9 research outputs found

    Implication of Manifold Assumption in Deep Learning Models for Computer Vision Applications

    Get PDF
    The Deep Neural Networks (DNN) have become the main contributor in the field of machine learning (ML). Specifically in the computer vision (CV), there are applications like image and video classification, object detection and tracking, instance segmentation and visual question answering, image and video generation are some of the applications from many that DNNs have demonstrated magnificent progress. To achieve the best performance, the DNNs usually require a large number of labeled samples, and finding the optimal solution for such complex models with millions of parameters is a challenging task. It is known that, the data are not uniformly distributed on the sample space, rather they are residing on a low-dimensional manifold embedded in the ambient space. In this dissertation, we specifically investigate the effect of manifold assumption on various applications in computer vision. First we propose a novel loss sensitive adversarial learning (LSAL) paradigm in training GAN framework that is built upon the assumption that natural images are lying on a smooth manifold. It benefits from the geodesic of samples in addition to the distance of samples in the ambient space to differentiate between real and generated samples. It is also shown that the discriminator of a GAN model trained based on LSAL paradigm is also successful in semi-supervised classification of images when the number of labeled images are limited. Then we propose a novel Capsule projection Network (CapProNet) that models the manifold of data through the union of subspace capsules in the last layer of a CNN image classifier. The CapProNet idea has been further extended to the general framework of Subspace Capsule Network that not only does model the deformation of objects but also parts of objects through the hierarchy of sub- space capsules layers. We apply the subspace capsule network on the tasks of (semi-) supervised image classification and also high resolution image generation. Finally, we verify the reliability of DNN models by investigating the intrinsic properties of the models around the manifold of data to detect maliciously trained Trojan models

    Classification of Sound Scenes and Events in Real-World Scenarios with Deep Learning Techniques

    Get PDF
    La clasificación de los eventos sonoros es un campo de la audición por computador que se está volviendo cada vez más interesante debido al gran número de aplicaciones que podrían beneficiarse de esta tecnología. A diferencia de otros campos de la audición por computador relacionados con la recuperación de información musical o el reconocimiento del habla, la clasificación de eventos sonoros tiene una serie de problemas intrínsecos. Estos problemas son la naturaleza polifónica de la mayoría de las grabaciones de sonido ambiental, la diferencia en la naturaleza de cada sonido, la falta de estructura temporal y la adición de ruido de fondo y reverberación en el proceso de grabación. Estos problemas son campos de estudio para la comunidad científica a día de hoy. Sin embargo, cabe señalar que cuando se despliega una solución de audición por computador en entornos reales, pueden surgir una serie de problemas adicionales. Estos problemas son el Reconocimiento de Conjunto Abierto (OSR), el Aprendizaje de Pocos Disparos (FSL) y la consideración del tiempo de ejecución del sistema (baja complejidad). El OSR se define como el problema que aparece cuando un sistema de inteligencia artificial tiene que enfrentarse a una situación desconocida en la que clases no vistas durante la etapa de entrenamiento están presentes en una etapa de inferencia. El FSL corresponde al problema que se produce cuando hay muy pocas muestras disponibles para cada clase considerada. Por último, dado que estos sistemas se despliegan normalmente en dispositivos de borde, hay que tener en cuenta el tiempo de ejecución, ya que cuanto menos tiempo tarde el sistema en dar una respuesta, mejor será la experiencia percibida por los usuarios. Las soluciones basadas en las técnicas de aprendizaje en profundidad para problemas similares en el dominio de la imagen han mostrado resultados prometedores. Las soluciones más difundidas son las que implementan Redes Neuronales Convolucionales (CNN). Por lo tanto, muchos sistemas de audio de última generación proponen convertir las señales de audio en una representación bidimensional que puede ser tratada como una imagen. La generación de mapas internos se realiza a menudo por las capas convolucionales de las CNN. Sin embargo, estas capas tienen una serie de limitaciones que deben ser estudiadas para poder proponer técnicas para mejorar los mapas de características resultantes. Con este fin, se han propuesto novedosas redes que fusionan dos métodos diferentes, como el aprendizaje residual y las técnicas de excitación y compresión. Los resultados muestran una mejora de la precisión del sistema con la adición de un número reducido de parámetros adicionales. Por otra parte, estas soluciones basadas en entradas bidimensionales pueden mostrar un cierto sesgo, ya que la elección de la representación de audio puede ser específica para una tarea concreta. Por lo tanto, se ha realizado un estudio comparativo de diferentes redes residuales alimentadas directamente por la señal de audio en bruto. Estas soluciones se conocen como de extremo a extremo. Si bien se han realizado estudios similares en la literatura en el dominio de la imagen, los resultados sugieren que los bloques residuales de mejor rendimiento para las tareas de visión artificial pueden no ser los mismos que los de la clasificación de audio. En cuanto a los problemas de FSL y OSR, se propone un marco basado en un autoencoder capaz de mitigar ambos problemas juntos. Esta solución es capaz de crear representaciones robustas de estos patrones de audio a partir de sólo unas pocas muestras, al tiempo que es capaz de rechazar las clases de audio no deseadas.The classification of sound events is a field of machine listening that is becoming increasingly interesting due to the large number of applications that could benefit from this technology. Unlike other fields of machine listening related to music information retrieval or speech recognition, sound event classification has a number of intrinsic problems. These problems are the polyphonic nature of most environmental sound recordings, the difference in the nature of each sound, the lack of temporal structure and the addition of background noise and reverberation in the recording process. These problems are fields of study for the scientific community today. However, it should be noted that when a machine listening solution is deployed in real environments, a number of extra problems may arise. These problems are Open-Set Recognition (OSR), Few-Shot Learning (FSL) and consideration of system runtime (low-complexity). OSR is defined as the problem that appears when an artificial intelligence system has to face an unknown situation where classes unseen during the training stage are present at a usage stage. FSL corresponds to the problem that occurs when there are very few samples available for each considered class. Finally, since these systems are normally deployed in edge devices, the consideration of the execution time must be taken into account, as the less time the system takes to give a response, the better the experience perceived by the users. Solutions based on Deep Learning techniques for similar problems in the image domain have shown promising results. The most widespread solutions are those that implement Convolutional Neural Networks (CNNs). Therefore, many state-of-the-art audio systems propose to convert audio signals into a two-dimensional representation that can be treated as an image. The generation of internal maps is often done by the convolutional layers of the CNNs. However, these layers have a series of limitations that must be studied in order to be able to propose techniques for improving the resulting feature maps. To this end, novel networks have been proposed that merge two different methods such as residual learning and squeeze-excitation techniques. The results show an improvement in the accuracy of the system with the addition of few number of extra parameters. On the other hand, these solutions based on two-dimensional inputs can show a certain bias since the choice of audio representation can be specific to a particular task. Therefore, a comparative study of different residual networks directly fed by the raw audio signal has been carried out. These solutions are known as end-to-end. While similar studies have been carried out in the literature in the image domain, the results suggest that the best performing residual blocks for computer vision tasks may not be the same as those for audio classification. Regarding the FSL and OSR problems, an autoencoder-based framework capable of mitigating both problems together is proposed. This solution is capable of creating robust representations of these audio patterns from just a few samples while being able to reject unwanted audio classes

    Mitigating Fooling With Competitive Overcomplete Output Layer Neural Networks

    No full text
    Although the introduction of deep learning has led to significant performance improvements in many machine learning applications, several recent studies have revealed that deep feedforward models are easily fooled. Fooling in effect results from overgeneralization of neural networks over regions far from the training data. To circumvent this problem this paper proposes a novel elaboration of standard neural network architectures called the competitive overcomplete output layer (COOL) neural network. Experiments demonstrate the effectiveness of COOL by visualizing the behavior of COOL networks in a low-dimensional artificial classification problem and by applying it to a high-dimensional vision domain (MNIST)

    Selected Inductive Biases in Neural Networks To Generalize Beyond the Training Domain

    Get PDF
    Die künstlichen neuronalen Netze des computergesteuerten Sehens können mit den vielf\"altigen Fähigkeiten des menschlichen Sehens noch lange nicht mithalten. Im Gegensatz zum Menschen können künstliche neuronale Netze durch kaum wahrnehmbare Störungen durcheinandergebracht werden, es mangelt ihnen an Generalisierungsfähigkeiten über ihre Trainingsdaten hinaus und sie benötigen meist noch enorme Datenmengen für das Erlernen neuer Aufgaben. Somit sind auf neuronalen Netzen basierende Anwendungen häufig auf kleine Bereiche oder kontrollierte Umgebungen beschränkt und lassen sich schlecht auf andere Aufgaben übertragen. In dieser Dissertation, werden vier Veröffentlichungen besprochen, die sich mit diesen Einschränkungen auseinandersetzen und Algorithmen im Bereich des visuellen Repräsentationslernens weiterentwickeln. In der ersten Veröffentlichung befassen wir uns mit dem Erlernen der unabhängigen Faktoren, die zum Beispiel eine Szenerie beschreiben. Im Gegensatz zu vorherigen Arbeiten in diesem Forschungsfeld verwenden wir hierbei jedoch weniger künstliche, sondern natürlichere Datensätze. Dabei beobachten wir, dass die zeitlichen Änderungen von Szenerien beschreibenden, natürlichen Faktoren (z.B. die Positionen von Personen in einer Fußgängerzone) einer verallgemeinerten Laplace-Verteilung folgen. Wir nutzen die verallgemeinerte Laplace-Verteilung als schwaches Lernsignal, um neuronale Netze für mathematisch beweisbares Repräsentationslernen unabhängiger Faktoren zu trainieren. Wir erzielen in den disentanglement_lib Wettbewerbsdatensätzen vergleichbare oder bessere Ergebnisse als vorherige Arbeiten – dies gilt auch für die von uns beigesteuerten Datensätze, welche natürliche Faktoren beinhalten. Die zweite Veröffentlichung untersucht, ob verschiedene neuronale Netze bereits beobachtete, eine Szenerie beschreibende Faktoren generalisieren können. In den meisten bisherigen Generalisierungswettbewerben werden erst während der Testphase neue Störungsfaktoren hinzugefügt - wir hingegen garantieren, dass die für die Testphase relevanten Variationsfaktoren bereits während der Trainingsphase teilweise vorkommen. Wir stellen fest, dass die getesteten neuronalen Netze meist Schwierigkeiten haben, die beschreibenden Faktoren zu generalisieren. Anstatt die richtigen Werte der Faktoren zu bestimmen, neigen die Netze dazu, Werte in zuvor beobachteten Bereichen vorherzusagen. Dieses Verhalten ist bei allen untersuchten neuronalen Netzen recht ähnlich. Trotz ihrer begrenzten Generalisierungsfähigkeiten, können die Modelle jedoch modular sein: Obwohl sich einige Faktoren während der Trainingsphase in einem zuvor ungesehenen Wertebereich befinden, können andere Faktoren aus einem bereits bekannten Wertebereich größtenteils dennoch korrekt bestimmt werden. Die dritte Veröffentlichung präsentiert ein adversielles Trainingsverfahren für neuronale Netze. Das Verfahren ist inspiriert durch lokale Korrelationsstrukturen häufiger Bildartefakte, die z.B. durch Regen, Unschärfe oder Rauschen entstehen können. Im Klassifizierungswettbewerb ImageNet-C zeigen wir, dass mit unserer Methode trainierte Netzwerke weniger anfällig für häufige Störungen sind als einige, die mit bestehenden Methoden trainiert wurden. Schließlich stellt die vierte Veröffentlichung einen generativen Ansatz vor, der bestehende Ansätze gemäß mehrerer Robustheitsmetriken beim MNIST Ziffernklassifizierungswettbewerb übertrifft. Perzeptiv scheint unser generatives Modell im Vergleich zu früheren Ansätzen stärker auf das menschliche Sehen abgestimmt zu sein, da Bilder von Ziffern, die für unser generatives Modell mehrdeutig sind, auch für den Menschen mehrdeutig erscheinen können. Diese Arbeit liefert also Möglichkeiten zur Verbesserung der adversiellen Robustheit und der Störungstoleranz sowie Erweiterungen im Bereich des visuellen Repräsentationslernens. Somit nähern wir uns im Bereich des maschinellen Lernens weiter der Vielfalt menschlicher Fähigkeiten an.Artificial neural networks in computer vision have yet to approach the broad performance of human vision. Unlike humans, artificial networks can be derailed by almost imperceptible perturbations, lack strong generalization capabilities beyond the training data and still mostly require enormous amounts of data to learn novel tasks. Thus, current applications based on neural networks are often limited to a narrow range of controlled environments and do not transfer well across tasks. This thesis presents four publications that address these limitations and advance visual representation learning algorithms. In the first publication, we aim to push the field of disentangled representation learning towards more realistic settings. We observe that natural factors of variation describing scenes, e.g., the position of pedestrians, have temporally sparse transitions in videos. We leverage this sparseness as a weak form of learning signal to train neural networks for provable disentangled visual representation learning. We achieve competitive results on the disentanglement_lib benchmark datasets and our own contributed datasets, which include natural transitions. The second publication investigates whether various visual representation learning approaches generalize along partially observed factors of variation. In contrast to prior robustness benchmarks that add unseen types of perturbations during test time, we compose, interpolate, or extrapolate the factors observed during training. We find that the tested models mostly struggle to generalize to our proposed benchmark. Instead of predicting the correct factors, models tend to predict values in previously observed ranges. This behavior is quite common across models. Despite their limited out-of-distribution performances, the models can be fairly modular as, even though some factors are out-of-distribution, other in-distribution factors are still mostly inferred correctly. The third publication presents an adversarial noise training method for neural networks inspired by the local correlation structure of common corruptions caused by rain, blur, or noise. On the ImageNet-C classification benchmark, we show that networks trained with our method are less susceptible to common corruptions than those trained with existing methods. Finally, the fourth publication introduces a generative approach that outperforms existing approaches according to multiple robustness metrics on the MNIST digit classification benchmark. Perceptually, our generative model is more aligned with human vision compared to previous approaches, as images of digits at our model's decision boundary can also appear ambiguous to humans. In a nutshell, this work investigates ways of improving adversarial and corruption robustness, and disentanglement in visual representation learning algorithms. Thus, we alleviate some limitations in machine learning and narrow the gap towards human capabilities

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF
    corecore