200 µs as slot
length to evenly divide the task periods into slots. Task execution is non-preemptive, as
the worst case execution times are smaller than the slot length. Table 2 shows the resulting
execution windows.

4.2 Runtime Overhead for Slot-Level Randomization
Our slot-level randomization algorithm is based on Schorr’s [18] slot shifting algorithm. Schorr
measured the runtime overhead of the unmodified slot shifting algorithm on a cycle-accurate
ARM quadcore simulator — MPARM — with ARM7 cores running at 200 Mhz, 8kB 4-way
set associative L1 cache, 8kB direct mapped L1 instruction cache, 1MB core-private memory
and 1MB shared memory. Schorr provided minimum and maximum runtimes of all parts of
the slot shifting algorithm for single core execution. Using the timing measurements of [18],
shown in Table 3, we approximate the runtime overhead of slot-level randomization, when
executed on the same processor.

Slot-level randomization invokes the same functions to update spare capacities and the
ready list. The cost of the function to update spare capacities increases with the number of
intervals due to cascaded borrowing in the worst case. However, according to the slot shifting

K. Krüger, M. Völp, and G. Fohler 22:13

Table 3 Minimum and maximum runtime overhead for single core execution in ns [18].

Function Min Max
update spare capacity (upsc) 2,655 10,145
update ready list (upready) 3,500 9,115
next job selection (sel) 1,850 2,350
ISR overhead (ISR) 2,560 3,120

Table 4 Minimum and maximum runtime overhead for single core execution in ns [18].

Function Min Max
next job selection (sel) 1,850 2,350
ISR overhead (ISR) 2,560 3,120

algorithm as explained in Section 3.1.1, only 2 intervals are created for the presented task
set. Hence, the costs of both functions remain the same. The interrupt service routine (ISR)
overhead is architectural and hence should not change for an implementation of slot-level
randomization in the same operating system. Randomization is not part of slot shifting and
as such not covered by the above measurements. As calculating random numbers for each
slot is independent of parameters like the number of tasks or intervals, we assume a constant
per slot overhead. Moreover, assuming an O(1) get_length implementation of the ready
list, pruning random values to a list index remains a constant operation.

We calculate the maximum runtime overhead as:

tov,rand,max = randmax + upsc,max + upready,max + selmax + ISRmax (3)

Accordingly, the minimum runtime overhead results in:

tov,rand,min = randmin + upsc,min + upready,min + selmin + ISRmin (4)

Using the measurements from Table 3 for equation 3 and assuming randmax = 5, 000ns,
the maximum runtime overhead results in tov,rand,max = 29, 730ns, which is around 3 percent
of the assigned slot size of 1ms in [18]. Keeping in mind that ROSACE uses 6 times faster
cores than [18] and that execution time does not scale exactly linear with processor speed,
we can approximate the runtime overhead for ROSACE. Therefore, we divide these values
by 5 for a core with 1.2 Ghz and approximate the maximum runtime overhead for ROSACE
to be tov,rand,max = 6, 000ns.

Under the assumption that randmin = 2, 000ns, the minimum runtime overhead results
in tov,rand,min = 12, 565ns, which is around 1.3 percent of the slot size in [18]. Dividing
these values by 5 as explained earlier, we approximate the minimum runtime overhead for
ROSACE to be tov,rand,min = 2, 500ns.

4.3 Runtime Overhead for Offline Precomputed Schedules
The runtime overhead for offline precomputed schedules is lower than that of scheduling
algorithms which have to take more complex decisions online, which we also prove in this
section. Again we can make use of the overhead measurements done in [18], which we show
in Table 4.

At runtime, the scheduler performs a table lookup to select the next job after each slot.
In constrast to the slot-level randomization scheduling algorithm, the overhead only consists
of the next job selection and the interrupt service routine. At the end of the hyperperiod, we

ECRTS 2018

22:14 Vulnerability Analysis and Mitigation of Directed Attacks on TT Systems

Table 5 Exemplary precomputed time-triggered schedule for ROSACE.

ID Start End WCET
0 1 2 1
1 8 9 1
2 22 23 1
3 33 34 1
4 35 36 1
0 51 52 1
1 58 59 1
2 66 67 1
3 67 68 1
4 71 72 1
5 80 81 1
6 88 89 1
7 94 95 1

select the next offline precomputed schedule randomly. We calculate best and worst case
runtime overhead for selecting a precomputed schedule in MPARM as shown below.

tov,prec,max = randmax + selmax + ISRmax = 10470ns (5)

tov,prec,min = randmin + selmin + ISRmin = 6410ns (6)

Using the same estimation on the execution time of the randomization function for the
ROSACE case study as in Section 4.2, best and worst case approximated overhead results in
1300 ns and 2100 ns, respectively. Thus, around 1 percent of the chosen slot size is used for
scheduling for both ROSACE and on the ARM simulator MPARM.

4.4 Memory Cost for Offline Precomputed Schedules
Each precomputed schedule needs to be stored in memory. For ROSACE, we can build an
offline schedule in the same way as Table 2 suggests. Each task has its own task ID, an entry
for the start and end of the execution of its instance, and a fourth entry for its worst case
execution time. The difference between start and end time must be equal to its worst case
execution time and the execution windows for different jobs must not overlap. Table 5 shows
an example for a precomputed time-triggered schedule.

Assuming each entry has the size of 1 byte, a single schedule with this information needs
13 ∗ 4 = 52 bytes of memory.

4.5 Discussion
Slot-level randomization proves to be practical, as the approximated overhead in Section 4.2
shows. In the worst case, slot-level randomization uses less than 3 percent of the slot for
scheduling. Precomputing offline schedules can further reduce this overhead to roughly 1
percent of the slot size, but physical memory capacity limits the number of offline precomputed
schedules that can be stored in a system. It is possible to offload scheduling tables to secondary
storage by accepting an increase of scheduling overhead while loading the selected scheduling
table from this memory.

K. Krüger, M. Völp, and G. Fohler 22:15

Even for side channels with low bandwith as we mentioned in Section 2.2, an attacker
might identify a small number of schedules after several minutes or a few hours. In order to
show how many possible schedules slot-level randomization covers, we calculate the total
number of possible feasible schedules for the task set presented in Table 2. For each execution
window, the binomial coefficient

(
n
k

)
calculates the number of possibilities to execute the

task in different slots, where n is the window size and k the worst case execution time, both
quantified in slots. The binomial coefficients of neighbouring and overlapping execution
windows are multiplied with each other. If execution windows overlap, we subtract the worst
case execution time of tasks belonging to execution windows whose binomial coefficients are
already accounted for in the equation (“preceding” binomial coefficients) from the window
size. Thus, we calculate the number of possible feasible schedules for the presented task set
as shown below. On the left side of the equation, the binomial coefficients of the five tasks
with periods of 50 slots are calculated two times, because the hyperperiod results in 100
slots. Their combined worst case execution time of 10 slots is then substracted from the
execution window sizes of the tasks with a period of 100 slots.[(

50
1

)(
49
1

)(
48
1

)(
47
1

)(
46
1

)]2
×
(

90
1

)(
89
1

)(
88
1

)
= 4.56× 1022 (7)

4.56× 1022 schedules with 52 bytes require 281 bytes of storage, so we can safely conclude
that it is infeasible to track or store all possible schedules in terms of memory space and
computation time needed. Positive spare capacities, i.e. leeway in the schedule, are key for a
high number of distinct feasible schedules.

Even under the assumption that the attacker is able to store a huge number of schedules,
the higher the number of precomputed schedules, the longer it takes the attacker to be
sure which schedule is used. Updating the stored scheduling tables partially mitigates
the threat that the attacker might eventually identify the schedule in time. The threat is
fully mitigated with slot-level randomization, which we recommend in general, due to the
comparable overhead, and for systems with strict memory constraints.

5 Conclusion

In this paper we described vulnerabilities of time-triggered systems to timing inference based
directed attacks and presented two mitigation strategies. The deterministic behaviour of time-
triggered systems allows attackers to infer timing information over side channels and precisely
target victim tasks. Worst case execution time assumptions, on which schedules are based,
do not take malicious behaviour into account. As the schedule of a time-triggered system
comprises only a few bytes, it can be infered by an attacker. In order to prevent attackers
from predictions about the point in time when a certain task is executed, we presented two
mitigation strategies for directed attacks. First, we introduced slot-level randomization,
which impedes predictions about the schedule by selecting the next job at random. We
employ concepts of slot shifting to allow randomization of a time-triggered schedule without
violating deadlines. Secondly, we proposed online selection of offline precomputed schedules
for mitigation of directed attacks. At runtime, a schedule from a precomputed set of schedules
is randomly selected at the end of each hyperperiod. We evaluated both mitigation strategies
with respect to overhead and memory cost with a practical, real-world case study of a
safety-critical flight controller. Slot-level randomization has a runtime overhead of around 3
percent in the worst case, which makes it suitable for practical use. Scheduling precomputed
schedules reduces the worst case runtime overhead to around 1 percent of the slot size, but is

ECRTS 2018

22:16 Vulnerability Analysis and Mitigation of Directed Attacks on TT Systems

more costly in terms of memory. A single schedule for the case study has a size of 52 bytes,
but the total number of feasible schedules lies in the magnitude of 1022. We proved both
mitigation strategies to be practical. An attacker could still try to launch undirected attacks,
but he or she will be easier to detect this way.

For future work, offline schedulers may be enhanced to consider entropy during schedule
creation. Moreover, imperfect randomization leaves a residual side channel. Therefore, we
are interested in a simulated attack measuring the influence a compromised task has against
its victim using our mitigation strategies and to further examine if there exist attack vectors
particularly effective against our approach. Lastly, we intend to integrate our approach into
a multicore system with partitioned scheduling.

References
1 Peter K. Boucher, Raymond K. Clark, Ira B. Greenberg, E. Douglas Jensen, and Douglas M.

Wells. Toward a Multilevel-Secure, Best-Effort Real-Time Scheduler, pages 49–68. Springer
Vienna, Vienna, 1995. doi:10.1007/978-3-7091-9396-9_8.

2 Intel Corporation. Firmware Updates and Initial Performance Data for Data Cen-
ter Systems. accessed on 26/01/2017. URL: https://newsroom.intel.com/news/
firmware-updates-and-initial-performance-data-for-data-center-systems/.

3 Intel Corporation. Intel Security Issue Update: Initial Performance Data Results for Client
Systems. accessed on 26/01/2017. URL: https://newsroom.intel.com/editorials/
intel-security-issue-update-initial-performance-data-results-client/.

4 Silviu S. Craciunas and Ramon Serna Oliver. SMT-based Task- and Network-level Static
Schedule Generation for Time-Triggered Networked Systems. In Proceedings of the 22Nd
International Conference on Real-Time Networks and Systems, RTNS ’14, pages 45:45–
45:54, New York, NY, USA, 2014. ACM. doi:10.1145/2659787.2659812.

5 Christian Ferdinand and Reinhard Wilhelm. Efficient and Precise Cache Behavior Predic-
tion for Real-Time Systems. Real-Time Systems, 17(2):131–181, Nov 1999. doi:10.1023/A:
1008186323068.

6 G. Fohler. Joint scheduling of distributed complex periodic and hard aperiodic tasks in
statically scheduled systems. In Proceedings 16th IEEE Real-Time Systems Symposium,
pages 152–161, Dec 1995. doi:10.1109/REAL.1995.495205.

7 Gerhard Fohler. Advances in Real-Time Systems, Chapter Predictably Flexible Real-time
Scheduling. SPRINGER, 2012.

8 W. M. Hu. Lattice scheduling and covert channels. In Proceedings 1992 IEEE Computer
Society Symposium on Research in Security and Privacy, pages 52–61, May 1992. doi:
10.1109/RISP.1992.213271.

9 B. K. Huynh, L. Ju, and A. Roychoudhury. Scope-Aware Data Cache Analysis for WCET
Estimation. In 2011 17th IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 203–212, April 2011. doi:10.1109/RTAS.2011.27.

10 Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre Attacks:
Exploiting Speculative Execution. ArXiv e-prints, 2018. arXiv:1801.01203.

11 H. Kopetz. Sparse time versus dense time in distributed real-time systems. In [1992]
Proceedings of the 12th International Conference on Distributed Computing Systems, pages
460–467, Jun 1992. doi:10.1109/ICDCS.1992.235008.

12 H. Kopetz and G. Grünsteidl. TTP-a protocol for fault-tolerant real-time systems. Com-
puter, 27(1):14–23, Jan 1994. doi:10.1109/2.248873.

13 Kristin Krüger, Marcus Völp, and Gerhard Fohler. Improving Security for Time-Triggered
Real-Time Systems against Timing Inference Based Attacks by Schedule Obfuscation. In

http://dx.doi.org/10.1007/978-3-7091-9396-9_8
https://newsroom.intel.com/news/firmware-updates-and-initial-performance-data-for-data-center-systems/
https://newsroom.intel.com/news/firmware-updates-and-initial-performance-data-for-data-center-systems/
https://newsroom.intel.com/editorials/intel-security-issue-update-initial-performance-data-results-client/
https://newsroom.intel.com/editorials/intel-security-issue-update-initial-performance-data-results-client/
http://dx.doi.org/10.1145/2659787.2659812
http://dx.doi.org/10.1023/A:1008186323068
http://dx.doi.org/10.1023/A:1008186323068
http://dx.doi.org/10.1109/REAL.1995.495205
http://dx.doi.org/10.1109/RISP.1992.213271
http://dx.doi.org/10.1109/RISP.1992.213271
http://dx.doi.org/10.1109/RTAS.2011.27
http://arxiv.org/abs/1801.01203
http://dx.doi.org/10.1109/ICDCS.1992.235008
http://dx.doi.org/10.1109/2.248873

K. Krüger, M. Völp, and G. Fohler 22:17

29th Euromicro Conference on Real-Time Systems (ECRTS 2017), Work-in-Progress Pro-
ceedings, pages 4–6, 2017.

14 J. Liedtke, H. Hartig, and M. Hohmuth. OS-controlled cache predictability for real-time
systems. In Proceedings Third IEEE Real-Time Technology and Applications Symposium,
pages 213–224, Jun 1997. doi:10.1109/RTTAS.1997.601360.

15 Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown.
ArXiv e-prints, jan 2018. arXiv:1801.01207.

16 Sibin Mohan, Man-Ki Yoon, Rodolfo Pellizzoni, and Rakesh B Bobba. Integrating security
constraints into fixed priority real-time schedulers. Real-Time Systems, pages 1–31, 2016.

17 C. Pagetti, D. Saussié, R. Gratia, E. Noulard, and P. Siron. The ROSACE case study:
From Simulink specification to multi/many-core execution. In 2014 IEEE 19th Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 309–318, April 2014.
Open Source avionics task set. doi:10.1109/RTAS.2014.6926012.

18 Stefan Schorr. Adaptive Real-Time Scheduling and Resource Management on Multicore
Architectures. PhD thesis, Technical University of Kaiserslautern, March 2015.

19 Florian Skopik, Albert Treytl, Arjan Geven, Bernd Hirschler, Thomas Bleier, Andreas
Eckel, Christian El-Salloum, and Armin Wasicek. Towards Secure Time-Triggered Sys-
tems, pages 365–372. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. doi:10.1007/
978-3-642-33675-1_33.

20 M. Völp, B. Engel, C. J. Hamann, and H. Härtig. On confidentiality-preserving real-time
locking protocols. In IEEE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS), April 2013. doi:10.1109/RTAS.2013.6531088.

21 Marcus Völp, Claude-Joachim Hamann, and Hermann Härtig. Avoiding Timing Channels
in Fixed-priority Schedulers. In Proceedings of the 2008 ACM Symposium on Information,
Computer and Communications Security, ASIACCS ’08, pages 44–55, New York, NY, USA,
2008. ACM. doi:10.1145/1368310.1368320.

22 A. Wasicek, C. El-Salloum, and H. Kopetz. Authentication in Time-Triggered Systems
Using Time-Delayed Release of Keys. In 2011 14th IEEE International Symposium
on Object/Component/Service-Oriented Real-Time Distributed Computing, pages 31–39,
March 2011. doi:10.1109/ISORC.2011.14.

23 Armin Rudolf Wasicek. Security in Time-Triggered Systems. PhD thesis, Technische Uni-
versität Wien, 2011.

24 C. B. Watkins and R. Walter. Transitioning from federated avionics architectures to Integ-
rated Modular Avionics. In 2007 IEEE/AIAA 26th Digital Avionics Systems Conference,
pages 2.A.1–1–2.A.1–10, Oct 2007. doi:10.1109/DASC.2007.4391842.

25 M. K. Yoon, S. Mohan, C. Y. Chen, and L. Sha. TaskShuffler: A Schedule Randomization
Protocol for Obfuscation against Timing Inference Attacks in Real-Time Systems. In 2016
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), pages
1–12, April 2016. doi:10.1109/RTAS.2016.7461362.

26 H. Yun, R. Mancuso, Z. P. Wu, and R. Pellizzoni. PALLOC: DRAM bank-aware memory
allocator for performance isolation on multicore platforms. In 2014 IEEE 19th Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 155–166, April 2014.
doi:10.1109/RTAS.2014.6925999.

ECRTS 2018

http://dx.doi.org/10.1109/RTTAS.1997.601360
http://arxiv.org/abs/1801.01207
http://dx.doi.org/10.1109/RTAS.2014.6926012
http://dx.doi.org/10.1007/978-3-642-33675-1_33
http://dx.doi.org/10.1007/978-3-642-33675-1_33
http://dx.doi.org/10.1109/RTAS.2013.6531088
http://dx.doi.org/10.1145/1368310.1368320
http://dx.doi.org/10.1109/ISORC.2011.14
http://dx.doi.org/10.1109/DASC.2007.4391842
http://dx.doi.org/10.1109/RTAS.2016.7461362
http://dx.doi.org/10.1109/RTAS.2014.6925999

	Introduction
	Threat Model and Vulnerabilities
	Threat and System Model
	Vulnerabilities

	Mitigation Strategies
	Slot-level Online Randomization
	Background
	Slot-Level Randomization of Jobs
	Example

	Offline Schedule-Diversification

	Evaluation
	Case study: Flight Controller
	Runtime Overhead for Slot-Level Randomization
	Runtime Overhead for Offline Precomputed Schedules
	Memory Cost for Offline Precomputed Schedules
	Discussion

	Conclusion

