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Resumen

La gran cantidad de datos generados por la sociedad en los últimos años ha permitido que
las soluciones basadas en Inteligencia Artificial (IA) puedan posicionarse en el estado del arte
actual. Muchas de estas soluciones son conocidas como basadas en datos o data-driven en
inglés, ya que estos sistemas necesitan un gran volumen de datos para ser entrenados. La
naturaleza de estas soluciones permite que puedan ser desplegadas en multitud de contextos,
como por ejemplo, la automatización de procesos industriales, la conducción autónoma o el
diseño de asistentes domésticos. Muchos de estos escenarios contemplan soluciones basadas
en el Internet de las Cosas o Internet of Things (IoT) en inglés. A d́ıa de hoy, cada vez
más dispositivos electrónicos están conectados a Internet, lo que permite un abanico de apli-
caciones desconocidas hasta hace poco tiempo. Por tanto, pequeños dispositivos, como por
ejemplo un reloj, pueden incorporar soluciones de IA para realizar una tarea en concreto, si
bien podŕıa o no ser necesaria la conexión a Internet para el funcionamiento de la solución
de IA. La conexión a Internet permite la interacción por parte del usuario con el dispositivo
y el intercambio de información entre dispositivos para una mejora o ampliación de los posi-
bles servicios que pueden ofrecerse. Otros ejemplos claros de IoT pueden ser los asistentes
domésticos por comandos de voz como Alexa© de Amazon o Google Home©. Sin embargo,
este tipo de productos también suponen, en muchas ocasiones, una barrera invisible de la que
no somos conscientes. En este sentido, la interacción v́ıa voz por parte del usuario requerida
por estos dispositivos puede desplazar a personas sordas o con pérdida auditiva. Sin embargo,
cada vez más, la comunidad cient́ıfica está trabajando en el análisis de eventos sonoros me-
diante técnicas de IA, lo que podŕıa resultar en sistemas inteligentes y asistentes domésticos
capaces de facilitar el d́ıa a d́ıa de este segmento de la poblicación y contribuyendo a conseguir
aśı una accesibilidad real para todos ellos.

La audición es una de las principales formas de interacción con la naturaleza por parte
de los seres humanos. El campo que se encarga del estudio de algoritmos que sean capaces
de la obtención de información a partir de datos de audio es conocido como Audición por
Computador (APC) o Machine Listening en inglés. Cabe destacar que un gran número de
personas sordas o con pérdida auditiva podŕıan beneficiarse de soluciones o productos que im-
plementen técnicas de APC. De acuerdo con la Organización Mundial de la Salud (OMS), 466
millones de personas tienen problemas de audición. Además, cien mil millones de personas
se encuentran en riesgo de padecer pérdida auditiva. Esto se debe al mal uso de auriculares
o la exposición a altos niveles de decibelios en distintos lugares como discotecas o estadios
deportivos. Por lo que respecta a la población más mayor, alrededor de un tercio de la gente
por encima de 65 años padece de pérdida de audición. Todo esto nos indica que una gran
parte de la población se podŕıa beneficiar de soluciones basadas en APC.

Visualfy es una startup valenciana cuyo principal objetivo es la creación de soluciones
basadas en IA que permitan una mayor accesibilidad a la población sorda o con pérdida
auditiva. Actualmente, dispone de dos productos conocidos como Visualfy Home (VH) y
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Visualfy Places (VP). El primero de ellos (VH) se puede definir como un asistente doméstico
accesible para personas sordas o con pérdida auditiva. El sistema está formado por un Hub
principal y 3 detectores o micrófonos que se deben colocar en las habitaciones que el usuario
quiere tener monitorizadas. El sistema es capaz de registrar el audio, segmentarlo, procesarlo
y clasificarlo acorde a un conjunto de categoŕıas/clases/alertas como, por ejemplo, “alarma
de incendios” o “bebé llorando”. Además, el sistema es capaz de comunicarse con multitud
de dispositivos como el teléfono móvil o bombillas inteligentes para que el usuario disponga
de más fuentes de información. Cabe destacar que todo el procesado del audio y la clasifi-
cación se realizan en el Hub sin ningún tipo de conexión a Internet. La única información
que transmite el Hub v́ıa Internet (IoT) es el tipo de alerta que se ha detectado para poder
notificar al usuario conforme a la configuración personal del sistema (bombillas, móvil, ...).
El segundo producto (VP) está pensado en hacer más accesibles espacios públicos o de gran
concurrencia (teatros, bibliotecas, etc.). De acuerdo con la Agenda 2030, todos los edificios
públicos deben ser accesibles para todo el mundo. En este caso, el sistema está compuesto por
el Hub y una serie de periféricos luminosos como lámparas o bombillas. El funcionamiento
de este sistema, por lo que respecta a las técnicas de APC, es el mismo.

En general, estos sistemas se encuentran desplegados en entornos reales no controlados.
Esto provoca que el sistema, ya sea VH o VP, deba enfrentarse a clases de sonidos o situa-
ciones para las que no ha sido entrenado. Este fenómeno se conoce como el problema de
Reconocimiento de Conjunto Abierto u Open-Set Recognition (OSR) en inglés. Además, la
finalidad de estos productos es el reconocimiento de patrones de audio muy concretos como
puede ser una alarma de incendios o un timbre. Esto ocasiona que cada sistema deba ser
entrenado de forma particular para cada usuario, ya sea un cliente final (VH) o un edificio
(VP). Como se ha dicho anteriormente, muchas de las soluciones actuales de IA han mostrado
resultados muy satisfactorios cuando disponen de una gran cantidad de datos para ser en-
trenadas. Al ser inviable la adquisición de miles de muestras de audio de un mismo timbre
por parte del usuario, el sistema debe ser entrenado con muy pocas muestras (2 o 3). Este
fenómeno se conoce como Aprendizaje con Pocos Disparos o Few-Shot Learning (FSL) en
inglés. Por último, hay que destacar que la respuesta del sistema debe ser la más rápida
posible. En este contexto, los tiempos de ejecución son cruciales. Un retraso a la hora de la
notificación puede suponer una confusión y una mala experiencia de uso para el usuario. La
necesidad de diseñar sistemas lo más simples posible desde el punto de vista computacional
se conoce como soluciones de baja complejidad o low-complexity models en inglés. Aśı pues,
resulta especialmente interesante en el escenario considerado el diseño de arquitecturas de
redes neuronales capaces de mejorar la precisión sin que suponga un incremento considerable
en el número de parámetros entrenables de las mismas.

La mayoŕıa de soluciones en el estado del arte suponen una conversión del audio a una rep-
resentación 2D mediante algún tipo de transformación tiempo-frecuencia. Este pre-procesado
supone la elección de hiperparámetros concretos como el tamaño de ventana, solape, bins fre-
cuenciales o frames temporales si se deseara obtener un espectrograma (representación 2D)
a partir del audio, ya sea un espectrograma convencional o con consideraciones perceptuales
mediante el uso de bancos de filtros uniformemente espaciados en la escala Mel. Las solu-
ciones que no emplean estas representaciones bidimensionales y que tienen como entrada
directamente las muestras de audio son conocidas como extremo a extremo o end-to-end en
inglés. La peculiaridad de estos sistemas reside en que el sistema está totalmente compuesto
por parámetros entrenables. Aśı, se consigue evitar el sesgo que puede aparecer a la hora ele-
gir ciertos valores concretos de hiperparámetros, tomando decisiones únicamente a partir del
audio en su representación unidimensional. Es por esto que también se ha estimado oportuno
experimentar con este tipo de soluciones en esta tesis.
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Objetivos

Esta tesis se enmarca en el campo concreto del APC donde el objetivo consiste en clasi-
ficar/identificar segmentos de audio/eventos sonoros correspondientes a un patrón definido
para poder aportar información a un usuario y aśı ayudar en la toma de decisiones final.
De forma más concreta, este proceso de clasificación se produce en entornos reales donde
aparecen las problemáticas de OSR y FSL. Los eventos sonoros poseen, además, una serie
de particularidades intŕınsecas que dificultan el proceso de clasificación incluso aunque no se
dieran las problemáticas previamente mencionadas. Estas peculiaridades son: la polifońıa
de los sonidos en entornos reales, es decir, varios eventos sonoros se pueden superponer en
el mismo instante de tiempo. En un d́ıa cotidiano, es muy dif́ıcil encontrar momentos del
d́ıa donde solo escuchemos una única fuente aislada. Los sonidos generales y ambientales,
además, no poseen una relación temporal. En otros campos como la voz o la música śı que
se puede encontrar una relación basada en la estructura gramatical y en la melod́ıa respec-
tivamente. Asimismo, cada fuente de sonido posee una naturaleza distinta. Un audio puede
ser transitorio, como, por ejemplo, un timbre, que solo suena una vez durante un instante
corto de tiempo o puede ser estacionario como una alarma de incendios que suena durante
un periodo largo de tiempo. Por último, cabe destacar los problemas relacionados al proceso
de grabación como pueden ser la adición de ruido de fondo o ruido eléctrico que dificultan,
en gran medida, el rendimiento del sistema de clasificación. Aśı pues, un sistema robusto
de clasficación de audio (en un entorno controlado) debe tener en cuenta como mı́nimo las
peculiaridades previamente descritas.

Por tanto, el objetivo principal de esta tesis es la proposición y estudio de sistemas de
clasificación de eventos sonoros en entornos reales no controlados (abiertos) donde la clasifi-
cación debe realizarse en tiempo real y el conjunto de entrenamiento es escaso, teniendo en
cuenta también la posibilidad de utilizar soluciones end-to-end.

El objetivo anterior engloba las tres problemáticas explicadas en el Resumen. Por tanto,
este objetivo general se puede dividir en tres objetivos más concretos. El primero de ellos
consiste en la proposición de sistemas que sean desplegables y funcionen en tiempo real, es
decir, que cumplan los requisitos temporales de ejecución que demanda la aplicación. Se
proporciona, en primer lugar, una visión general de las soluciones de IA de clasificación de
eventos sonoros. Dentro del marco de la IA, podemos encontrar el campo del Aprendizaje
Máquina o Machine Learning (ML). Dentro de los métodos de ML, podemos además en-
contrar aquellos basados en Aprendizaje Profundo o Deep Learning (DL). Los algoritmos
clásicos de ML tienen principalmente un fundamento estad́ıstico y requieren normalmente de
una interacción mayor por parte de la persona que los implementa, al menos en cuanto a la se-
lección de caracteŕısticas se refiere. A medida que los datos disponibles han ido aumentando,
el estado del arte ha ido cambiando y las técnicas más prometedoras son aquellas basadas en
DL. Además, requieren una menor interacción por parte de la persona que las implementa,
lo que ha propiciado que, cada vez más, investigadores e ingenieros se decanten por este tipo
de soluciones. Estas técnicas suelen superar a las soluciones clásicas de ML cuando la base
de datos es lo suficientemente amplia y los conjuntos de datos están bien etiquetados.

Las técnicas de DL han mostrado resultados muy prometedores en el campo de la Visión
por Computador o Computer Vision en inglés. Las soluciones más extendidas en el estado
del arte están normalmente basadas en Redes Neuronales Convolucionales o Convolutional
Neural Networks (CNNs) en inglés. Estas redes están formadas por capas convolucionales
cuyo objetivo es la creación de mapas de caracteŕısticas o feature maps en inglés, a partir de
una representación bidimensional (2D) del audio o sobre el audio mismo (1D). Estos mapas
de caracteŕısticas corresponden a representaciones internas que son utilizadas, finalmente,
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para la clasificación del audio por la misma CNN. Estas redes han proporcionado resultados
satisfactorios cuando la entrada se encuentra en dos dimensiones (2D) como es el caso de una
imagen en escala de grises. Por tanto, el primer paso de estas soluciones en el contexto de la
APC consite en la transformación del audio de una señal unidimensional a una bidimensional.
Para ello, se realiza un estudio por ventanas (la señal se divide en fragmentos más pequeños
que se consideran estacionarios) y cada una de ellas se representa en el dominio frecuencial,
consiguiendo aśı una representación bidimensional en el dominio tiempo-frecuencia. Este
proceso de transformación es conocido como extracción de caracteŕısticas y juega un papel
crucial en el comportamiento del clasificador. No obstante, la elección de los hiperparámetros
que componen un extractor de caracteŕısticas pueden propiciar un cierto sesgo para un prob-
lema concreto, imposibilitando la generalización del sistema que permita ser aplicado en otro
entorno. Aśı pues, se decide realizar un estudio de distintas redes neuronales unidimension-
ales que puedan ser más independientes al contexto APC concreto.

Una práctica común para mejorar el rendimiento del clasificador consiste en la creación
de muestras artificiales durante el entrenamiento (data augmentation en inglés) para que el
sistema disponga de un mayor número de eventos durante el entrenamiento. Otra práctica
común, pero muy poco aconsejable en aplicaciones a tiempo real consiste en la creación de
múltiples clasificadores independientes entrenados con distintas representaciones de audio,
sistemas conocidos como agrupaciones o ensembles en inglés. A la hora de reconocer un
evento sonoro, este debe ser procesado para la extracción de caracteŕısticas multitud de veces
(una por cada clasificador), clasificado por cada uno de ellos y, por último, combinar la in-
formación de cada uno de ellos para obtener una clasificación final. Es lógico pues, que todo
este proceso no constituya una práctica recomendable en un escenario de aplicación real. Por
tanto, otro de los objetivos secundarios concretos dentro del marco de trabajo establecido en
esta tesis consiste en la elaboración de propuestas orientadas a la mejora de la precisión en la
clasificación de eventos sin que éstas alarguen los tiempos de ejecución. En este contexto, re-
sultan especialmente interesantes aquellas técnicas que modifican los bloques convolucionales
para obtener mayor precisión sin aumentar de forma significativa el número de parámetros.
A modo de resumen, podemos definir este objetivo como la búsqueda de una mejora de la
precisión del sistema mediante técnicas que no tengan impacto en los tiempos de ejecución,
actuando sobre el diseño de la arquitectura. Para la comparación de diversas soluciones, nos
basamos en el número de parámetros entrenables que la componen.

Otro objetivo concreto de esta tesis es la proposición de sistemas de IA que sean capaces
de trabajar en entornos abiertos no controlados (OSR). Debido a la naturaleza estad́ıstica
de las soluciones basadas en ML, el problema del OSR se ha conseguido mitigar, en cierta
medida, mediante la aplicación de técnicas que complementan a algoritmos clásicos, como las
Máquinas de Vectores Soporte o Support Vector Machines (SVMs) en inglés. Actualmente,
existe muy poca literatura respecto a soluciones de DL que mitiguen la problemática del OSR.
Sin embargo, su impresionante desempeño en problemas de clasficación incita al estudio y
proposición de soluciones de DL que tengan en cuenta este fenómeno.

Por último, el problema del FSL, no ha captado la atención de la comunidad cient́ıfica
hasta la aparición de su utilidad en los sistemas de reconocimiento facial. Se puede apreciar
cierta semejanza entre el problema de reconocer una cara y el de reconocer un patrón con-
creto de audio en cuanto a la disposición de datos. Por este motivo, con la necesidad de una
solución para esta aplicación, las contribuciones basadas en DL para mitigar el problema del
FSL se han incrementado considerablemente. Además de la proposición de una solución de
FSL para patrones de audio, se realiza un estudio relativamente amplio del estado del arte en
FSL. En esta tesis se ha decidido englobar los objetivos de OSR y FSL en uno conjunto, es
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decir, la solución propuesta debe mitigar las dos problemáticas a la vez. De hecho, las condi-
ciones particulares del escenario de aplicación considerado en esta tesis industrial implican la
aparición de ambas problemáticas de forma conjunta.

Respecto a la redacción de esta tesis, la estructura de la misma se define como la modalidad
de compendio de art́ıculos. Los anexos corresponden a tres publicaciones realizadas en el
marco de esta tesis en revistas de primer cuartil. Los caṕıtulos de la misma explican y
detallan de forma amplia las problemáticas que se afrontan en los art́ıculos que componen
el compendio (Caṕıtulos 1 y 2). Además, se enumeran las contribuciones y se exponen las
conclusines extráıdas en los mismos (Caṕıtulos 3 y 4).

Metodoloǵıa

Para llevar a cabo esta tesis, se ha realizado, en primer lugar, un estudio exhaustivo del estado
del arte de todas las problemáticas que se van a afrontar. Por lo que respecta al despliegue en
tiempo real, se ha estudiado qué representaciones 2D del audio se proponen en la literatura
en soluciones de clasificación de eventos sonoros, aunque estas no tengan en cuenta dicha con-
sideración. Existe un gran número de contribuciones en este campo de estudio. Dependiendo
del proceso de grabación del audio (estéreo o mono), las posibles representaciones 2D pueden
ser distintas. La mayoŕıa de ellas se basan en un espectrograma lineal y un posterior escal-
ado empleando un banco de filtros en concreto, cuyo objetivo es emular el sistema auditivo
humano (Mel, Gammatone, CQT, ...). Basándose en las imágenes RGB, se han propuesto
representaciones que combinan varias representaciones 2D para generar una representación
multicanal del audio. Por otro lado, la disponiblidad de redes neuronales públicas entrenadas
ha permitido la creación de representaciones novedosas del audio. El audio es procesado por
la red neuronal y esta genera una representación distinta a las basadas en bancos de filtros
clásicos. Esta técnica es conocida como transferencia de conocimiento o transfer learning
en inglés. En ocasiones esta solución no es muy efectiva si se quiere desplegar en tiempo
real, ya que estas redes que transfieren su conocimiento suelen ser muy profundas al haber
sido previamente entrenadas con bases de datos muy extensas. Como se ha mencionado con
anterioridad, no existe mucha literatura que tenga en cuenta el despliegue en tiempo real
de la red. Sin embargo, se han estudiado las contribuciones propuestas aunque no tengan
en cuenta dicha limitación, es decir, aquellas soluciones propuestas en el estado del arte que
intentan mitigar las limitaciones del las CNN.

La técnica de compresión y excitación de canal, o squeeze-excitation technique (SE) en
inglés, es una de las soluciones propuestas cuyo objetivo es el de mejorar la precisión de
las CNNs. Estas técnicas realizan un recalibrado de los mapas de caracteŕısticas o feature
maps en inglés. La finalidad es la de aplacar las limitaciones en la creación de los mapas de
caracteŕısticas internos que forman parte de la red. Por otro lado, el método de aprendizaje
es un factor determinante a la hora del entrenamiento en CNNs. Las primeras CNNs estaban
diseñadas como un conjunto de capas convolucionales implementadas de forma secuencial
y una capa final de clasificaćıon conocida como totalmente-conectada o fully-connected en
inglés. No obstante, la aparición del aprendizaje residual y su popularidad en los sistemas de
visión por computador han extendido su interés también su interés a los sistemas de audio.
La idea principal en la que se basan las redes residuales es que es mucho más simple para
la red aprender una función residual en un bloque convolucional en lugar de una función
de mapeo no referenciada, como en las CNNs secuenciales convencionales. En esta tesis
se estudia como la fusión de ambas técnicas (SE y aprendizaje residual) puede mejorar la
clasificación de las CNNs en tareas de clasificación de audio. Para ello, se estudian algunas
configuraciones propuestas en el estado del arte y se proponen dos más configuraciones para

vii



mejorar los resultados de clasificación.

Para estudiar la contribución de cada solución diseñada se deben definir una serie de
métricas y de escenarios de experimentación. Cuando se pretende analizar el comportamiento
de una solución propuesta donde todas las situaciones son conocidas por el sistema, se ha
decidido emplear la métrica llamada exactitud, accuracy en inglés. Además, para aportar
mayor conocimiento en cuanto a las diferencias existentes entre distintas alternativas prop-
uestas, se ha realizado un test estad́ıstico de McNemar. Se trata de un test estad́ıstico de
1 contra 1 que permite discernir si el comportamiento real de dos soluciones es el mismo
o no. En consecuencia, si se pretende analizar la diferencia de comportamiento entre dos
redes neuronales distintas, en primer lugar, se visualiza la exactitud de cada una de ellas y,
posteriormente, se les realiza este test estad́ıstico. Por lo que respecta al tamaño de la red
(restricción de baja complejidad), se ha analizado el número de parámetros de cada solución
para aśı discernir un compromiso entre exactitud y complejidad de la red.

El estado del arte del OSR o el FSL no es espećıfico del dominio del audio. Como se
ha mencionado previmente, el FSL atrajo un mayor interés de la comunidad cient́ıfica al
proporcionar soluciones para la aplicación del reconocimiento facial. Concretamente, las
técnicas FSL estudiadas han mostrado unos resultados prometedores en el dominio de la
imagen, computer vision. Algunas contribuciones proponen redes neuronales experimentales
que son entrenadas por parejas o en conjuntos de tres (triplets), modificaciones de funciones
de coste de la red neuronal (Ring Loss, Center Loss, ...) o transfer learning. Por otro lado,
el OSR consiste en la modificación del sistema de IA para que sea capaz de enfrentarse a
situaciones/clases desconocidas de forma eficaz. Por tanto, el estudio de estos campos no es
espećıfico del dominio del audio. Por ello, es necesario estudiar y proponer modificaciones si se
quieren obtener resultados prometedores en el dominio del audio también, ya que el contexto
no es el mismo y el tamaño de las bases de datos suele ser considerablemente menor.

Para analizar la contribución de las soluciones propuestas en esta tesis en los objetivos de
FSL y OSR, se necesita un entorno de experimentación muy espećıfico. Como se ha expli-
cado previamente, el FSL viene determinado por el número de ejemplos disponibles en fase
de entrenamiento y el OSR por el número de situaciones desconocidas por el sistema una
vez ha sido entrenado. Para simular un contexto donde conviven las dos problemáticas en el
dominio del audio, se ha decidio diseñar una base de datos de audio espećıfica. Esta base de
datos está compuesta por patrones de audio muy concretos que deben ser reconocidos por el
sistema y por eventos de audio genéricos que deben ser rechazados. Es decir, si la red recibe
como entrada un patrón conocido, debe reconocer de qué patrón en concreto se trata. Por
otra parte, si recibe un audio que no corresponde a ningún patrón, el sistema debe clasificar
dicho audio como desconocido, es decir, rechazarlo (consideración OSR). La base de datos
está compuesta por 24 patrones distintos (alarmas de incendios, timbres domésticos, ...) y
10 clases de audio genéricos (aplausos, bocina del coche, tecleo, ...). Ésta está diseñada para
poder realizar diferentes experimentos que emulan distintos escenarios, dependiendo de las
consideraciones de FSL y OSR. Para poder analizar el impacto del FSL, la base de datos
está implementada para que el sistema pueda ser entrenado con cuatro, dos o una muestra de
cada patrón de audio que quiera ser detectado (tres escenarios distintos). Esto es conocido
como número de disparos. Por otro lado, por lo que respecta a la consideracón OSR, se debe
tener en cuenta la apertura del problema, u openness en inglés. Esta métrica permite saber
cual es la relación entre situaciones conocidas-desconocidas a las que se enfrenta el sistema.
El valor de openness vaŕıa entre 0 y 1. Un valor de 0 indica que el sistema no se enfrentaŕıa
a ninguna situación desconocida. A medida que el valor se incrementa, el sistema se enfrenta
a un mayor número de situaciones desconocidas. La base de datos está configurada de tal
forma que hay tres valores distintos de openness, generando aśı tres escenarios distintos. La
configuración de distintos escenarios, tanto en la problemática de FSL como en la OSR, per-
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mite una búsqueda en cuadŕıcula o grid search en inglés. Este estudio permite discernir que
configuración de FSL y OSR es la que presenta un mejor rendimiento. Para analizar aún en
más detalle la consideración de OSR, se ha realizado una configuración concreta de la base
de datos donde solo tres patrones fijos deben ser reconocidos (y no los 24 disponibles). Esta
configuración permite un mayor grado de openness y mejor análisis de la consideración OSR.
A diferencia del objetivo anterior, la exactitud debe calcularse de forma ponderada entre las
situaciones conocidas y desconocidas.

Debido al tamaño de la base de datos generada, la mayoŕıa de técnicas de FSL empleadas
en imagen no son válidas en el contexto del audio. Aunque las bases de datos de imágenes
están configuradas para que se dispongan de pocas muestras por clase, es cierto que existe
un mayor número de clases que en bases de datos de audio. Por consiguiente, el número
de total de muestras es mucho mayor. Por esta razón, es necesario investigar una solución
novedosa. La solución propuesta reside en los llamados autoencoders. Estas arquitecturas
permiten la obtención de representaciones internas de la señal de audio de una menor di-
mensionalidad para que, posteriormente, pueda ser utilizada para la clasificación. Estos han
mostrado resultados muy prometedores en problemas como detección anómala o traducción
automática. La idea principal consiste en entrenar un autoncoder que sea capaz de encon-
trar una representación interna para cada patrón, siendo esta tan discriminativa que permita
el rechazo de las situaciones no conocidas. Los autoencoders fueron originalmente pensados
como una arquitectura no supervisada, es decir, no es necesaria la información sobre la clase a
la que corresponde la muestra. La finalidad de un autoencoder es la recontrucción de la señal
original. Para ello, en primer lugar, realiza una codificación (reducción de dimensionalidad)
y posteriormente una decodificación volviendo a la dimensionalidad original. El punto de la
red entre el codificador y el decodificador es conocido como cuello de botella o bottleneck en
inglés. No obstante, ya que se dispone de la información sobre la clase de la muestra, se ha
decidido analizar el comportamiento de un autoencoder con arquitectura semisupervisada. La
representación interna y el consiguiente bottleneck no se calcula, únicamente, con la muestra
a reconstruir, si no que también se debe tener en cuenta la información de la clase. Para
la consideración del OSR se ha decidido realizar un clasificador fully-connected, pero cuya
activación en la capa final corresponde a una sigmoide para que aśı sea capaz de discernir
entre patrones conocidos y muestras de clases desconocidas.

Por último, las soluciones end-to-end están poco a poco atrayendo más interés por parte
de la comunidad cient́ıfica en APC. Si bien existen varios trabajos que proponen una red
unidimensional, la proposición de ésta se basa en la elección de los investigadores. Debido a las
ventajas que aportan las redes residuales, éstas también son una elección muy común en redes
convolucionales unidimensionales. Las redes residuales han sido ampliamente estudiadas en
el dominio de la imagen analizando la contribución de diferentes redes dependiendo de como
se configuren. Dicho estudio no se ha realizado en el dominio del audio y empleando una red
unidimensional. Aśı pues, la contribución en este objetivo es el estudio de distintos bloques
residuales para soluciones end-to-end para poder aśı justificar la elección de una red residual
u otra. En este caso, el estudio estad́ıstico se lleva a cabo mediante un test de Friedman no
paramétrico.

Resultados

En esta tesis se han realizado tres estudio distintos (cada uno de ellos dando como resultado
final una publicación presente en esta memoria) que componen el compendio de art́ıculos
(modalidad en la que se ha redactado esta tesis). Los art́ıculos pueden encontrarse en su
versión original al final de esta memoria en forma de anexo. Los tres art́ıculos previamente
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mencionados hacen referencia a tres problemáticas comunes que aparecen en sistemas de
audición por computador. Los resultados obtenidos de cada publicación se resumen a con-
tinuación:

• Resultado 1: Respecto a la consideración de complejidad, se ha obtenido como resultado
una red novedosa que es capaz de mejorar soluciones actuales del estado del arte con
una ligera adición en el número de parámetros. Para ello, se ha combinado el uso de
técnicas de squeeze-excitation y aprendizaje residual en los bloques convolucionales de
la red.

• Resultado 2: Las problemáticas de FSL y OSR se han conseguido mitigar con un
sistema basado en la arquitectura conocida como autoencoder. Los resultados muestran
una considerable mejora si se compara con otras técnicas como la transferencia de
conocimiento.

• Resultado 3: Por último, los resultados obtenidos en sistemas end-to-end indican que
se debe tener una especial consideración en el diseño de redes de esta naturaleza cuando
trabajan en el dominio del audio, ya que pueden diferir de las conclusiones obtenidas
previamente en el dominio de la imagen.

Conclusiones

La clasificación de eventos sonoros es un campo que atrae cada vez más el interés de la co-
munidad cient́ıfica. Sin embargo, la mayoŕıa de contribuciones solo tienen como objetivo la
mejora de la precisión de los sistemas propuestos obviando problemáticas que aparecen en
productos que emplean dicha tecnoloǵıa. En muchas ocasiones, las soluciones en el dominio
del audio vienen muy inspiradas por el dominio de la imagen. Como se ha mencionado con
anterioridad, el estado del arte actual propone la conversión del audio a una “imagen” para
ser procesada, posteriormente, por redes neuronales que han demostrado un gran desempeño
en el dominio de la imagen. Esta “imagen” generada a partir del audio no es trivial. Existe
un gran número de contribuciones muy heterogéneas que discuten la que debeŕıa ser la rep-
resentación usada. No obstante, muchas soluciones a d́ıa de hoy mitigan este fenómeno con
soluciones que no son realizables en un contexto de tiempo real como puede ser el ensemble de
multitud de redes entrenadas sobre distintas representaciones del audio. Estas redes tienen
una serie de limitaciones a la hora de su diseño y es conveniente estudiar y proponer mejoras
que supongan un incremento de la precisión sin que ello conlleve un aumento de parámetros
o profundidad de la misma.

Las soluciones end-to-end se encuentran a d́ıa de hoy en un estado muy prematuro. Sin
embargo, la ventaja que puede suponer la implementación de un sistema que emplea esta
tecnoloǵıa puede ser considerable. Estas redes parecen más propensas a la generalización ya
que se evita la elección de hiperparámetros concretos. Todo el sistema es entrenado y por
tanto todos los parámetros se pueden ajustar a una base de datos en concreto. A pesar de
que existen trabajos en la literatura que proponen redes unidimensionales (y muchas de ellas
emplean redes residuales) no se ha realizado un estudio de qué configuración residual aporta
una mayor precisión en el contexto del APC. Se ha demostrado como la elección del bloque
residual es dependiente de la lectura concreta que se realice del audio.

Por último, las consideraciones de FSL y OSR no han sido estudiadas con profundidad
en el dominio del audio. El estudio de estas problemáticas es de vital importancia ya que
en muchas aplicaciones reales es imposible recolectar un gran número de muestras por clase
(FSL) y, en muchas otras, el sistema se va a encontrar desplegado en un entorno abierto. Para
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estudiar ambas problemáticas se ha generado, en primer lugar, una base de datos, se ha com-
probado el funcionamiento de distintas soluciones del dominio de la imagen sobre esta base
de datos y, posteriormente, se ha diseñado un sistema espećıficamente para el dominio del au-
dio. En esta tesis se propone un sistema que es capaz de aplacar ambas problemáticas a la vez.

En el Caṕıtulo 2, se muestra un amplio repaso de los diferentes aspectos tratados en esta
tesis. Se han presentado los conceptos más relevantes relacionados a la inteligencia artificial.
Se presenta un diagrama genérico de una solución que emplea tecnoloǵıas de audición por
computador haciendo un breve resumen de cada una de las partes que lo componen. Por
último, los problemas espećıficos abordados en esta tesis han sido discutidos, es decir, OSR,
FSL, modelos de baja complejidad y soluciones end-to-end.

Los Caṕıtulos 3 y 4 detallan las contribuciones y conclusiones de esta tesis respectiva-
mente. Las contribuciones se muestran de forma enumerada haciendo referencia a cada uno
de las art́ıculos que componen el compendio. En el Caṕıtulo 4 se realiza de la misma manera
pero haciendo un breve resumen global y añadiendo el trabajo a futuro junto con un listado
de todas las publicaciones que se han realizado en el marco de esta tesis.

En el Anexo A se muestra cómo la combinación de distintas técnicas, en este caso squeeze-
excitation y aprendizaje residual, consiguen mejorar el rendimiento de una red puramente
residual sin necesidad de añadir un número elevado de parámetros. El estudio se realiza desde
un punto de vista de precisión global, por clases y mediante un estudio estad́ıstico conocido
como test de McNemar.

El Anexo B muestra la gran aportación de las soluciones basadas en autoencoder para
resolver las problemáticas de FSL y OSR conjuntamente. El autoencoder permite la creación
de representaciones robustas de los patrones a detectar siendo posible su discriminación de
otros eventos sonoros. Dos autoencoders convolucionales son estudiados: uno no supervisado
y otro semisupervisado. Los experimentos se realizan con distintos valores de openness (ver
Sección 2.2.1) y de número de disparos. La clasificación se realiza mediante una red neuronal
que es entrenada a partir de las representaciones generadas por los autoencoders. Los resulta-
dos obtenidos muestran que este marco es capaz de clasificar patrones de audio muy concretos
aunque sea entrenado con muy pocas muestras y a la vez, es capaz de rechazar muestras que
no pertenecen a ningún patrón. Concretamente, el autoencoder semisupervisado muestra un
mejor rendimiento es multitud de experimentos.

El Anexo C muestra un estudio comparativo entre distintas redes convolucionales pen-
sadas para un sistema end-to-end. Para realizar dicho estudio, se selecciona una red residual
del estado del arte y es modificada acorde a los bloques presentados en un estudio similar,
pero en el dominio de la imagen. Los resultados (análisis de la precisión y estudio estad́ıstico)
muestran que estos difieren entre el dominio del audio y de la imagen. El estudio se real-
iza sobre dos datasets y con dos preprocesados de audio distintos. Los resultados también
muestran como la elección del bloque residual puede ser dependiente del preprocesado.

Palabras clave
Clasificicación de eventos sonoros, reconocimiento del conjunto abierto, aprendizaje con pocas
muestras, técnicas de compresión y excitación, autoencoder, soluciones end-to-end, apren-
dizaje residual.
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Abstract

The classification of sound events is a field of machine listening that is becoming increasingly
interesting due to the large number of applications that could benefit from this technology.
Unlike other fields of machine listening related to music information retrieval or speech recog-
nition, sound event classification has a number of intrinsic problems. These problems are the
polyphonic nature of most environmental sound recordings, the difference in the nature of
each sound, the lack of temporal structure and the addition of background noise and re-
verberation in the recording process. These problems are fields of study for the scientific
community today. However, it should be noted that when a machine listening solution is
deployed in real environments, a number of extra problems may arise. These problems are
Open-Set Recognition (OSR), Few-Shot Learning (FSL) and consideration of system runtime
(low-complexity). OSR is defined as the problem that appears when an artificial intelligence
system has to face an unknown situation where classes unseen during the training stage are
present at a usage stage. FSL corresponds to the problem that occurs when there are very few
samples available for each considered class. Finally, since these systems are normally deployed
in edge devices, the consideration of the execution time must be taken into account, as the
less time the system takes to give a response, the better the experience perceived by the users.

Solutions based on Deep Learning techniques for similar problems in the image domain
have shown promising results. The most widespread solutions are those that implement Con-
volutional Neural Networks (CNNs). Therefore, many state-of-the-art audio systems propose
to convert audio signals into a two-dimensional representation that can be treated as an im-
age. The generation of internal maps is often done by the convolutional layers of the CNNs.
However, these layers have a series of limitations that must be studied in order to be able
to propose techniques for improving the resulting feature maps. To this end, novel networks
have been proposed that merge two different methods such as residual learning and squeeze-
excitation techniques. The results show an improvement in the accuracy of the system with
the addition of few number of extra parameters. On the other hand, these solutions based on
two-dimensional inputs can show a certain bias since the choice of audio representation can
be specific to a particular task. Therefore, a comparative study of different residual networks
directly fed by the raw audio signal has been carried out. These solutions are known as end-
to-end. While similar studies have been carried out in the literature in the image domain,
the results suggest that the best performing residual blocks for computer vision tasks may
not be the same as those for audio classification. Regarding the FSL and OSR problems,
an autoencoder-based framework capable of mitigating both problems together is proposed.
This solution is capable of creating robust representations of these audio patterns from just
a few samples while being able to reject unwanted audio classes.

Keywords
Sound event classification, Open-Set Recognition, Few-Shot Learning, squeeeze-excitation,
autoencoders, end-to-end frameworks, residual learning
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Chapter 1

Introduction

The data generated by society has been increasing exponentially in the last few years. This
is largely due to the number of personal devices that are constantly connected to the In-
ternet, such as laptops, smartphones or tablets. Besides these widespread personal devices,
many other physical objects equipped with a variety of sensors and which offer relatively high
computing and connectivity capabilities are currently being deployed to create “smart” en-
vironments. The convergence of all these technologies at homes, industries, cities and public
and private venues has led to the concept of Internet of Things (IoT) [2, 3]. The range of IoT
devices has also increased over time. While a few years ago the only personal device connected
to the Internet was a computer or a laptop, today we have smartwatches, lamps or home as-
sistants among other products. Thus, the number of solutions that can be provided thanks
to these devices has increased to places that were unsuspected until recently. The interest
in IoT is such that the European Union created a well-known “Horizon 2020” programme1

to finance small and medium-sized enterprises whose focus is the creation of technological
solutions using IoT devices. The range of possible IoT applications is really wide, covering
the processing of information coming from multiple modalities, including images, audio or
electric power consumption among others. The large amount of data available in most appli-
cations makes data-based or Artificial Intelligence (AI) solutions the choice. These solutions
are based on the design of an algorithm, often a neural network, that “learns” from the avail-
able data in order to make future decisions. Well-known examples of IoT devices making use
of AI algorithms are home assistants like Google HomeTM or Amazon’s AlexaTM.

However, we often do not realise that many of the above technological advances can some-
times be a barrier for many people. For example, in home assistants, a voice interaction by
the user is required. This is not possible for a segment of the population that is deaf or suffers
from hearing loss. According to the World Health Organization (WHO), 466 million people
have hearing problems. In addition, 1.1 billion young people (aged between 12 and 35 years)
are at risk of suffering from hearing loss.2 Some of the factors that explain this potential
damage are the misuse of headphones or the exposure to high decibel levels in various places
such as discotheques or sports stadiums. As far as the older population is concerned, about
one third of people over 65 years of age suffer from hearing loss. However, AI can also be
used to break down these generated barriers. People who are deaf or suffer from hearing loss
could benefit from solutions based on machine listening techniques. Machine listening is the
field that aims to extract meaningful information from audio signals by algorithms. These
algorithms may be based on the combination of signal processing and AI methods. Some of

1https://ec.europa.eu/digital-single-market/en/research-innovation-iot
2https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Illustration of a real case of using a Visualfy Home. The image shows the

communication between detectors and the Hub and the communication of the latter with the

API that is in charge of alerting the user through a mobile device.

the problems present in the field of machine listening are the classification of sound scenes,
the detection and localization of sound events or the detection of anomalous sound events,
among many others. In this context, a large segment of the world’s population could improve
their daily lives if they had IoT products making use of machine listening technologies.

Visualfy3 is a Valencian startup whose goal is oriented towards the mission discussed
above: the creation of products aimed at improving the daily lives of deaf people or affected
by hearing loss. Visualfy was one of the European companies that obtained a grant from
the European Union within the Horizon 2020 program4, 5 in the SME Instrument Phase II
section. Currently, Visualfy has two IoT products that employ machine listening solutions.
The products are known as Visualfy Home6 (VH) and Visualfy Places7 (VP). VH can be
conceived as a home assistant for deaf people. The product consists of 4 devices, a central
Hub and 3 detectors or microphones. The purpose of the product is to visually notify the
user in case of an important sound event such as a door bell or fire alarm. Figure 1.1 shows a
user case where the 3 detectors plus the Hub are placed in different rooms in order to monitor
the desired situations. All devices have a LED that lights up when a sound event is detected
(Figure 1.2 shows the variability of colors that can be related to the sound alerts desired to be
monitored). The system is designed so that the users have the detectors in the rooms of the
house that they want to monitor via audio. The Hub, besides being one more microphone, is
in charge of all the audio processing and user notification. It should be noted that European
regulations regarding user data have become more restrictive over time (see Figure 1.1 for
illustration purposes). Nowadays, an IoT device cannot send private user information. Audio

3https://www.visualfy.com/
4https://cordis.europa.eu/project/id/662651/reporting/es
5https://novobrief.com/deaf-startup-horizon-2020/5962/
6https://www.visualfy.com/visualfy-home/
7https://www.visualfy.com/visualfy-places/
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Figure 1.2: Isometric representation of a functional installation of a Visualfy Home. The sky

blue color corresponds to the installed devices (detectors and Hub).

is considered private information. Therefore, the entire machine listening system present in
the Hub runs locally without any interaction with an external Application Programming In-
terface (API). The only information that is transmitted over the Internet corresponds to the
class that the detected audio event belongs to in order to notify the user. The alert system
is fully configurable by the users, who can choose the color to which they want to link each
alert and the device on which to receive the alert (mobile phone, smartwatch, smart bulbs,
etc.). On the other hand, VP is a product designed to be deployed in public or crowded
environments such as theaters, museums or stations. The system consists of the main Hub
and lighting devices such as light bulbs or lamps. The machine listening system that is used
follows the same considerations as those of the VH.

In addition to this application, solutions based on machine listening techniques can be
deployed in a multitude of applications such as the early detection of faults in industrial
machines [4], human-machine interaction [5] or sound event localization [6]. The fields of
application can be the industrial context itself, ambient assisted living systems, autonomous
cars, population monitoring or video games, among others. In addition, it should be noted
that a large part of the population is reticent about being monitored visually either at home
or on the public highway. In this context, audio is considered to be a less intrusive modality
than video. These solutions could displace in the future those that use images or become
complementary in order to elicit less intrusiveness. In addition, certain visual monitoring ap-
plications, such as those oriented to wildlife monitoring, have a number of limitations when
light is poor or when not enough cameras are available to cover the entire space. Machine
listening based applications could help to improve such solutions.

This thesis was written using a modality known as a compendium of articles. Under
this assumption, the articles made during this research (at least three accepted in journals
of the first or second quartile) are introduced in their original version as an annex. In this



4 CHAPTER 1. INTRODUCTION

particular memory, three annexes can be found at the end of the document. The memory
is also composed of four chapters that introduce the issues and the motivation to deal with
them (Chapter 1), widely detail the state-of-the-art (Chapter 2), list the contributions of the
papers (Chapter 3) and conclude the work (Chapter 4).

1.1 Motivation

The industrial nature of the doctoral program implies an orientation of the research carried
out throughout this thesis towards the innovative application of its results and conclusions
to the context of an industrial product or service. Therefore, a major motivation underlying
the research objectives of this work is on the emphasis of developing technological solutions
with clear applicability to real-world problems and scenarios.

The emergence of AI-based applications has led to the development and improvement
of many products. The area where most effort has been made is computer vision [7, 1, 8].
However, there is an increasing interest from the scientific community and companies in de-
veloping products based on the information extracted from acoustic signals [9, 10, 5, 11].
These solutions are considered less intrusive from the user’s point of view and can also solve
problems that are extremely difficult to tackle in the image domain (e.g. lack of luminosity,
impossibility to map the whole space, etc.). When it comes to developing a machine listen-
ing solution, a series of considerations must be taken into account. First, general sounds
do not have a deterministic structure, that is, the fact that an event occurs does not deter-
mine that another one will follow. This is not the case in the voice or music domain, where
AI systems can obtain specific patterns thanks to grammatical structures, established rules
and pre-defined dictionaries (e.g. phonemes or musical notes). On the other hand, general
sounds have a polyphonic nature, i.e. two or more sound events can occur at the same time.
Therefore, a masking phenomenon can appear where one event “hides” the other. Another
important consideration is that there are several kinds of sounds depending on their nature.
If they are examined from a spectral point of view, the acoustic signals can be tonal (e.g.
fire alarms) or noise-like (e.g. keyboard tapping). If analysed by their temporal behaviour,
the sounds can be transitive (e.g. door slam), continuous which in turn can be divided into
stationary (e.g. machine breakdown), non-stationary (human speech), intermittent which in
turn can also be divided into sounds with periodic patterns (e.g. foot steps) or irregular
intervals (e.g. baby crying). Finally, the recording process must be also taken into account.
This process can add noise or filter certain frequency components. The fact that very often
the sampling frequency or bit depth is different for different examples within the same train-
ing dataset, and those that the system must classify once trained can result in poor system
performance. Thus, an audio classification system must at least address these considerations.

However, these are not the only issues that arise when deploying a machine listening so-
lution in a real, uncontrolled scenario. The first problem that appears is the one known as
Open-Set Recognition (OSR) [12]. This problem refers to all the circumstances, in our case
sounds or audio events, that the system will have to face without having been trained on
them. Let’s imagine that a classifier is designed to detect 3 specific audio patterns: doorbell,
fire alarm and a specific telephone melody. When this system is deployed in a domestic
context, it will have to reject a multitude of sounds present at home. It is evident that it is
impossible to account for all the casuistry of a home: conversations, television, pet sounds,
street noise, etc. Therefore, a system must be designed with a special emphasis on the rejec-
tion of samples that do not belong to the patterns or classes for which it has been trained.
Thus, a machine listening system cannot be conceived as a closed set system where all the
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audio samples it is going to face will belong to a class the system has seen during the training
stage. The second problem that arises is the Few-Shot Learning (FSL)[13]. When a specific
pattern detection system is desired, for example, for a particular doorbell, a high number
of samples will not be available because it is unfeasible to request hundreds or thousands of
recordings from a user. Systems based on AI methods, based whether on machine learning
or deep learning techniques, have shown very promising results when trained with a large
number of samples. In the field of audio, these techniques have also shown very satisfactory
results when used as generic classifiers, that is, when the classes to be detected show a high
degree of intra-class variability. Let’s imagine a classifier that classifies between dog barks
and baby cries. In general, each bark can be different depending on the breed of dog, inten-
sity, etc. Just like a cry, which can vary due to the sex of the baby, the claiming (hunger,
sleepiness, etc). However, what is desired in this type of system is the capability to detect
every event of a bark or babycry nature, not a specific bark or cry. In the case of alarms,
since each user can have his or her own, some specific training is needed. Since it is unfeasible
from a user experience point of view being required to record a large number of samples, the
system must be trained with very few. The last issue to be considered is the execution time.
As it can be expected, the less time the system takes to recognize, the better user experience
the customer will have. Classifiers should be as simple as possible, which leads to the de-
velopment of low-complexity models [14]. Currently, many state of the art solutions propose
systems formed with a multitude of independent classifiers where each one of them provides
a result and the final prediction comes from the output of some fusion mechanism. These
ensemble-based methods may not be practical in a real environment and results must be
improved in another way without a decrease in execution time. Also, as previously discussed,
due to data protection legislation (LOPD) no user data is allowed to leave an IoT device.
Therefore, the whole data processing and classification (the machine listening pipeline) must
be performed locally at the egde device.

In summary, given the scenario discussed above, it is necessary to propose machine listen-
ing systems that mitigate these problems. Some existent solutions in audio come from studies
that have addressed similar problems in other domains. For example, the problem of FSL is
widespread in the audio domain thanks to the advantages of facial recognition or signature
recognition [15, 16]. FSL methods have also been studied in music applications related to
genre classification [17]. On the other hand, the OSR problem has been analysed in detail
in image recognition by experimenting with large image databases [12, 18]. Finally, with
regard to the consideration of low complexity models, it has only recently begun to receive
considerable attention in audio [14, 19]. Thus, this thesis is motivated by the need to analyze
and propose novel solutions in the audio domain that can be deployed in real environments
and showing robustness to the problems discussed above. In addition, it has been decided
to experiment with end-to-end frameworks (where the whole system is made up of trainable
parameters) in the audio domain [20, 21]. These frameworks are increasingly attracting the
attention of the scientific community for their ability to generalize to different problems in
the context of machine listening.

1.2 Objectives

Taking into consideration all of the above, the objective of this thesis can be defined as follows:

To design, implement and evaluate sound event and sound scene classification systems
that must be deployed in real-world, uncontrolled environments, where the classification must
be performed locally in an edge device and only a very limited training dataset is available.
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This global objective can be divided into the following sub-objectives:

• To provide an overview of state-of-the-art solutions to the problems addressed in the
thesis. This includes from the first techniques to the current ones. In addition, it is
intended to provide detailed explanations on how these solutions have been implemented
in different contexts, be it images, speech or music, since sometimes there is not much
literature on how such problems affect the sound event classification performance.

• To analyze the behavior of different end-to-end residual networks in the context of
machine listening. Due to the advantages that this family of solutions can provide,
such as the elimination of non-trainable parameters chosen manually for each problem,
it has been deemed necessary to experiment with different residual architectures to
study their behavior depending on the audio reading and training dataset. These
solutions are thought to be easier to be generalized to other problems, since the whole
system is made up of trainable parameters.

• To propose novel residual squeeze-excitation modules in order to improve the accuracy
of audio classification systems. Most deep Learning-based frameworks rely on the ability
of convolutional neural networks to learn features from audio signals that lead to good
discriminative properties. These networks are composed of several stacked convolutional
layers. However, they also have a number of limitations. Newer techniques such as
squeeze-excitation or residual learning have shown promising results. The proposal of a
module that combines both techniques can improve the classification without increasing
significantly the depth of the network.

• Finally, to design an FSL/OSR framework capable of detecting specific audio pat-
terns while rejecting all unknown audio classes. The FSL consideration must be taken
into account when very few samples of each pattern are available to train the system.
Moreover, considering jointly FSL and OSR within the same system requires both net-
work structures coping simultaneously with both problems and developing meaningful
datasets for this task.

1.3 Structure of the thesis

This thesis is divided into four chapters and three annexes, with an additional section for
bibliographical references. The contents of each chapter are as follows:

Chapter 1 introduces the scenario in which this thesis is developed, emphasizing the as-
pects related to its industrial character and the solutions that are intended to be integrated
into real market products. In addition, it presents the motivation and objectives guiding this
research work.

Chapter 2 provides some background on the main concepts used throughout this work.
The fundamental problems addressed in the thesis are presented, discussing some of the ini-
tial solutions found in the literature and current state-of-the-art techniques. In addition,
the main public audio databases that have been used in this thesis to evaluate the proposed
contributions are presented.

In Chapter 3 the most significant contributions of each of the papers that make up the
compendium of this thesis are listed and summarized.
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Finally, Chapter 4 concludes the work carried out in this thesis by discussing the main
outcomes of the above research work. It also mentions some future research lines that may
be considered to gain further insight into the results obtained in this thesis.

Annex A corresponds to the first publication that makes up the compendium of articles.
It corresponds to a paper published in IEEE Access (doi: 10.1109/ACCESS.2020.3002761 ),
which presents some novel configurations for convolutional neural networks that combine
residual learning and squeeze-excitation techniques. These are shown to improve considerably
audio classification performance without increasing significantly the number of parameters in
the network.

Annex B corresponds to the second publication of the compendium. The publication
was accepted in a special issue of the Sensors journal called Intelligent Sound Measurement
Sensor and Systems (doi:10.3390/s20133741 ). This paper presents a novel architecture based
on autoencoders aimed at addressing jointly the problems of Open-Set Recognition (OSR)
and Few-Shot Learning (FSL).

Annex C presents the latest publication of the compendium, corresponding to a paper
published in IEEE Access (doi: 10.1109/ACCESS.2020.3031685 ). This publication explores
and compares different residual configurations but in the context of end-to-end solutions
accepting as input the raw audio signal. Such kind of solutions have been shown to provide
promising results without the need to apply signal transformations to the input.





Chapter 2

Background

2.1 Brief overview

This section explains the context in which this thesis is framed. Firstly, it explains the rise of
artificial intelligence (AI) in recent years and how the appearance of these technologies has
allowed a great improvement in machine listening algorithms. Nowadays, classical algorithms
are being replaced by algorithms more data-driven, that is, a considerable amount of data
is needed for this solutions to perform well. It also explains the modules that make up a
machine listening system today. Finally, the event known as DCASE is presented. This
event was held for the first time in 2013 and can be understood as a consequence of the great
interest in machine listening solutions from the scientific community. As it will be explained
later, the tasks presented at the event can be considered as the most topical in the state of
the art.

2.1.1 Artificial Intelligence history review

Today, the multitude of technological solutions employ methods or techniques of artificial
intelligence (AI). Although this technology seems to be very new, its theoretical basis were
first developed back in the 1940’s. The first idea was to imitate the human brain by shaping
the behaviour of neurons. The first attempt to understand how neurons work can be found
in [22], published in 1943. This is recognized as the first AI-related work. Furthermore, this
assumptions were even modelled by means of electrical circuits. In 1949, [23] introduced the
idea that neural pathways are strengthened every time they are used, a concept fundamentally
essential to the manners in which humans learn. If two nerves fire at the same time, the
connection between them is strengthened. The field of artificial intelligence was born in
a workshop at Dartmouth College in 1956 [24]. John McCarthy was responsible for the
conference and is considered the father of artificial intelligence. From this conference, the
first AI solutions began to be proposed. In 1956, the Logic Theorist was introduced. It
is a program created to perform autonomous reasoning and is considered the first artificial
intelligence program. In 1958, the Perceptron was created [25]. Perceptron consists of a
supervised binary classification algorithm. The classification must be carried out by means
of a feature vector. Perceptron is a linear function with weights that are adjusted to correctly
predict the available data. The Perceptron equation can be defined as follows:

f(x) =

{
1, if w · x + b > 0

0, otherwise
(2.1)

9
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Figure 2.1: Generic illustration of an artificial intelligence solution (either Machine Learning

or Deep Learning) for an audio database. In this case a supervised model is represented as

the information from the tags/labels is used.

where w represents the trainable weights, x is the data feature vector and b is a constant
bias. A neural network consists of a set of layers: input layer, hidden layers and output layer
in which each one is composed of several neurons based on the Perceptron idea. The first
multi-layered neural network was designed in 1965, thus causing the birth of Deep Learning
[26].

Nevertheless, the lack of computer power and the scarce databases available at that time
made the advances in the AI field very difficult [27]. This is how, in 1974, the AI field got
into the so called AI winter.

Despite this, during that time, some relevant contributions were made, as in [28], where
a backpropagation algorithm was proposed for multi-layer neural networks. From the 1980s
onwards, more powerful computers were designed, allowing the development and implemen-
tation of modern artificial intelligence methods.

2.1.2 Machine Learning and Deep Learning

The rise of artificial intelligence has led to the proposal of a multitude of algorithms that can
be classified into different categories according to their design. On the one hand, Machine
Learning (ML) algorithms are mathematical algorithms that learn from the data provided
to them. ML algorithms have adjustable parameters whose value is changed and calculated
base on the available training data (see Figure 2.1). ML algorithms are not necessarily based
on neural networks; Support Vector Machines [29] or Decision Trees [30] are clear examples
of these. On the other hand, the so called, and very widely spreaded, Deep Learning (DL)
algorithms are based on neural networks that have at least one intermediate layer. Deep
Learning (DL) solutions are based on different types of neural networks, be they Deep Neural
Networks (DNNs) [26] or Convolutional Neural Networks (CNNs) [31]. As databases have
become larger, the number of layers required to generalise all possible cases must be greater.
The explosion of DL-based solutions can be considered relatively recent and is due to the
availability of an unprecedented large amount of data and sophisticated computing hardware
such as GPUs.

From an implementation point of view, ML algorithms require a prior process of data
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cleansing and selection, known as feature engineering. However, in the DL scenario, feature
engineering might not be necessary in many applications. A common state-of-the-art example
of feature engineering for ML computer vision classification is to use Local Binary Patterns
[32] to create an histogram that can be used as a feature vector. This is, the image is
transformed in a feature vector prior to the classification/training process. On the other hand,
DL algorithms can be fed by the image itself omitting the feature extraction step. CNNs are
deep neural networks that extract characteristics from the image itself to perform the task for
which it has been designed (classification, detection, etc.). Thus, the implementation of DL
algorithms can be much faster from the implementation point of view. However, in certain
application domains, such as audio or machine listening, a feature engineering process is still
required.

Both, ML and DL algorithms, can be classified as follows according to the information
available in the dataset:

• Supervised: every data in the database is mapped to a class label. The objective of
the algorithm is to create a function that allows to map new input data to its corre-
sponding output label. The available data is associated to a series of labels. That is,
an entry corresponds to a specific output. The objective of the algorithm is to create
a function that allows to map all the inputs to their corresponding outputs. Types
of problems supervised may be classification problems (assigning an input to a spe-
cific class), detection (determining the existence of relevant information) or regression
(predicting an actual value from an input).

• Unsupervised: data in the database is not mapped to any kind of class label, therefore
the goal of the algorithm is to find similarity between the data itself. Some unsupervised
examples may be clustering (grouping of data because of their similarity) or data coding
(the algorithm creates richer internal representations of an entry through a learning
process).

• Semi-Supervised: is a trade-off between the two previously explained approaches.
For a dataset to be considered semi-supervised, some samples of it must be labelled
and others not. Therefore, both supervised and unsupervised techniques must be used.
We will also consider a semi-supervised problem when all the labels in a dataset are
available but unsupervised and supervised techniques are used to solve the task in
question.

In this thesis the 3 approaches have been worked on. The classification of audio patterns is
done in a supervised way since the DL algorithm must map an audio clip to a specific labelling
class or category. Unsupervised learning is used to mitigate the Few-Shot Learning problem
(FSL), deeply analyzed in this thesis (see Section 2.3.1). In addition, a semi-supervised
approach is analyzed to study the same problem comparing both approaches (unsupervised
and semi-supervised).

Likewise, supervised algorithms can be further divided in different subcategories depend-
ing on the number of labelling-classes in the dataset or how many classes can be associated
to a single sample:

• Binary classification: is the simplest classification problem since only two classes
appear. Normally, these classes are understood as positive class and negative class
[0, 1] [33].

• Multi-class classification: the classification problem presents more than two classes.
It should be noted that a sample belongs to only one of the classes. To be considered
as a class present in the dataset, it must appear at least once. This approach appears
in audio events classification (AEC) task [34, 35, 36].
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• Multi-label classification: can be considered the most complex problem of classifi-
cation. In this scenario, apart from having several classes, a sample may or may not
belong to more than one class. This scenario appears in the audio domain due to its
polyphonic nature [37, 38].

In this thesis, the classification problems studied correspond to multi-class problems since
an audio can only belong to a specific pattern within an amalgam of possible patterns.
Because an audio can only belong to one pattern, it does not seem to make sense to analyze
from a multi-label point of view.

2.1.3 Basics of Deep Learning

The Deep Learning architectures used in this thesis are those known as DNNs and CNNs
(see Figure 2.2). A DNN can be defined as a NN where intermediate hidden layers have been
added. The layers made up of nodes are called fully-connected (see Figure 2.2 a)).

Node equation and activation functions

The node is simply a point of computation where the inputs to the node are weighted by a
weighting vector whose values are adjusted at training stage. To achieve non-linear network
behavior, a non-linear trigger function is usually applied. Thus, the mathematics of a single
node responds to the following equation:

z = f(a) = f(w · x + b) = f(
n∑

i=1

wixi + b) (2.2)

where x represents the input to the neuron, w the trainable weights, b a trainable bias and
f denotes an activation function. The activation functions used in this thesis are Rectified
Linear Units (ReLU) [39] and Exponential Linear Units (ELU) [40]. ReLU activation avoids
gradient vanishing, this being a known phenomenon that appears when gradient diminishes
dramatically as it is propagated backward through the network [41]. In addition, they are
computationally more efficient, allowing the network to learn the parameters much faster than
other activation [42]. As shown in [40], ELU activation can be understood as a modification
of the ReLU activation that allows faster training and higher accuracies while maintaining
all the benefits reported by ReLU. Both activation equations are:

ReLU (a) = max(0, a) (2.3)

ELU(a) =

{
a, if a > 0

α(ea − 1), otherwise
(2.4)

where α is a fixed constant and a is an independent variable that can have values in the
[−∞,+∞] interval. As it can be observed, when a > 0, both activations behave in a linear
way.

Other very important activation functions are the so called sigmoid and softmax. The
softmax function receives an input vector with K positions and normalizes it into a distribu-
tion consisting of K probabilities proportional to the exponentials of the input numbers:

softmax(a)i =
eai

∑K
k=1 e

ak
(2.5)

K∑

i=1

softmax(a)i = 1 (2.6)
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where the input is the K-dimensional vector [a1 . . . aK ] and softmax(a)i is the output
value for i-th vector coefficient. Softmax is used in multi-class classification problems.

On the other hand, the sigmoid function maps the (−∞,∞) range to the [0, 1] inter-
val, thus transforming any real value into another real value that can be interpreted as a
probability:

sigmoid(a) =
1

1 + e−a
(2.7)

where sigmoid(a) is the output value corresponding to any real value a in the (−∞,∞) range.

Cost functions

The values of the parameters of the network, that is, the values of the linear coefficients that
compose the nodes of the network, are found by means of iterative optimization procedures
that take into account the set of training samples and the expected network output for those
input samples. The so called cost function is evaluated on each iteration of the procedure, this
function being a complex mathematical representation of the difference between the expected
network output and the output observed on each iteration of the procedure. The standard
coefficient optimization is based on an iterative gradient descent intended to find a local or
global minimum of the cost function [43].

Over the years, many different cost function have been implemented. The particular
problem to be treated greatly influences on the choice of the cost function. Some of the most
usual choices are the mean squared error (MSE), the categorical cross entropy (CCE) and
the binary cross entropy (BCE). MSE [44] is the most suitable choice when calculating the
error in the prediction of real values. Its equation is:

Lmse =
1

N

N∑

i=1

(
Xi − X̂i

)2
(2.8)

where Lmse is the MSE cost function, N is the number of training samples, and Xi and X̂i

represent the target and predicted real valued outputs for the i-th training sample respectively.

The categorical cross entropy, CCE, should be used in multi-class classification problems
where each sample belongs to only one amongst K different categories. This problem is
usually tackled with a softmax activation in the last layer of the network. Its mathematical
formulation is:

Lcce = −
N∑

i=1

yi log ŷi (2.9)

where Lcce is the CCE cost function, N is the number of training samples and yi and ŷi
represent the original and predicted class probability respectively. As each sample belongs
to one single class, y is an one-hot vector meaning it is equal to 1 in the position of the class
that the sample belongs to, and 0’s in the other positions. ŷ is a probability vector output
by the network. As it can be seen, this cost function takes into account only the probability
assigned by the network to the positive class. The probabilities assigned to the other classes
are multiplied by 0 by the the one-hot vector.

The binary cross entropy, BCE, is the proper choice for multi-label classification problems.
The difference between this type of problems and the multi-class classification described above
is that in multi-label classification labels are not exclusive, meaning that one sample can be
labelled with more than one label. The vector y is not one-hot, instead, it can be 1-valued
in more than one position. Hence, assuming a multi-label problem with K different labels,
the output layer of the network is typically formed by K independent neurons with sigmoid
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Figure 2.2: Illustration of two different Deep Learning architectures.

activation on each one. The BCE cost function, Lbce, would be mathematically formulated
as follows:

Lbce = − 1

N

N∑

i=1

K∑

k=1

[yi,k log ŷi,k + (1− yi,k) log(1− ŷi,k)] (2.10)

where N is the number of samples, yi,k is a binary variable that indicates if sample i should
be labeled with label k and ŷi,k is the probability that the network assigns to sample i to
be labelled with label k. Although ŷi,k are probability values, it must be noticed that, since

each sample can be labelled with more than one label,
∑K

k=1 ŷi,k is not necessarily equal to
one for any sample i.

Different types of layers in a CNN

Deep neural networks DNNs based on the linear node equation described in Equation 2.2
were the first to be developed and implemented. An important improvement to this was
the development of convolutional neural networks (CNNs). These type of networks base
there node equation in the linear correlation of the input with a numerical element called
kernel. While these types of networks can be used with 1D inputs, their true benefits are
seen when dealing with 2D input signals [7]. The first contribution on which these networks
are currently based was presented in [45]. This contribution is known as Neocognitron. The
fundamentals presented in this paper are used today. However, at that time there was no
training with backpropagation. The first paper that presented CNNs as they are understood
today was [46]. The network was trained with backpropagation and used the fundamentals
of Neocognitron to extract two-dimensional signal patterns. Its design became gradually
formalized in the following works by LeCun et al. [31, 47]. These networks were inspired by
the work done in [48] where 2D data input was contemplated and allowed (see Figure 2.2
b)). The most relevant contribution of these works is the creation of the convolutional layer.
In the convolutional layers, the linear coefficients of the node Equation 2.2 are replaced by
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a convolutional kernel specially designed to pinpoint particular patterns in the input signal.
Although general equations for the convolutional layers can be derived, in this thesis the
focus is put on 2D and 1D input data. For the particular case of 2D inputs and one single
kernel function, K, the node equation would be:

z(x, y) = f(

kH∑

i=1

kW∑

j=1

Ki,jax+i−1,y+j−1 + bx,y) (2.11)

where z(x, y) is the node output, K is a 2D kernel of size kH × kW , a is the 2D input, b is a
fixed bias and f(.) is an activation function (see 2.1.3). The particular values of the kernel
coefficients Ki,j are found during the training process.

A convolutional layer is defined by the following parameters:

• Kernel size: most usual sizes for CNNs with 2D inputs are 3 × 3 or 5× 5. However,
in some CNNs 7× 7 or 11× 11 are used [49].

• Stride: represents the displacement, or hop, of the filter as it moves across the input
image. The most common stride is (1, 1).

• Number of channels: number of filters that form a convolutional layer.

• Padding: determines how the edges of the image are processed. If no padding is added,
the output size is reduced compared to the input. In order for input and output to
have the same size, the edges of the input must be padded, with zeros or with another
technique such as replicating the values of the edge of the input, as many times as
necessary according to the kernel size.

Therefore, given an input of size nH × nW and a kernel, K, of size kH × kW , it can be
formulated that the output, also known as feature map, has size:

feature map size =
⌊nH + 2p− kH

s
+ 1
⌋
×
⌊nW + 2p− kW

s
+ 1
⌋

(2.12)

where s denotes the stride and p the padding, both supposed to be equal in both directions.
Therefore, a convolutional layer composed of one single kernel takes an input that belongs
to the RnH×nW space and outputs a matrix in the Rn′H×n′W space. In a more general case
the input can have another dimension of size C. In, for example, an RGB image composed
of three color channels, C = 3. Another degree of generalization can be added by assuming
that a convolutional layer can be composed of several kernel filters. So, assuming these two
generalizations Eq. 2.11 can be rewritten as:

zc
′
(x, y) = f(

kH∑

i=1

kW∑

j=1

C∑

k=1

Kc′i,j,kax+i−1,y+j−1,k + bc
′
x,y) (2.13)

where C ′ would be the number of kernels and c′ ∈ [1, 2, ...C ′], Kc′ is the c′-th kernel of size
kH × kW ×C, a is the input signal, bc

′
x,y is a fixed bias associated to the c′-th kernel and f(.)

is an activation function (see 2.1.3). As in can be observed, the output signal size would be:

⌊nH + 2p− kH
s

+ 1
⌋
×
⌊nW + 2p− kW

s
+ 1
⌋
× C ′ (2.14)

In addition to convolutional layers, CNNs are made up of other types of layers. These
are:
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• Batch normalization layers: this layer corresponds to a standardization layer whose
objective is to achieve a better generalization during training. When training many
parameters present on the network, special care must be taken in the learning rate and
initialization of the weights. This means that training deep networks can be complex
when there are a large number of non-linearities (internal covariate shift). The nor-
malization of each batch allows to be a little less careful with the previously exposed
[50, 51, 52]. Thus, the normalization process is within the model. This layer is usually
placed after the convolutional layer, before activation. In this context, the activation
function can be defined as an independent layer of the model.

• Pooling layers: the number of filters of the convolutional layers (C ′) usually increases
as going deeper in the CNN. In the event that no reduction in dimensionality (nH or
nW ) is made by this layer, it may be the case that the last layers have to process 3D
matrices of the same width and height as the input to the first layer and with the
substantial increase in the third dimension (C ′ in that specific layer). Since this data
processing is not feasible, a susampling layer is required. These layers are known as
pooling. Like convolutional layers they have a receptive field of a certain size known
as pool size. The reduction of dimensionality is done by taking a single value of the
receptive. The most common choices are to the highest value or to the average. In
addition, there are global poolings where the pool size is the width and height of the
three-dimensional matrix, thus achieving a single value per filter.

• Dropout layers: in dropout layers [53, 54] a certain ratio of randomly chosen neurons
is deactivated. The objective of this is to avoid the over-adjustment, also known as
overfitting (see Section 2.7). In many cases, dropout is necessary to achieve better
generalization of the model in validation and test stages.

• Flatten: on many occasions, CNNs have to carry out classification tasks. In many
occasions, this task is carried out by fully-connected layers. Thus, to achieve a 1D
representation of a three-dimensional signal, a resample known as flatten is performed
where all values are placed in a one-dimensional way [55, 56].

• Fully-connected layers: the first CNNs, implemented fully connected layers as they
were in charge of establishing the relationships between the feature maps generated by
the previous convolutional layers and the final output of the classification [31, 42, 7].
This trend is still in use [57, 58]. However, there is a parallel tendency that implements
fully-convolutional networks for classification [59, 60, 61].

Transfer learning and fine-tuning

DNN/CNN training procedure can be, in many cases, very costly in terms of time, computing
power and sample availability resources. Techniques have been developed to take advantage
of large pre-trained networks by only adapting the value of the trainable coefficients to the
particular problem being treated. The most widely used of these techniques are transfer
learning [62, 63, 64, 65] and fine tuning [66, 67]:

• Transfer Learning: under this approach, the pre-trained network is used as an intel-
ligent feature extractor. The main idea is to use the output of a pre-trained network
to feed a simpler one with much less coefficients to be trained. This allows much
less samples and computational power resources to achieve the necessary level of accu-
racy. Well-known pre-trained networks for audio classification are VGGish1 [7], L3net2

1https://github.com/tensorflow/models/tree/master/research/audioset/vggish
2https://github.com/marl/openl3
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Figure 2.3: Generic illustration showing the difference between a system based on transfer

learning and one based on fine-tuning. As can be seen, the difference is found in the freezing

of the weights of the pre-trained network with another database.

[68, 69] or Soundnet3 [70, 71].

• Fine Tuning: the fine-tuning process is the one in which a net is retrained but having
some weights pre-learned in another previous training process [66, 67]. The retraining
process is usually shorter for the following reasons: the database is usually smaller
and the weights are closer to the global minimum. Therefore, this must be taken into
account when designing the second training process. The learning rate is usually lower
and the schedule is usually somewhat different.

2.1.4 Machine Listening pipeline

Computer audition or Machine Listening can be defined as the field of study of algorithms
whose objective is the extraction of relevant information from audio data by a machine.
Broadly speaking, Machine Listening can be defined as the set of algorithms that attempt
to mimic the behavior of the human ear. It includes methods from different fields such as:
signal processing, pattern recognition and artificial intelligence, among others. Within the
field of machine listening several subgroups can be found depending on the nature of the
audio signal; music or environmental are examples of this. A specific nature and a problem
to be solved determine a machine listening task. Some tasks in the machine listening field are
Acoustic Event Classification (AEC) [72, 73], Acoustic Scene Classification (ASC) [74, 57]
or Sound Event Detection (SED) [38, 11, 75]. In this context, the problem of classification
and detection is different. Classification is understood as the assignment of a particular class

3https://github.com/cvondrick/soundnet
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Figure 2.4: Illustration of the pipeline of a machine listening solution. This illustration is

based on the commercial product Visualfy Home.

to an audio clip. When the classification is multi-label it is usually defined as tagging. On
the other hand, detection consists of assigning a specific class and determining the start
and end time of the recognized sound event. Recognizing and classifying can be understood
as synonyms. The detection consists, therefore, of classification and determination of the
temporal boundaries of a specific event in an audio clip of greater duration.

Any solution based on machine listening technologies can be divided into a number of
steps. These steps range from audio recording to user notification. In this thesis any machine
listening framework is divided into 5 steps.

1. Audio streaming

The first stage of a machine listening system is to capture audio from its source. A micro-
phone, or in some cases arrays of them, together with the digitizing system are crucial since
they can determine parameters of the signal such as noise floor, dynamic range or number of
samples to be processed. The sampling rate and the bit depth will determine the resolution
level of the audio and therefore its 2D representation (see Sect. 2.1.4).

2. Segmentation

The captured audio streaming must be segmented in order to be processed. A first approach
could be to process all the captured audio in segments of a certain length L with L/2 overlap.
Other approaches make a pre-selection of the audio before segmentation process/overlapping
by implementing some triggering algorithms [76, 77, 78]. Many of them are based on the
well-known cusum statistics [79, 80] that pinpoints changes in the mean of a time series.
Thanks to the emergence of new edge devices with great computing power as Raspberry Pi4

4https://www.raspberrypi.org/
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or Google Edge TPU5 the trigger process is losing relevance since it is feasible to implement
fast processing systems directly from the streaming.

The particular value of L is highly dependent on the particular task. Common values are
L = 10s [81] for Acoustic Scene Classification, 4s [82] for Acoustic Event Classification or
40ms [83] for Sound Event Detection.

3. Feature extraction

CNNs have shown excellent performance in classification and detection in the image domain
[7, 1, 84]. The first machine listening solutions based on CNNs imitate frameworks of the
image domain [85, 86] by converting the 1D audio signal to a spectro-temporal representation
where one axis corresponds to the frequency and another to the time [87, 88, 89, 90, 91]. The
choice of representation is a field of study nowadays as there are many options. The window
size and overlap must be chosen for the time axe, whereas the scale and number of bins must
be selected for the frequency axe (see Section 2.4.2 for further details about the frequency
scale issues). Decisions about the frequency representations are very relevant since it has
been proven to affect the behaviour of the system in a relevant manner [92].

In a more recent approach the raw 1D audio signal is input to the network without
implementing any previous feature extraction. In this case the CNN acts not only as a
classifier but as feature extractor as well [60, 21, 93, 20]. So far, 2D representations have
shown better results than raw audio inputs [94]. However, this is an open research line since
it could lead to computer power savings.

4. AI system

The remarkable results achieved during the last decade by AI systems based on CNNs make
a very wide range of machine listening problems to be solved by these techniques. Examples
of this are classification or tagging [9], detection [95] and localization [96].

Most solutions implement CNN networks due to the pre-processing (convert the audio into
a time-frequency 2D representation) explained above (step 3). The AI module is responsible
for the output of relevant information from the audio input.

5. User notification

In the particular case of the system worked during this thesis a final notification stage exists.
Users receive a notification, a visual representation of the sound event processed by the AI
stage. Visualfy Home or Places systems are able to send push notifications to the mobile
devices of the users and to illuminate smart bulbs in the room.

2.1.5 Detection and Classification of Acoustic Scenes and Events (DCASE)

The interest of the scientific community both from academia and from companies in solu-
tions based on machine listening has been increasing in recent years. The Detection and
Classification of Acoustic Scenes and Events (DCASE) is an annual event that is used as a
backbone by the community working on machine listening methods. This event is divided
into a Challenge and a Workshop. The first edition took place in 2013 and was organized
by the Centre for Digital Music, from the Queen Mary University of London, and IRCAM
(Institut de Recherche et Coordination Acoustique/Musique) from Paris. The Workshop was

5https://cloud.google.com/edge-tpu
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not a stand-alone conference but a special session in WASPAA2013 (e.g. Workshop on Ap-
plications of Signal Processing to Audio and Acoustics). The next edition was not until 2016.
From that year on, there has been an annual event until 2020.

The reputation of the conference can be seen in how the number of papers submitted has
increased over the years. The following table shows the number of papers, the acceptance
rate and the attendance rate by the academic sector and by companies.

Edition Papers Acceptance rate (%) Attendance (academic (%)/companies(%))

2016 23 100 68/32

2017 27 90 61/39

2018 43 73 62/38

2019 54 66 50/50

2020 49 58 56/44

Table 2.1: Evolution of the DCASE Workshop.

Two conclusions can be drawn from the table above (see Table 2.1). The first is that the
Workshop is gaining a reputation over the years. Each year the number of papers accepted
has increased while the acceptance rate has decreased, which indicates that more and more
papers are sent to the Workshop. The second conclusion is that there is interest from private
companies in solutions based on machine listening technologies. The attendance ratio has
been increasing on the part of the companies until there is a 50-50 balance (2019 edition). In
addition, companies such as Apple, Google, Mitsubishi or Hitachi sponsor or have sponsored
the Workshop.

On the other hand, the Challenge has a much more competitive approach where novel
solutions to a particular problem or task may or may not appear. Over the years, the problems
proposed have increased. The proposal of a task can have several motivations. The most basic
would be to encourage research related to that task by the scientific community. Each task
is defined by a specific dataset and a baseline proposed by the task organizers. The simple
fact of having specific data for a task and a starting point may be enough for the scientific
community to focus on that problem. The second motivation is that the solutions proposed
by the teams are very easy to compare since all the proposed systems must be trained as
specified in the task presentation. The number of tasks has tripled from the first edition to the
last one, from 2 to 6. The period in which the challenge is held is usually 3 months (normally
between March and June). However, during the rest of the year, researchers continue to use
the datasets and systems proposed in the Challenge as a comparison for their contributions.
Therefore, the celebration of this challenge is very useful and has clearly accelerated the
proposal of machine listening solutions for a multitude of tasks and problems present. Below
are the tasks present in each of the editions held:

• 2013 (2): Acoustic scene classification [97, 98] and Sound event detection [97, 98]

• 2016 (4): Acoustic scene classification [99, 100], Sound event detection in synthetic
audio [100, 101], Sound event detection in real life audio [99, 100] and Domestic audio
tagging [100].

• 2017 (4): Acoustic scene classification [102, 103], Detection of rare sound events
[102, 104], Sound event detection in real life audio [102, 104] and Large-scale weakly
supervised sound event detection for smart cars [102, 104].
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• 2018 (5): Acoustic Scene Classification [81], General-purpose audio tagging of Freesound
content with AudioSet labels [105], Bird audio detection [106], Large-scale weakly la-
beled semi-supervised sound event detection in domestic environments [107] and Mon-
itoring of domestic activities based on multi-channel acoustics [108, 109].

• 2019 (5): Acoustic Scene Classification [81], Audio tagging with noisy labels and
minimal supervision [110], Sound Event Localization and Detection [111, 112], Sound
event detection in domestic environments [113] and Urban Sound Tagging [114].

• 2020 (6): Acoustic Scene Classification [81, 14], Unsupervised Detection of Anomalous
Sounds for Machine Condition Monitoring [115, 116, 117], Sound Event Localization
and Detection [111, 83], Sound Event Detection and Separation in Domestic Environ-
ments [118, 119, 113], Urban Sound Tagging with Spatiotemporal Context [120] and
Automated Audio Captioning [121, 122, 123].

The tasks presented at the DCASE have increased over the years. The tasks of Acoustic
Scene Classification (ASC) and Sound Event Detection (SED) have been maintained over
the years. On the one hand, the ASC task has been updated according to the problems
that have arisen. The first editions presented an ASC task without any added restrictions.
However, the 2018 edition already presented the ASC problem with mistmatch devices, the
2019 edition added the problem of Open-Set Recognition (OSR) (see Section 2.2.1) and the
2020 edition added the restriction of low complexity models (see Section 2.4.1). The SED
task has been analyzed in several scenarios as the editions have progressed. In the last two
editions, the spatial location of the source has been added, so the task has been redefined as
Sound Event Localization and Detection (SELD). The rest of the tasks have been changing,
but the change in complexity of these tasks is worth mentioning. In the first editions, the
tasks were tagging or detection. The tasks proposed now imply a design of more complex
systems capable of captioning an audio or detecting fault patterns in an unsupervised way.

The contribution of the DCASE to this thesis has been remarkable. Datasets presented
in the Challenge have been used, as well as comparing the system’s performance with those
proposed in the Challenge. It is a good reference point to check the state of the art with
respect to some technology. Finally, during the thesis, there has been participation in 1 task
in the 2019 edition and 4 in the 2020 edition (see Section 4.2 for the Technical Reports related
to the tasks).

2.2 Open-Set Recognition

2.2.1 Definition

In real scenarios, it is impossible to collect data on all possible situations the system will face
once trained and deployed [12]. In the specific case of a machine listening system installed in a
real world environment performing classification tasks 24 hours a day, it is nearly impossible
to collect audios from all the classes that the system will be forced to face. In public or
crowded spaces, a multitude of new situations appear even every day, such as construction
sites, crowds, different types of background noises, traffic, etc. The AI system must, therefore,
be able to cope with events from unseen classes by rejecting them in the classification stage.
This is called an OSR context. On the contrary, in a closed-set recognition context the input
to the system is restricted to events that belong to one of the pre-trained classes; think,
for example, in a medical image system where the usual practice is to input only images of
certain parts of the human body to recognize a determined type of pathology. See Figure 2.5
for a visual representation of these situations.
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Figure 2.5: OSR problem illustration. Classes defined with U denote unknown classes (either

KU or UU) and color classes represent known ones.

When dealing with OSR problems, special consideration should be given to defining which
classes should be recognized and which ones should be rejected. With this idea in mind, the
following classification of the classes that appear in an OSR problem can be made [18]:

• Known Known (KK) classes: classes that are used in the training and validation
stage and that must be classified as positive events by the system.

• Known Unknown (KU) classes: classes that are available during the training stage
and should be classified as negative events (rejected) by the recognition system. These
classes are very useful since they allow the system to make representations and generate
boundaries that can help to discern samples from the unwanted category.

• Unknown Known (UK) classes: classes for which no samples are available during
training but side-information such as semantic/attribute information is available during
training. This category is not considered in this work.

• Unknown Unknown (UU) classes: classes that are not used nor in the training nor
in the validation stage and must obviously be rejected by the classifier. The system
only sees these classes in the test stage.

The OSR describes a situation in which the UU classes appear in the test stage without
appearing in training. An OSR system must therefore classify the KK classes at the same
time as rejecting the samples from the UU classes. If the system has been trained with a KU
class, these must also be rejected (see Figure 2.5b)).

The OSR consideration is determined by the values known as open space risk and open-
ness. As described in [12], the space in the feature map away from the KK and KU classes is
known as open space O. Close-set systems are forced to label these samples in one KK class.
This carries a risk known as open space risk RO. The lack of knowledge of the UU classes
makes the calculation of this risk complex to obtain. However, in [12], it is formalized as the
quotient between the open space and the overall measure space So:

RO(f) =

∫
O f(x)dx∫
So
f(x)dx

(2.15)

where f denotes the measurable identification function. f(x) = 1 means that some kind of
KK is recognised, otherwise f(x) = 0. Under such formality, the higher the samples in the
open space are labeled as KKs, the highest RO is.
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The metric known as openness provides a relationship between the classes used in the
training phase and the classes to be recognized in the test phase. In a close-set problem,
this value would be the same. However, in an OSR context the number of classes in test
phase is greater than the number of classes you have been trained with. The first definition
of openness, proposed in [12], is:

O = 1−
√

2× |CTR|
|CTA|+ |CTE |

(2.16)

where CTA, CTR and CTE denote the set of classes to be targeted, the set of classes used
during training and the set of classes that the system is facing in testing stage. | · | indicates
the number of classes of each set. The higher the value of O, the more OSR the context
is. In [12], no relationship is specified between the variables that define the number of
classes. In more recent works [18, 124, 125, 126] the relationship CTA = CTR ⊆ CTE is held.
However, this case does not contemplate the use of KU classes since all classes employed
during training must be recognized. Thus, in [127], a relationship is established that does
take this consideration into account, CTA ⊆ CTR ⊆ CTE . However, this relationship may
have some inconsistency with the definition of openness presented in Equation 2.16. Let’s
suppose this case: |CTA| = 3, |CTR| = 20 and |CTE | = 25:

O = 1−
√

2× |CTR|
|CTA|+ |CTE |

= 1−
√

2× 20

3 + 25
= −0.195 (2.17)

In this scenario, a value of O < 0 is obtained, which is unreasonable. Hence, a new refor-
mulation of the value of openness is needed that is consistent with this scenario. As can
be appreciated, CTA is a set within the CTR set, that is, any class that wants to be recog-
nized must appear in CTR. So, in [128], the value of openness (O∗) is reformulated with this
consideration as:

O∗ = 1−
√

2× |CTR|
|CTR|+ |CTE |

(2.18)

With this new formulation the range of the openness value is bounded to the range
0 ≤ O∗ < 1. When O∗ = 0, CTR = CTE , indicating that no UU classes exist. On the other
hand, as CTE becomes larger, CTE > CTR, O∗ → 1 indicating a greater complexity in the
OSR consideration.

2.2.2 Background

The design of systems that can be deployed in OSR contexts currently has several lines
of research. A first division can be made between discriminative and generative models
[129, 130]. In the case of this thesis the work is done with discriminative models. The
following is a review of the state of the art of solutions with descriptive models based on both
traditional machine learning methods and Deep Learning solutions.

Classic ML methods start from the premise that the distribution of the training set and
the test set is the same, i.e. they do not expect to have to deal with an unknown situation.
The pipeline is fixed: an input is taken, mapped in the desired feature space and classified in a
predefined class (see Figure 2.5a)). As it can be observed, this clearly closed-set functionality
cannot be assumed in OSR contexts. As an example, let’s imagine that we perform a 1-9
digit classifier. Once the system is trained, it expects the entries to be predicted to be digits.
However, if images of animals are entered, it can be observed how the system classifies them
as digits by, for example, saying that a duck is a number two.

If one ML technique has attracted a lot of interest when implemented in OSR scenarios
it has been the Support Vector Machine (SVM) [29]. The main idea of SVM is the creation
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of a hyperplane or set of hyperplanes in a feature space, which allows the separation of the
different classes present in that space. The so-called support vectors are used to calculate
this hyperplane. These vectors correspond to the closest samples between different classes.
The method is designed so that the hyperplane is as far away as possible from each support
vector, positioning itself right in the middle of the support vectors of different classes.

In [12], a modification of the SVM, known as 1-vs-Set, is presented and incorporates
an open-space risk term to take into account space beyond the KK classes. The classifica-
tion/recognition function is optimized as:

arg min
f∈H
{RO(f) + λrRε(f(V ))} (2.19)

where V denotes the training data, RO the open space risk, Rε the empirical risk, f a recog-
nition function and λr a regularization constant. In particular, for the OSR consideration, a
parallel hyperplane is added to the one obtained by the SVM. This allows a slab to be left in
the feature space to consider samples as unknown. Another similar approach is presented in
[131, 132] where a new method for calculating the hyperplane known as Best Fitting Hyper-
planes Classifier (BFHC) is proposed. It should be pointed out that these methods reduce
the space occupied by the KK classes by generating gaps in the feature space. However, the
feature space occupied by these classes is not confined.

To achieve the confinement of each KK class in the feature space, the hyperplanes separat-
ing them need to be non-linear. In [18], a modification of the SVM is proposed that achieves
this non-linear separation. This method is called Weilbull-calibrated SVM (W-SVM). The
method combines the extreme value theory (EVT) [133] for the calibration of the score of
two independent SVMs. The first corresponds to one-class SVM compact abating probability
(CAP). This SVM is the first step. If the probability of belonging to a class does not exceed a
certain threshold, the sample is considered as unknown. If the sample exceeds the threshold,
the sample is passed to the second SVM. This second step corresponds to a binary CAP
SVM trained with the Weilbull cumulative distribution function (CDF). This CDF returns
both Pη(y|x) based on the Weibull CDF derived from the match data and Pψ(y|x) based on
the reverse Weibull CDF derived from the nonmatch data, which is equivalent to rejecting
the Weibull fitting on the non-match data given an input x. The W-SVM recognition for a
multi-class KK (Y) scenario is defined as:

y∗ = arg max
y∈Y

Pη(y|x)× Pψ(y|x)× ιy

subject to Pη(y
∗|x)× Pψ(y∗|x) ≥ δR

(2.20)

where ιy denotes a boolean factor to determinate if the given input has been predicted as
KK by the first one-class SVM classifier. Therefore:

ιy =

{
1 if PO(y|x) > δτ

0 otherwise
(2.21)

where PO(y|x) is the posterior estimate of the first SVM classifier given an input x and δτ
indicates a defined threshold. Both threshold δτ and δR are set empirically according to the
authors [18]. δτ is set to 0.001 and δR should be specified depending on the openness value
such as:

δR = 0.5× openness (2.22)

Another algorithm based on SVM and EVT is known as PI -SVM [134]. This algorithm
follows the idea of thresholds with the same strategy as the W-SVM. In this the probability
of inclusion PI for an input x conditioned on the parameters θy is defined as:

PI(y|x, θy) = ξρ(y)PI(x|y, θy) (2.23)
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where ρ(y) is the prior probability of the class y and ξ some constant. The recognition using
a set of Weibull models is defined as:

y∗ = arg max
y∈Y

PI(y|x, θy)

subject to PI(y
∗|x, θy∗) ≥ δ

(2.24)

where δ denotes a fixed threshold. As it can be appreciated, both algorithms base their
capacity to reject the unknown classes on the establishment of fixed thresholds. Both W-
SVM and PI-SVM set a single threshold for all KK classes to be recognized, which does not
make much sense since certain classes may be closer to KU or UU classes than others. In
addition, the information that provides the value of openness that could provide some insight
to the problem, is also often unknown, that is, it is complicated to know all the classes that
make up the CTE set.

To mitigate these limitations, a new modification of the SVM algorithm for the OSR con-
text known as probabilistic open-set SVM (POS-SVM) is proposed in [135]. The contribution
of this new classifier is that it is able to empirically obtain a single threshold for each KK
class. The main difference is that RO and Rε is defined as a probabilistic representation.

Another family of machine learning algorithms for OSR are those known as Sparse
Representation-based. These algorithms have shown very promising results in the image
domain, in particular for facial recognition [136, 137]. The Sparse Representation-based
Classifier (SRC) [138] aims at the poorer identification of the test sample in terms of train-
ing. This classifier (like the SVM) has a close-set nature. The SRC classifier adapted to an
open-set environment (SROSR) is presented in [124]. The state of the art does not show
sparse classifiers when classifying sound events, so this family of algorithms was discarded to
make an audio classifier with open-set consideration.

The distance-based algorithms have also been adapted to the OSR context. In [139] the
Nearest Non-Outlier (NNO) algorithm is presented as an extension of the so-called Nearest
Class Mean (NCM). The classification is made on the basis of the distance between the test
sample and the average of the KKCs. The interest of this algorithm is that it is able to add
new classes dynamically. The well-known Nearest Neighbor algorithm has also been modified
for the OSNN open-set classification [140]. Unlike many OSR algorithms, the classification is
not made from a threshold but from a ratio of the similarity of scores to the two most similar
classes.

The latest family of machine learning algorithms that have been modified to take into
account OSR consideration are those known as margin-distribution based. In [141], a sound
classifier is introduced, the Extreme Value Machine (EVM) which is derived from the concept
of margin distributions. The EVM is based on the assumption that there is a positive sample
xi and sufficient negative samples xj , resulting in pairwase margin estimates mij . Also, use
me that there is a non-degenerate and continuous margin distribution. Then the distribution
for the minimal values of the margin distance for xi is given by a Weibull distribution. Once
the EVM is trained, the classification is done with the following decision function:

y∗ =

{
arg maxl∈{1,...,C}P̂ (Cl|x′) if P̂ (Cl|x′) > δ

unkown otherwise
(2.25)

where x′ represents a test sample, C the number of KKCs following the definition in this
context, δ a fixed threshold, Cl the lth known class and P̂ (Cl|x′) the probability that the test
sample belongs to the lth class.

As shown in Equation 2.6, the softmax function shows a close-set nature. This function is
usually implemented in the last layer (classification layer) of the deep neural network (either
DNN or CNN). The first approach to the adaptation of deep networks is the creation of
the model known as OpenMax [142]. The network is first trained in a close-set context.
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Following the idea of the NCM, each class is represented by a mean activation vector (MAV)
with the average of the classifying examples correctly in the training stage in the penultimate
layer of the network. Subsequently, the training sample distances from their corresponding
MAVs are calculated to fit a Weibull distribution to calculate the psuedo-activation of the
unknown classes. In [143] a slightly different approach is taken and the replacement of the
last layer by a 1-vs-rest final layer of sigmoids, known as a Deep Open classifier (DOC),
is proposed. In [144] the competitive overcomplete output layer (COOL) is presented to
circumvent the overgeneralization of neural networks over regions far from the training data.
The solution presented as tWiSARD is based on the idea of distance-based algorithms [127].
Other algorithms such as [145], use the information available in the KU classes to combine
the Softmax loss and the novel Entropic Open-Set and Objectosphere losses.

Within the algorithms that implement deep models, it is intended to highlight those that
are based on reconstruction as they have been the choice for this thesis. In [146], an algorithm
based on latent representation reconstruction is presented that allows robust detection of UU
classes. This algorithm extends the idea of Openmax. The equations on which the open-set
with latent representations is based are the following:

(y, z) = E(x)

P̂ (Cl|x,x ∈ C) = Softmaxi(y)

x̂ = D(z)

(2.26)

where E and D denote the encoder and decoder networks (more detail is provided in Sec-
tion 2.3.2). x indicate the input sample, y the the representation of the final hidden layer
whose dimensionality is the same as the number of KK classes and z the latent representa-
tion that can also be indicated as bottleneck. x̂ is the reconstructed input, ideally, it should
be the same as x. The main advantage of this design is that it calculates the prediction y
together with the latent representation z. Unlike the original distance-based works where the
distance from y to the mean of each µi class was calculated, this approach jointly takes into
account the y and x distributions. Therefore, the distance measurement is calculated by the
following equation:

d(x|Ci) = |[y, z]− µi|2 (2.27)

where [y, z] denotes the concatenation of both vectors. However, this approach can be con-
sidered as one that has used autoencoders since the E encoder is in charge of generating the
dimensionality vector equal to the number of KK classes. As it will be explained later, the E
encoder is only in charge of calculating the latent or bottleneck representations.

In [147] the use of autoencoders is proposed for the detection of UU classes. A system
based on 3 steps is proposed: two of training and one of inference (the system once trained).
The first step is to train the E encoder and a C classifier for the recognition of the KK
classes. The classifier takes as input the bottlenecks generated by the encoder. This process
is defined as Closed-set training. The second step is known as Open-Set training, with the
frozen weights of the encoder (E), a Decoder (D) is trained to perfectly construct those
samples of KK classes (remember that the encoder has been trained with these samples) and
to poorly reconstruct those samples that correspond to unknown classes (conditional decoder
training). In order for the decoder to know which samples it must reconstruct perfectly
and which ones it must not, a vector called label condition vector is used. Reconstruction
errors are modeled using an extreme value distribution to calculate the threshold. Once the
system is trained (inference phase) the system produces a prediction by the classifier and C
reconstruction errors (one per known class). For the sample to be classified among one of the
KK, the minimum reconstruction error must be less than a certain threshold. If this is the
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case, the class will be predicted as the class indicated by the classifier. If not, it is considered
unknown.

As can be seen, almost all algorithms are based on a final decision based on an empirical
threshold. So, this choice is crucial. For the choice of the particular algorithm, the arrange-
ment of samples of KU classes must also be taken into account. However, it should be noted
that this thesis is based on the resolution of the OSR problem but also of the Few-Shot
Learning (FSL) problem presented in the following section. Therefore, choices based on deep
networks do not make much sense as will be seen below. However, as will be seen below,
autoencoders are a great choice to mitigate the FSL problem and since they have been in-
troduced into the OSR problem they will solve both problems together. For the detection of
an unknown class the idea presented in Equation 2.25 is used. Moreover, the choice of a last
sigmoid layer seems very interesting for the problem that we are trying to face in this work.

Therefore, as it will be seen below, a solution with the capability of recognizing KK classes
and rejecting KU or UU classes at the same time that only few samples of each KK class
are available is presented. The framework is based on the autoencoder architecture, this
contribution can be seen in Annex B.

2.3 Few-Shot Learning

2.3.1 Definition

Few-Shot Learning (FSL) is the problem that appears when systems based on artificial in-
telligence have to be trained with very few samples per class. Deep Learning based solutions
have become state of the art due to the large amount of data available for training. A stan-
dard configuration for this type of problem is one in which the system sees more samples of
the same class in the training stage than in the test stage. In FSL problems, the approach is
completely the opposite, the system is trained with very few samples (shots in this context)
and must predict a large number of examples of that class in test phase.

One characteristic of this problem is the emergence of intra-class classification. This phe-
nomenon can be perfectly understood with the example of facial recognition. The objective
of an FSL system is not to detect faces in an image or to classify an image as a human face,
but to detect the identity of the person. It is nearly impossible to collect, let say, thousands
of photos of a single person just to train, for example, an access control system. A simple and
topical example would be a commercial system for unlocking the mobile phone where a small
set of photos is used to recognize the identity of the user. As it can be noticed, the feature
space that composes the class of a person is very small and is within a feature space that
includes all the faces. The face of a particular user must by identified within the more generic
class human face; this is an intra-class classification problem. This scenario also appears in
the context of this thesis where very particular, specific and individualized pattern alarms
need to be detected.

2.3.2 Background

To summarise, FSL learning can be tackled in three different ways:

• Modifying the available data: these solutions propose the increase of the training
set so that conventional DL techniques and algorithms can be applied. Most data
augmentation techniques follow a set of hand-crafted rules. In the image domain, this is,
the application domain where FSL has been most widely developed, set-augmentation
using translations [148, 149], flipping [150, 151], scaling [149], cropping [150] or rotation
[152] can be found. In the audio domain, although used for other purposes, data
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augmentation techniques such as mixup [153], temporal cropping [154], pitch sifting,
time stretching or loudness modification have appeared [155]. Other novel techniques
are based on the manipulation of the spectrogram [156]. The main problem with these
techniques is that the method that may be applicable to a particular dataset does not
necessarily have to be applicable to another. Furthermore, by means of these techniques
the FSL problem is not being solved as such, but rather an attempt is being made to
change the philosophy of the problem to a standard artificial intelligence problem by
artificially enlarging the dataset.

• Selecting a particular model with FSL considerations: There are a number
of models that take into account the consideration of FSL. In this thesis, due to the
nature of the problem, the solution based on embedding learning [13] is studied. There
are three other learning methodologies such as multi-task learning [157], learning with
external memory [158] or generative modeling [13]. The main objective of embedding
learning is to make smaller dimensional representations in order to group together, in
the feature space, samples of the same class while moving them away from those of other
classes. Normally, the classification step is performed with some similarity function as,
for example, the euclidean distance. In this thesis, the results of embedding learning
implemented with autoencoders are presented.

• Use prior knowledge solutions: These techniques solve the problem of FSL thanks
to the previous knowledge that the neural network possesses having been trained with
other data. Thus, it can be understood as a refinement of the network parameters to
solve a specific FSL problem, for example, fine-tuning.

Before going deeper into the details of embedding learning based methods, it is worth
highlighting another family of algorithms that can be used for FSL. These have in common
the modification of the cost function to emphasize the distance between classes during the
training stage [63]. It can be understood as a variant of a classic Deep Learning classification
problem that can be implemented in concrete FSL scenarios. Ring Loss [159] is presented as
a modification of the softmax loss function. The objective of this cost function is to perform
a soft normalization, where it gradually learns to constrain the norm to the scaled unit circle
while preserving convexity leading to a more robust features. The ring loss LR is defined as:

LR =
λ

2m

m∑

i=1

(||F(xi)||2 −R)2 (2.28)

where F(xi) is the final feature map created by the deep network for the sample (xI). R
represents the norm value which is also learned and λ is the loss weight trade-off. Finally
m is the batch size. LR can be used with other loss functions such as softmax. Ring loss
stabilizes the feature norm of all classes, that is, rectifies the classification imbalance that
softmax may lead to perform better overall [159]. The cost function known as Center Loss
is intended to enhance the discriminative power of the deep feature maps created by CNNs.
This cost function was thought for the problem of facial recognition. The discrimination
is done through the creation of clusters. The center loss simultaneously learns the center
of the cluster of each class (class center) to classify and penalizes the distance between the
feature maps and therefore, different class centers. In this case, the system must use both
the softmax loss and the center loss (LC). The center loss is defined as:

LC =
1

2

m∑

i=1

||F(xi)− cyi ||22 (2.29)

where cyi denotes the yith class center. Ideally, the centers of each class should be updated
every time the feature maps change, that is, once the whole training set has been seen by
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the network (performing an epoch). This makes the center loss an inefficient and impractical
function. To solve this fact, two modifications are made: the centers are updated each batch
(the center corresponds to the average of the feature maps of each of the samples of a class)
and a scalar value α is used to avoid high disturbances between batches. This value is
restricted in [0, 1]. The final system loss function is defined as:

L = LS + λLC = −
m∑

i=1

log(softmax) + λLC (2.30)

where softmax corresponds to the function explained in 2.1.3. As it can be appreciated, both
LR and LC can be understood as modifications of the softmax function whose objective is
the creation of more discriminative feature maps. These cost functions have shown promising
results in the image domain (facial recognition). The databases of this problem, although
they have few samples per class, are considerably large since they contain many classes. Thus,
in total number of samples, a system can be obtained that converts correctly to the desired
solution. Unfortunately, in the audio domain, there is no FSL dataset with as many samples
as is in the public domain.

Techniques based on embedding learning have the objective of reducing the dimensionality
of the entrance to the network. One of the first contributions to embedding learning was in
the task of signature verification. The proposed architecture is known as Siamese network
[160]. The main characteristic of a system based on a Siamese network is that it is based
on the instantiation of two identical networks (same architecture) and with shared weights.
Thus, the entry to the system corresponds to a pair of inputs (let us suppose a pair of
signatures) where the system is trained to obtain similar internal representations when the
pair corresponds to the same signature and to obtain very scattered representations when
the signature is different. You can see how the reduction of dimensionality is done in a smart
way. Once the weights of the network are trained, the prediction is made by means of a
distance metric between the signature to be predicted and those in the database. The cost
function used for these networks is known as contrastive loss [161] and is defined as:

Lcontrastive =

m∑

i=1

[(1− Y )
1

2
(DWi)

2 + (Y )
1

2
{max(0,m−DWi)}2] (2.31)

where Y represents a binary that is set to 0 if both inputs correspond to the same class and
set to 1 if both inputs are from different classes. m is a fixed margin that must be greater
than 0. DWi denotes the distance between both input feature maps (ith pair) and can be
formulated as:

DWi(x
1
i ,x

2
i ) = ||F(x1

i )−F(x2
i )||2 (2.32)

where x1
i denotes one example of the ith pair and x2

i the second example. In this case, the
distance equation corresponds to the euclidean distance. m factor becomes a crucial factor
since it defines a radius around F(x). Dissimilar pairs contribute to the loss function if their
corresponding distance is within the defined radius [161]. Only selecting similar pairs will
lead to a collapsed function. Therefore, the selection of pairs is crucial.

Triplet based networks [15] can be understood as a modification of Siamese networks. In
this case, instead of instantiating 2 equal nets with tied weights, 3 are instantiated. In each
triplet, the system sees an anchor sample, a positive sample (corresponding to the same class
as anchor) and a negative sample (corresponding to a different class than anchor). In this
case, the cost function is defined by:

Ltriplets =
m∑

i=1

[ ||F(xai )−F(xpi )||22 − ||F(xai )−F(xni )||+ α ] (2.33)
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where (xai ), (xpi ) and (xni ) correspond to the anchor, positive and negative example respec-
tively. α is a margin that forces the between negative pairs. As explained in the original work
[15], the choice of triplets plays a crucial role. Two strategies are proposed, an offline choice
every n steps and an online choice (recommended) that selects the so-called hard triplets to
form the convergence of the system to a desired solution. In the online choice, one should
look for which negative samples are closer to the anchor and which are more positive. Thus,
the system is forced to learn relevant triplets.

As it can be observed, the main limitation in these systems is the choice of training groups.
This process involves a slow and difficult to converge training. In addition, in the test phase,
a function must be decided upon to determine the distance and establish a fixed threshold to
decide whether or not there is a match. In the audio domain, this phenomenon can lead to
false negatives. Let us imagine the problem of signature verification. When the system must
discern whether a signature corresponds to a class with which it has been trained, the input
has the same structure, i.e. the size of the signature is similar and the writing is the same.
However, when an audio pattern is to be detected, it may have occurred at the beginning,
middle, or end of the audio clip. Determining a fixed structure with a non-causal phenomenon
such as enviromental sounds is extremely complicated. On the other hand, solutions based on
modifying the softmax function aim to eliminate the source of error of the group selection by
training the system with a single sample at a time. However, they require a large database to
be able to converge. With all this background on the state of the art of FSL, it was decided
to use autoencoders to perform embedding learning on an FSL problem in the audio domain
such as fixed pattern recognition.

The choice of autoencoders (based on convolutional layers) for the detection of fixed
patterns in this thesis is highly motivated by the contributions that it can provide for em-
bedding and reduce the open space simultaneously. First of all, these systems (formed by
convolutional layers) have shown to be able to provide relevant information about the audio
spectrogram. Secondly, they allow discrimination on unknown or unwanted samples thanks
to their nature of reconstructing known inputs. Therefore, both OSR and FSL consideration
can be jointly mitigated with this kind of solution. This specific scenario appears in real-
world environments for which the system to be deployed is intended. The contributions of
this thesis regarding FSL/OSR issues and their mitigations using autoencoders can be seen
in Annex B.

2.4 Complexity Considerations

2.4.1 Definition

Over the last years, Deep Learning techniques have shown promising results in the task of
audio classification, either AEC or ASC. Today, CNN-based systems conform the state-of-
the-art. There are many details to consider when implementing a machine listening system
(without real time streaming implementation as shown in Figure 2.4) for audio clip classi-
fication. However, three fundamental design aspects may be considered: the choice of the
audio representation (step 3 in Figure 2.4), the design of the classifier and the design of a
post-processing module, if necessary (step 4 according to Figure 2.4).

When machine listening systems must be deployed in edge devices, analyzing their perfor-
mance considering some underlying low-complexity restrictions can be of major importance.
In real application environments, a trade-off must be found between accuracy and execution
time. Many times, the scientific community ignores this trade-off, as the goal is usually to
obtain the best possible performance without further considerations on computational cost.
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In many occasions, the proposed frameworks implement ensembles of several models and this
may result in the use of multiple feature extractors (since each model can be trained with a
different representation), multiple classifiers and an additional information fusion scheme.

Complexity considerations have been taken into account within this thesis by studying
several alternatives in the design of the neural network architecture, which are capable of
improving the global performance of the system without involving a large number of extra
trainable parameters.

2.4.2 Background

Complexity restrictions have not been intensively discussed within the machine listening
community in recent years. Many of the proposed methods leading to improved accuracy
are based on the combination of multiple independent models, also known as ensembles
[162, 163, 164, 165, 166, 55, 167]. For example, a common practice is to train the same model
with different representations of the audio signal [168, 169, 170]. However, approaches of
this kind can be too complex to be deployed in real-world products. Note that the use of
ensembles may imply, first, to extract all the relevant input representations, then, obtain the
result with multiple classifiers, and lastly, combine intelligently those results to end up with
a final output. All those stages can significantly increase the computation time.

In this thesis, we take into account complexity considerations by studying the impact
of low-complexity techniques applied over conventional CNNs. These are shown to lead to
better performance without the need to add a high number of extra parameters. The inputs
to the CNNs are based on Mel spectrograms [171], and the separation of harmonic/percussive
components using median filtering [172, 173], which has previously been successfully applied
in audio classification tasks [163, 164]. These techniques are based on the use of Squeeze-
Excitation (SE) techniques applied within the convolutional blocks of residual networks. Both
techniques are briefly described in what follows.

Residual Learning

Residual learning is understood as an architecture of CNNs that was first presented in [1].
The convolutional layers that are stacked on classic CNNs are replaced by residual blocks
[174, 154]. These blocks are designed to approximate the residual function F(X) := H(X)−X,
where H(·) represents the mapping to be fit by a set of stacked layers and X denotes the
input of the first of such stacked layers. The original function H can be expressed as
H(X) = F(X) + X. The original residual block can be found in Figure 2.6.

The main motivation of selecting this kind of network lies on the intuition that optimizing
a residual mapping may be easier than optimizing an unreferenced one. A way to implement
this kind of learning is by adding a shortcut connection that performs as identity mapping
as shown in Figure 2.6. Note that this connection does not add any extra parameters to the
network or computational cost. Therefore, very deep neuronal networks can be designed and
trained without additional effort while reducing the vanishing gradient problem [175].

Squeeze-Excitation

As explained in Section 2.1.3, CNNs are designed by staking out several convolutional layers.
The trainable coefficients of these layers are obtained by capturing local spatial relationshps
(kernel size neighborhood information). The feature maps are obtained by encoding the
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Figure 2.6: Residual block presented in [1]. Weight layer refers to a Convolutional layer.

spatial and channel information together. With this limitation in mind, the SE techniques
were first presented in [176]. The main idea is to encode the spatial and channel information
independently; this process can be understood as a rescaling of the feature maps generated
by the convolutional layers.

The nomenclature of this section slightly differs from that presented in Section 2.1.3. It
has been decided to use this notation for consistency in the works present in the state of the
art [176, 177] and the published article present in Annex A. Here, we define X ∈ RH×W×C′

as an input of a convolutional layer. The feature map generated by the convolutional layer
is denoted as U ∈ RH×W×C . Another way to express U can be U = [u1,u2, . . . ,uC ] where
ui ∈ RH×W . Each ui represents a channel output. Considering this notation, H and W
represents the height and the width, while C ′ and C defines the number of input and output
channels, respectively. The convolutional process is expressed using F(·). Therefore, the
obtaining of U is expressed: F(X) = U. The squeeze-excitation (SE) blocks transform this
output into Û using a function denoted by FSE(·). This rescheduling process is exemplified
by FSE(·) : U → Û. Thus, these new feature maps are used for the forthcoming pooling
and convolutional layers. The SE blocks can be used in each convolutional block or not. The
function in charge of the scaling can be implemented in different ways depending on what is
going to be excited and what is going to be squeezed from the feature maps.

The first SE module to be presented is the one known as cSE [176]. This module obtains
a single value per channel to later obtain relationships between them (see Figure 2.7a)).
So, it could be defined as a module that squeezes spatially and excites channel-wise. The
obtaining of a single value per channel is done through a global average pooling, that is, from
each channel an average value is obtained. This vector is denoted by the variable z. The
relationship between the channels is done by two fully-connected layers. Thanks to these two
layers, the vector ẑ is obtained, which can be defined as ẑ = W1(δ(W2z)) where δ represents
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Û

H

+

W

+

Figure 2.7: Diagram of different SE blocks: (a) describes cSE block procedure, (b) ilustrates
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ReLU activation. W1 ∈ RC×
C
ρ and W2 ∈ R

C
ρ
×C

are the weights of the fully-connected
layers, and ρ is a ratio parameter. Once the relationships between the channels are obtained,
they are scaled in the range [0.1], sigma activation σ is used for this purpose. This last step
determines the importance of each channel since this vector is multiplied with the feature
maps U. The obtainment of Û can be finally expressed as:

ÛcSE = FcSE(U) = [σ(ẑ1)u1, . . . , σ(ẑC)uC ], (2.34)

where ẑk are the elements of the transformed vector ẑ.

The second SE module is known as the sSE and was first introduced in [177]. In this case,
the rescaling function is performed by a single filter and a (1, 1) kernel size convolutional
layer (see Figure 2.7b)). Thus, in this case, the squeeze is performed channel-wise and the
excitation is performed spatially. To better illustrate this module, let’s represent the input
feature map as U = [u1,1,u1,2, . . . ,ui,j , . . . ,uH,W ] where ui,j ∈ R1×1×C . The convolution
process of this module is expressed as q = W ? U, being W ∈ R1×1×C×1 and q ∈ RH×W .
Each qi,j represents the combination of all channels in location (i, j). Like the cSE block,
the ratio must be scaled up to a range of [0, 1]. Passing each (i, j) location through the σ
function gives the relevance of that location acrosss the feature map. Thus, more relevance
is given to the meaningful pixels. The output of this SE module is defined as:
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ÛsSE = FsSE(U) = [σ(q1,1)u
1,1, . . . , σ(qH,W )uH,W ]. (2.35)

The last block is known as scSE. It consists of the sum of the two blocks explained
previously (see Figure 2.7c)). Both are done in parallel and then the outputs are added
together. In this case, relevance is given to a location (i, j, c) in case it is spatially relevant
as well as channel-wise. This rescaling can be defined as:

ÛscSE = ÛcSE + ÛsSE . (2.36)

SE modules can be found in several state-of-the-art works. In [178], a two-step neural
network is presented. The first step consists of the merging of several feature maps using
the network known as Xception [84]. Once merged, the last step implements a cSE module
to recalibrate the feature maps obtained. In [179], a CNN 1D is presented (the input of the
network is the audio itself). The CNN is formed by residual blocks that incorporate cSE
modules. Finally, the SE modules have been proposed in DCASE [180]. However, few details
are provided, which shows the need for further investigation on this topic.

2.5 End-to-end Frameworks

2.5.1 Definition

Although most of the solutions proposed for AEC involve the conversion of audio into a
time-frequency representation, there is a less explored line of research known as end-to-end
solutions. The main idea on which these frameworks are based is that all its parameters
are trainable, therefore, in this context, there would not be an audio transfomation and
this would be the one that would feed the classifier. The only choice the researcher has to
make is to decide on the type of normalisation of the audio: to scale to the maximum value
or to carry out a normalisation of the mean and standard deviation. The main advantage
of these solutions is that they avoid biases in the representation for a certain dataset. As
already discussed, a multitude of representations of the audio have been proposed. Such
representations may show good results in a certain task and with a specific database but
may not show the same results in another machine listening task. In this field a multitude
of contributions can be made. However, following the research line of residual learning it
has been decided to carry out a study of different residual neural networks by changing
the residual module of them. The aim is to analyse which residual block fits better in an
end-to-end system for audio classification.

2.5.2 Background

Most end-to-end solutions present in the state of the art are aimed at environmental sound
event classification [21, 181, 182, 60] or music tagging [183, 184]. However, research is also
being done on the location of sound sources from one-dimensional audio [96]. Most of these
frameworks propose a 1D CNN that intercalates convolutional layers and pooling layers to
reduce the dimensionality of the input vector as the network gets deeper. One of the first
contributions in this field was presented in [184] where an experiment is carried out comparing
the results obtained using an end-to-end system and another where the input to the system is
a spectrogram in a context of music tagging. The experiment was carried out using a simple
CNN and the results showed that the end-to-end framework was able to learn interesting
characteristics of the input audio even though it was not able to achieve the same results as
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the spectrogram-based system. This same line of research continued with other works such
as [185, 94]. In [183] the proposed end-to-end framework reached the performance of the
spectrogram-based one in the same task as [184] dealing with music tagging. In this case,
the end-to-end framework implemented residual learning in some parts of the network. In
[21] a study of the same end-to-end system is performed, suggesting modifications due to
the length of the audio. That is, it is intended to analyze the trade-off between the number
of parameters that can be trained and the audio analysis window, that is, a network whose
input is an audio of 4 seconds can be different from when it enters 1 second. This analysis
is done because in many situations, the lengths of the audio clips in the same database are
different and one must decide the input lengths for such audios. Other different approach is
the one presented in [181], where recurrent layers are also implemented. The main objective
in this case is to analyze which layer performs best at the end of the framework: recurrent
or convolutional. The experimentation carried out in the work showed that convolutional
layers are the most reasonable choice. In [186] a completely different motivation is followed
considering a network that is a mix of a 1D CNN and a 2D CNN. The network is first fed
with the audio signal and after some convolutional layers, the feature maps are resampled in
order to obtain 2Ds feature maps. Then, the network changes to a 2D CNN. This approach
also shows promising results.

In this thesis we analyze the performance of end-to-end networks considering different
residual block alternatives. The analysis is performed by using as a baseline the work of
Dai et al. [60], which studied the performance of different end-to-end audio classification
systems, including one based on residual learning. However, while previous works in the image
domain have analyzed and compared the performance of different residual block designs, such
analysis has not been done for end-to-end audio networks.

2.6 Metrics and Performance Analysis

In order to evaluate the behavior of a system based on artificial intelligence techniques, it
is necessary that the metrics decided upon reliably represent its behavior. Once it has been
decided which set corresponds to training and testing splits (see Section 2.7 for more de-
tail on the division of datasets), these metrics must be applied to the training and testing
set. The results obtained during the training stage allow us to discern whether the system
is learning the desired objective. The result obtained on the test set once the system has
finished the training process allows to analyze the generalization properties of the system.
The exaggerated discrepancy between training and test metrics is known as overfitting. The
system learns such strict parameters for the training set that it is not able to generalize for
samples that are not exactly the same. On the other hand, underfitting is the phenomenon
that appears when the system is not able to capture with sufficient detail the underlying
distribution of the training set. Figure 2.8 illustrates these two phenomena.

In a supervised learning environment, metrics are extracted taking the ground-truth labels
into account. In the case of binary classification these 4 scenarios can be observed:

• True positive (TP): The system correctly predicts that the sample corresponds to
the appropriate class.

• True negative (TN):The system correctly predicts that the sample does not corre-
spond to the relevant class.

• False positive (FP): The system incorrectly predicts that the sample corresponds to
the relevant class.
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Figure 2.8: Representations of the different scenarios that can appear during the training

of a system based on artificial intelligence. A two-dimensional representation was made to

facilitate the visualization of these scenarios. Each axis represents a generic feature.

• False negative (FN): The system incorrectly predicts that the sample does not cor-
respond to the relevant class.

The percentage of samples corresponding to each of the 4 previous definitions, allows the
calculation of performance metrics.

2.6.1 Accuracy

Accuracy (ACC) is one of the most widely used metrics when analyzing artificial intelligence
systems. This metric corresponds to the quotient between the number of correctly classified
samples and the total number of samples. According to the previous definitions, the ACC
can be formulated as:

ACC =
TP + TN

TP + TN + FP + FN
, (2.37)

where TP, TN,FP, FN , refer to the previous definitions. The limitation of this metric is
that it can show misleading results if the classes are not balanced.

Accuracy in Open-Set Recognition

The above definition is intended for close-set environments. When analyzing OSR systems,
the accuracy metric must be modified slightly to correctly represent this phenomenon. This
accuracy is known as weighted accuracy or Accw [187, 188]. Depending on the value of
openness and how the unwanted category is configured, a different accuracy must be used for
that category:

O∗ = 0 (without UU) :

ACCw = wACCKK + (1− w)ACCKU ,
(2.38a)

O∗ 6= 0 (with KU and UU) :

ACCw = wACCKK + (1− w)ACCKUU ,
(2.38b)
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O∗ 6= 0 (with only UU) :

ACCw = wACCKK + (1− w)ACCUU ,
(2.38c)

where w represents a factor that weights the accuracy between the accuracy obtained over
KK classes and other unwanted classes (KU or UU). ACCKK corresponds to the accuracy
with which the system correctly classifies the KK samples into their respective classes.

The performance metrics involving the unwanted category (ACCKU , ACCKUU orACCUU ),
indicate the ability of the system to reject samples that do not belong to any KK class. The
reason why there are three different metrics relates to the different openness conditions O∗.
When the system sees all possible unwanted classes during training, the unwanted category
only consists of KU classes. On the other extreme, if the system does not see any unwanted
samples during training, the unwanted category is only made up of UU classes. When the
system sees some of the classes pertaining to the unwanted category, the ACCKUU metric is
used, which is defined as the average of ACCKU and ACCUU . Therefore, depending on the
context in which the system is to be deployed, one metric or another must be used.

2.7 Datasets

The data provided to the system are of great importance. The factors that determine a good
dataset are the quality of the data provided and the proposed configuration for the analysis of
the system. The creation of an audio dataset is a time-consuming and complex task. Firstly,
the taxonomy of the dataset must be defined, that is to say, which categories or classes will
be present and how they will be structured. Then, audio clips must be recorded in which the
sound events decided in the taxonomy appear. Depending on the number of audio clips in
each class the dataset can be defined as balanced or unbalanced. If the number of samples
of each class is similar, the dataset can be defined as balanced. However, if there are many
more samples in some specific classes than in others, the dataset can be considered as un-
balanced. The recording process is a crucial phase when creating a dataset, for example, the
decision of the microphone can be important. Currently, audio datasets are being generated
using different microphones to address the problem of mismatched devices [188, 14]. This
phenomenon appears in some real applications where datasets recorded with high quality
microphones are available but the system is deployed in a device where the microphone does
not have the same characteristics, such as a mobile phone. To avoid duplicate datasets with
different microphones, it is being studied how to solve this issue by modifying the system
[189, 190, 191, 192]. Finally, the last phase corresponds to the cleaning and labelling of the
samples generated in the recording phase. This phase is the most costly in terms of time
since it must be done manually by human taggers. The effort employed in these three phases:
taxonomy, recording and labeling determines the quality of the audios provided by a dataset.
A desirable virtue of any dataset to be used for training/validating an artificial intelligence
system is its size. The more extensive it is, the better, since the system will be able to better
generalize the categories with which it is being trained.

Regarding the configuration of the dataset, the two most common configurations are the
one that corresponds to the creation of a k-fold (cross-validation) or a single training/valida-
tion (hold-out) division. Each configuration can be defined in the following way:

• cross-validation configuration (Figure 2.9a)): the dataset is divided into k fold-
ers. This division is made in order to analyze the system’s generalization capability
since in each iteration the system is trained with different folders. It is important to
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a) Cross-validation setup

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5Split  1 Metric 1
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5Split  2 Metric 2
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5Split  3 Metric 3
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5Split  4 Metric 4
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5Split  5 Metric 5

Training Testing

Training fold

Testing / Validation fold

b) Hold-out setup

Figure 2.9: Different dataset configuration.

emphasize that each audio must appear in only one folder and that these must be bal-
anced according to the total dataset. That is, if the dataset has the same number of
samples for each class, each folder must follow this rule proportionally. The training
process must be performed at least as many times as there are folders in the dataset.
One folder is left to test the system and the rest are used for training. Once the k
results have been obtained in the test folders, an average is made and it is detected if
the system has shown a similar result for each interaction.

• hold-out configuration (Figure 2.9b)): the dataset is divided into two parts: train-
ing and testing. An extended ratio is 80%-20% for training-testing respectively.

If both configurations are compared, advantages can be found in each of them. The choice
of configuration is determined in part by what is to be analyzed. In general, a cross-validation
configuration provides more information when it comes to showing the behaviour of the sys-
tem when faced with unseen data. That is, at least, information is obtained from k unseen
data scenarios. So, if it is intended to analyze the generalization capacity of a system, the
k-fold configuration is very useful. The hold-out configuration has the limitation that only
one partition has been performed and the results are determined by the way the dataset was
partitioned. However, the hold-out configuration is very useful when a particular part of the
system is to be analysed. Let’s suppose a framework that is formed by a feature extractor,
a classifier and a post-processing module. If a study of different feature extractors is to be
examined, a hold-out configuration is very useful because in all cases the system has used
the same data in training and test stages and the comparison among them is trustworthy.
Furthermore, this configuration is highly advisable when a very large dataset is available or
when it is used for competitive purposes.

The public datasets used to study the different problems presented in this thesis are
described below.

2.7.1 ESC-10

The dataset called environmental sound classification (ESC) was released in 2015 [85]. It
should be noted that this dataset has several versions depending on the number of classes
that compose it. The one known as ESC-10 (used in this thesis) is composed of 10 classes.
The classes that compose it are: sneezing, dog barking, clock ticking, crying baby, crowing
rooster, rain, sea waves, fire crackling, helicopter and chainsaw. Each class is composed
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of 40 audios, with a total of 400 audio clips available. The configuration of this dataset
corresponds to a cross-validation one, being divided in 5 folders. The duration of each audio
is 5 seconds, padding it with zeros if necessary. It should be noted that this dataset has not
been recorded by the designer, but it is composed of audios present in the Freesound6 audio
platform. Freesound is a collaborative repository where anyone can upload or download audio
clips. The dataset ESC-10 can be downloaded at the following link.7

2.7.2 UrbanSound8k

Urbansound8k was released in 2014 [82]. As its name indicates, it is composed of urban
sounds, they are grouped into the following 10 classes: air conditioner, car horn, children
playing, dog bark, drilling, idling enginge, gun shot, jackhammer, siren and street music. The
audio is composed of 8732 audio clips. Like ESC-10, the audios have been extracted from the
Freesound repository. In this dataset, the duration of the audio chunks is 4 seconds maximum
(filling in with zeros in case the duration is lower). The configuration is cross-validation, being
the division of the dataset in 10 folders. As explained in the download web,8 the k-fold must
be done correctly so that the results are comparable with the rest of the literature. The
samples are thoroughly divided in the different folders to show a different behaviour in each
of them.

2.7.3 TAU Urban Acoustic Scenes 2019

This dataset corresponds to the one released in Task 1 of the DCASE 2019 edition9 [81]. The
aim of this task is to classify an audio clip in one of the possible predefined scenes (ASC). The
scenes have been recorded in 12 different European cities such as: Amsterdam, Barcelona,
Helsinki, Lisbon, London, Lyon, Madrid, Milan, Prague, Paris, Stockholm and Vienna. The
locations of the scenes are: airport, shopping mall, metro station, street pedestrian, public
square, street traffic, tram, bus, metro and park. The recording device is the Soundman
OKM II Klassik/studio A3, electret binaural microphone and a Zoom F8 audio recorder using
48kHz sampling rate and 24 bit resolution. Unlike the rest, the audio clips were recorded
by the team that designed the dataset. The dataset was collected by Tempere University
of Technology (Finland).The duration of the audios is 10 seconds each, having a total of 40
hours of recording. The classes are balanced. The configuration of this dataset is hold-out.
There is a 70%-30% partition providing 9185 audio clips to train the system and 4185 to
test it. There are a total of 14400 audio clips which corresponds to 144 per city per acoustic
scene. The training set only has audio clips from 9 cities to be able to test the generalization
properties of the system. Audios from the city of Milan only appear in the test phase. As
you can see, with this configuration there are only 10 cities. The other 2 remaining cities
appear in another release called ”evaluation” which is used to rank the systems in the DCASE
challenge. This release is not used in this thesis since the audio notes are not public and this
release has a competitive nature.

6https://freesound.org/
7https://github.com/karolpiczak/ESC-50
8https://urbansounddataset.weebly.com/urbansound8k.html
9https://zenodo.org/record/2589280
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2.7.4 An Open-Set Recognition and Few-Shot Learning Dataset for Audio

Event Classification in Domestic Environments

For the study of the OSR and FSL phenomena, the design of a specific dataset has been
required. This dataset can be considered as a contribution to this thesis [187]. The dataset
is composed of two categories. The first one is composed of 24 KK patterns and the second
one of 10 unwanted classes. The difference between pattern and class should be highlighted.
In this case, pattern refers to the set of samples of the same class but with the peculiarity
that these samples have a very similar spectrogram because in this case, they correspond to
domestic alarms. The Log-Mel spectrogram of the 24 patterns provided in the dataset can
be seen in Figure 2.10. The log-Mel spectrogram has been calculated with a window size of
40 ms, an overlap of 50% and 64 Mel filters. All frequency bins have been normalized with
zero mean and standard deviation equal to one.

Pattern 01

Pattern 05

Pattern 09

Pattern 13

Pattern 17

Pattern 21

Pattern 02

Pattern 06

Pattern 10

Pattern 14

Pattern 18

Pattern 22

Pattern 03

Pattern 07

Pattern 11

Pattern 15

Pattern 19

Pattern 23

Pattern 04

Pattern 08

Pattern 12

Pattern 16

Pattern 20

Pattern 24

Figure 2.10: Log-Mel spectrogram of the sounds in pattern sounds category. One sample per

specific pattern is shown. The horizontal axis correspond to the time frame and the vertical

axis to the Mel frequency band.

Figure 2.11 below shows the difference between pattern and class as conceived in this
dataset. For this, 3 examples of a pattern and 3 examples of two unwanted classes are shown.

Each of the 34 classes (24 patterns and 10 unwanted) is composed of 40 audio clips. The
classes that compose the unwanted category are: car horn, clapping, cough, door slam, en-
gine, keyboard tapping, music, pots and pans, steps and water falling. All the audios have
been recorded with a sample rate of 16 kHz, 16 bits per sample, PCM and mono encoding.
The dataset is therefore designed so that a machine listening system is able to classify each
pattern in its corresponding class and to reject all unwanted classes, i.e. to determine the
sample as unwanted regardless of the class it belongs to.

To evaluate the OSR phenomenon, 3 different scenarios have been carried out according
to the manipulation of the classes belonging to the unwanted category. In the first scenario,
all unwanted classes are seen by the system in training stage. In the second scenario, only
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Pattern 01 (01) Pattern 01 (10) Pattern 01 (25)

Unwanted - Music (01) Unwanted - Music (17) Unwanted - Music (37)

Unwanted - Pots & Pans (30)Unwanted - Pots & Pans (14)Unwanted - Pots & Pans (01)

Figure 2.11: Comparison of log-Mel spectrograms form within-class examples corresponding

to a pattern sound (first row) and two classes from the unwanted category (second and third

rows). Note that inter-class variability of the examples in the first row is considerably smaller

than in the rest, that is why it is considered as a sound pattern. The number in parenthesis

denotes the example index within the class.

half of the unwanted classes are used in training, i.e. there are 5 KU classes and 5 UU classes.
The last scenario corresponds to a maximum openness value since no unwanted classes are
used in training. These 3 unwanted scenarios have been studied in two different contexts
according to the number of KK classes. In the first context, all classes (all 24 available)
have to be classified. As it can be appreciated, having a higher number of KK classes than
unwanted (either KU or UU), the value of openness is not very high. Therefore, a second
context is created where the 24 patterns are divided into 8 groups of 3. With this more reliable
configuration to a real environment, higher openness values are achieved. The following table
shows the different openness values for each configuration described above:

Pattern Sounds KK KU UU CTR CTE O∗

Full set 24

10 0 34 34 0

5 5 29 34 0.04

0 10 24 34 0.09

Trios 3

10 0 13 13 0

5 5 8 13 0.13

0 10 3 13 0.39

Table 2.2: Number of classes of each configuration and the corresponding openness value.
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With regard to FSL consideration, the dataset is prepared so that the previously described
scenarios can be trained with 4, 2 or 1 shots. The classes of the patterns sounds category
and the unwanted category are trained with the same number of shots. The configuration of
this dataset corresponds to cross-validation. However, this dataset has the peculiarity that
the number of k folders, depends on the number of shots with which the system is going to
be trained. This means that when training with 4 samples per class, k = 10. For 2 shots,
k = 20. Finally, when training with one shot, k = 40, each sample is an independent folder.

The dataset is presented with a baseline based on transfer learning. The L3net [68]
network is used for the extraction of features prior to training. The final classifier consists
of a DNN with sigmoid activation in the last layer to mitigate the OSR test. A feature map
using a t-SNE of the L3 features is shown below where the audio clips of the KK classes are
represented.

Figure 2.12: t-SNE mapping from L3 representation of 24 KK classes.

As it can be noticed (see Figure 2.12), the different classes create very concentrated clus-
ters. There is no sample of one class that appears far from the others. However, there are
clusters that are relatively close together in the feature space. Classes 3/4 or 23/24 are an
example. As can be seen in Figure 2.10, although they are different patterns, they have a
very similar spectro-temporal representation.

The dataset proposed in this thesis can be downloaded at the following link.10

10https://zenodo.org/record/3689288
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Contributions

The contributions of this thesis can be summarized into three main results, each of them
corresponding to one of the scientific publications making up the compendium (see Annexes).
Each particular contribution is somehow related to the problems presented in Chapter 2. In
summary, such contributions can be summarized as follows:

• Contribution 1:
The first publication attached to this thesis (see Annex A) shows an analysis of different
residual networks implemented by residual blocks including squeeze-excitation (SE)
methods. In order to study with better detail the contribution of these methods in
residual blocks, a purely residual block (without SE) was also added to the study.
Some of the mixed blocks (residual and SE) analyzed had already been proposed in
different works of the state of the art. The main contribution in this topic is the
proposal of a novel residual block with SE techniques that adds the shortcut twice,
before and after the SE block. The results show that this configuration was able to
improve significantly the performance in an Acoustic Scene Classification (ASC) task.
An important aspect from a practical perspective is that all the mixed configurations
have the same number of parameters. In addition to an overall performance analysis,
a class-wise and a statistical analysis of significance using McNemar’s test was carried
out. The results confirm that slight modifications in residual convolutional neural
networks can lead to different feature maps and performance even if they have the
same number of parameters. With the novel configurations proposed in this study,
we managed to improve the performance of residual networks with SE without adding
additional parameters. Thus, the results show that the addition of a controlled number
of parameters under a proper design can lead to systems of improved performance.

• Contribution 2:
The results corresponding to our proposal to mitigate the FSL/OSR problems can be
found in Annex B. Regarding these two problems, the first contribution made in the
framework of this thesis has been the creation of an audio dataset that takes into ac-
count the mentioned problems jointly. For this purpose, in addition to the recording
of 24 audio patterns related to different types of alarms, several generic audio classes
were recorded, as keyboard tapping or foot steps, among others. This dataset can
be effectively used to analyze if the proposed systems are capable of rejecting these
unwanted classes while correctly classifying the target audio patterns. Each class (24
pattern classes and 10 unknown generic classes) has 40 samples. Both considerations
are studied from different approaches. For example, the final dataset counts several con-
figuration files where the patterns are grouped in groups of 4, 2 or 1 samples to take into
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account different FSL degrees. Regarding the OSR problem, the dataset also has differ-
ent grouping files where the unknown classes, (known-unknown or unknown-unknown)
are grouped differently in order to study different openness values. To increase this value
and make the OSR consideration even more complex, the dataset also has a configu-
ration where the patterns are grouped in groups of 3, thus creating a higher openness
situation. This dataset was released along with a baseline system based on transfer
learning. The journal paper describing this dataset and baseline is currently under
review. In this context, another contribution in this thesis is related to the improve-
ment of the dataset baseline. For this purpose, a framework based on autoencoders was
proposed. As shown in Annex B, this framework is capable of generating more robust
representations of the target audio patterns, thus achieving a better description leading
to a better rejection of the unwanted classes. In addition, such representations can be
obtained without a high number of samples. However, the performance of the system
deteriorates as less samples are used (4 to 1). Since the dataset has the information
of the class to which each audio clip corresponds, a semi-supervised architecture of
the autoencoder was also proposed. The results show that this framework shows the
best results in most of the configurable scenarios in the dataset, being a solution that
performs robustly under both FSL and OSR situations in the context of audio pattern
detection.

• Contribution 3:
End-to-end networks are increasingly attracting the attention of the scientific commu-
nity. These types of architectures can lead to more generic solutions, as several choices
related to the selection of meaningful two-dimensional audio representations would be
avoided. Although most end-to-end solutions in the audio domain employ residual
blocks, to the best of the author’s knowledge there are no studies that analyze which
kind of residual block works better in this domain, in contrast to other similar studies
already conducted in computer vision. The contribution of this thesis with this re-
gard corresponds to a comparative analysis of different residual blocks implemented in
end-to-end solutions for the classification of sound events. The results obtained using
two different datasets show that the conclusions drawn in the image domain cannot
be easily extrapolated to the audio domain. Apart from a global analysis, a Friedman
non-parametric statistical test is performed, concluding that further considerations are
required when deploying these solutions to audio-related problems.



Chapter 4

Conclusions

Interest from the scientific community in the search for machine listening systems has in-
creased considerably over the years. Unlike other fields of artificial intelligence (AI) such
as speech recognition or computer vision (much more established areas with commercial so-
lutions nowadays) the problems dealing with the understanding of general environmental
sounds have only attracted widespread research interest over the last decade. This increase
can be easily verified by looking into the number works published in this field in the last
years, as well as the interest that the well-known DCASE (Detection and Classification of
Acoustic Scenes and Events) Challenge and Workshop have aroused. The demand for ma-
chine listening solutions is due to the number of existing applications that can benefit from
this technology: home assistants, early detection of breakdowns, smart hearing aids, ambient
assisted living systems, sound retrieval, security applications, autonomous driving, or gam-
ing, among many others. However, most of the works proposed in the field of environmental
sounds involve a very controlled and ideal context that does not always match that of com-
mercial applications. In fact, the great success of AI applications in other domains, such as
imaging, is based on two necessary assumptions that should hold in practice for assuring a
proper performance: a controlled environment allowing for a close-set assumption and the
provision of a sufficiently large and correctly labeled dataset. While it is true that some
applications are already being deployed on edge devices such as mobile phones, a number
of them are designed to run on powerful computers (higher computing capacity) or in the
cloud. However, certain applications in the audio domain, such as the ones considered in
the industrial context of this thesis, are subjected to privacy preservation constraints that
prevent the use of audio data exchange out of the user’s premises.

In this thesis, the problem of classification of acoustic scenes and events under a series
of restrictions commonly present in real-world audio applications has been addressed. Such
restrictions are related to the deployment of audio classification systems in uncontrolled en-
vironments, with little computational capacity and that must be trained with only a few
samples. This is the scenario that real products like Visualfy Home and Visualfy Places have
to face. As previously explained, these systems are aimed at monitoring certain sound pat-
terns such as fire alarms or doorbells. The first one is designed to be deployed in a domestic
environment and the second one in a free attendance environment such as a museum. The
first problem that has been faced has been the one known as Open-Set Recognition (OSR).
This phenomenon appears when the system must reject examples at test time that do not
belong to any of the classes on which the algorithm has been trained. In our scenario, this
translates to a system that must detect a fire alarm among all the sound events that can
occur in a home or in a public space. Therefore it is necessary to train machine listening
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systems taking into account the OSR context, so that once they are deployed, false positives
are minimized (samples incorrectly detected as alarms).

Collecting large number of samples for each specific sound to be detected can be difficult.
Consider for example the case of the Visualfy Home. If users want to monitor the doorbell
of the building main entrance and the doorbell of their apartments, they may record several
samples of both sounds, but not too many. In fact, the number of times the user must record
each sound would be inversely proportional to the user experience. Moreover, in the case of
the Visualfy products, users suffer from hearing impairments, which is an additional barrier
for setting properly the system. This situation leads to a Few-Shot Learning (FSL) scenario.
AI algorithms have shown outstanding results when trained with a large number of samples
per class, however, their performance is severely degraded when they are trained with just a
few samples, e.g. 4. This second problem is also addressed in this thesis, proposing a solution
aimed at tackling jointly the FSL and OSR problems.

Finally, another restriction appearing in the considered products are those arising from
the privacy restrictions of the system and the deployment over resource-constrained devices.
In this context, the data collected in a user’s home cannot leave the system and all the
processing must be done in the device itself. Moreover, since the system has to perform
other simultaneous tasks (communication with detectors, communication with APIs, etc.),
it is necessary to optimize the execution time of the algorithms without affecting their clas-
sification performance. Thus, the design of models that incorporate mechanisms that can
considerably improve the performance without adding many additional parameters is a very
desired feature.

In Chapter 2, a broad overview of the different aspects covered in this thesis has been
presented. First, several AI concepts were introduced. A generic machine listening pipeline
oriented towards the development of commercial products has been presented, as well as the
well-established DCASE framework (a challenge/workshop used as a backbone to analyze the
interest of the community on machine listening technologies). Finally, the specific problems
addressed in this thesis have been discussed, namely, OSR, FSL, low-complexity models and
end-to-end solutions.

The contributions made in this thesis, enumerated for each article that makes up the
compendium, have been summarized in Chapter 3, whereas the conclusions of each of these
articles are summarized and explained below.

Annex A analyzed the performance of residual block designs employing squeeze-excitation
techniques, proposing novel alternatives in this context. It was shown that these blocks are
able to improve the performance of the system with respect to the use of purely residual
blocks. The performance was analyzed in terms of global and class-wise accuracy, using Mc-
Nemar’s test for assessing the statistical significance of the results. It is concluded that slight
modifications to the configuration of the network, in this case by creating residual blocks
including squeeze-excitation, can improve the global performance without the addition of a
large number of extra parameters.

The problems of FSL and OSR were addressed in Annex B. To mitigate both problems
at the same time, a two-step learning framework was proposed that makes use of a convolu-
tional autoencoder and a multi-layer perceptron. The goal of the autoencoder is the creation
of robust embeddings corresponding to the known classes and the goal of the classifier is to
recognize if an embedding belongs to a class to be classified or not. Two different configu-
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rations of autoencoders were analyzed: unsupervised and semi-supervised. Several scenarios
considering different degrees of openness and different number of shots are compared with a
baseline based on transfer learning. The results show that the proposed framework is capable
of classifying and rejecting known and unknown classes trained with few samples. In most
cases, our proposal improves the performance of the baseline and, in turn, the semi-supervised
configuration shows better metrics than the unsupervised one.

Annex C considered the use of end-to-end frameworks for audio event classification.
Since end-to-end residual networks are known to be successful in the image domain, we
analyzed the performance of residual block alternatives in the context of end-to-end audio
classification. The study considered two different datasets and waveform input normaliza-
tions. The results showed that special considerations should be taken when working with
raw audio data in the design of end-to-end residual networks, as the best performing blocks
in the image domain are not generally the best for audio data. In addition, it was shown
how the pre-processing that can be applied to the audio data may be relevant in some cases,
as significantly different results are obtained even when the same network architecture is used.

In summary, the contributions proposed in this thesis show solutions that mitigate the
problems present in machine listening products deployed in real scenarios. First, it has
been shown how incorporating slight modifications to deep neural network architectures
(e.g. squeeze-excitation) can lead to improve classification performance. Then, the power
of autoencoder-based architectures for generating robust embeddings to address the FSL and
OSR problems has been discussed. Finally, the potential of end-to-end audio solutions has
been analyzed, showing that suitably designed residual blocks can lead to improved perfor-
mance over well-established configurations widely used in the image domain.

4.1 Further work

This thesis has addressed some problems that are very present in machine listening solutions
in commercial products such as home assistants. However, despite the research results were
satisfactory, they indicate that there is work to be done in these areas. Future lines of research
would include:

• One-shot learning: our results confirmed that the improvement in accuracy for sys-
tems trained on very few samples are very dependent on the actual number of instances
used in the learning stage. Despite satisfactory results were obtained with only 4 sam-
ples, the ideal case would be to achieve good results with only one sample required from
the user. Surely, some prior knowledge would be necessary in such case, and further re-
search should be done on how to incorporate priors effectively into the learning process
when the system must learn from just a single sample.

• OSR robustness: although the rejection rate of the system is acceptable for unknown
samples, there is a certain predisposition of the system to classify known samples as
unknown as the system has fewer samples per known class. In parallel with the previous
point, it should be investigated how to make systems robust to false negatives when
the number of shots decreases.

• Robustness to incorrect segmentation: the proposed OSR-FSL system has been
analyzed with correctly segmented samples, that is, the start of the audio clip corre-
sponds to the start of the sound event (e.g. the fire alarm). However, it may happen
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that the segmentation process is not perfect, leading to uncorrect or weakly segmented
events [193, 194], where audio events or where the clips have a considerable temporal un-
certainty. Therefore, this possible phenomenon should be characterized and corrected,
if necessary.

• Modified convolutions: there are a variety of new convolutional blocks [84, 8, 195,
196] that present an improvement on detection or classification problems. However, they
are analyzed considering very deep neural networks. Therefore, it should be studied
whether these new blocks show these satisfactory results in the audio domain and in
low-complexity contexts.

4.2 Publications

The publications related to this thesis are presented in this section. Apart from the articles
that make up the compendium, 3 more conference papers and 5 technical reports correspond-
ing to the participation in DCASE have also been published.

Compendium Journal Articles

Publication 1:

J. Naranjo-Alcazar, S. Perez-Castanos, P. Zuccarello, and M. Cobos, “Acoustic scene classification

with squeeze-excitation residual networks”, in IEEE Access, vol. 8, pp. 112287-112296, June

2020. (doi: 10.1109/ACCESS.2020.3002761)

Publication 2:

J. Naranjo-Alcazar, S. Perez-Castanos, P. Zuccarello, F. Antonacci, and M. Cobos, “Open set audio

classification using autoencoders trained on few data”, in Sensors, vol. 20, no. 13, pp. 3741,

July 2020. (doi: https://doi.org/10.3390/s20133741)

Publication 3:

J. Naranjo-Alcazar, S. Perez-Castanos, I. Mart́ın-Morató, P. Zuccarello, F. J. Ferri, and M. Co-

bos, “A Comparative Analysis of Residual Block Alternatives for End-to-End Audio

Classification”, in IEEE Access, vol. 8, pp. 188875-188882, October 2020. (doi: 10.1109/AC-

CESS.2020.3031685)

Journal Articles Under Review

Publication Under Review:

J. Naranjo-Alcazar, S. Perez-Castanos, P. Zuccarello and M. Cobos, “An Open-Set Recognition
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using a” siamese” time delay neural network. In Advances in neural information processing systems,

pages 737–744, 1994.

[161] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant

mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR’06), volume 2, pages 1735–1742. IEEE, 2006.

[162] Carlos N Silla Jr, Celso AA Kaestner, and Alessandro L Koerich. Automatic music genre classification

using ensemble of classifiers. In 2007 IEEE International Conference on Systems, Man and Cybernetics,

pages 1687–1692. IEEE, 2007.

[163] Yuma Sakashita and Masaki Aono. Acoustic scene classification by ensemble of spectrograms based on

adaptive temporal divisions. IEEE AASP Challenge on DCASE 2018 technical reports, 2018.

[164] Rohith Mars, Pranay Pratik, Srikanth Nagisetty, and Chongsoon Lim. Acoustic scene classification from

binaural signals using convolutional neural networks. In Proceedings of the Detection and Classification

of Acoustic Scenes and Events 2019 Workshop (DCASE2019), pages 149–153, New York University,

NY, USA, October 2019.

[165] Jaehun Kim and Kyogu Lee. Empirical study on ensemble method of deep neural networks for acoustic

scene classification. Proc. of IEEE AASP Challenge on Detection and Classification of Acoustic Scenes

and Events (DCASE), 2016.



62 BIBLIOGRAPHY

[166] Jonathan Huang, Hong Lu, Paulo Lopez Meyer, Hector Cordourier, and Juan Del Hoyo Ontiveros.

Acoustic scene classification using deep learning-based ensemble averaging. In Proceedings of the De-

tection and Classification of Acoustic Scenes and Events 2019 Workshop (DCASE2019), pages 94–98,

New York University, NY, USA, October 2019.

[167] Wootaek Lim, Sangwon Suh, and Youngho Jeong. Weakly labeled semi-supervised sound event detection

using crnn with inception module. In Proc. Detection and Classification of Acoustic Scenes and Events

Workshop (DCASE), pages 74–77, 2018.

[168] Sergi Perez-Castanos, Javier Naranjo-Alcazar, Pedro Zuccarello, Maximo Cobos, and Frances J Ferri.

Cnn depth analysis with different channel inputs for acoustic scene classification. arXiv preprint

arXiv:1906.04591, 2019.

[169] Hyeji Seo, Jihwan Park, and Yongjin Park. Acoustic scene classification using various pre-processed

features and convolutional neural networks. In Proceedings of the Detection and Classification of Acoustic

Scenes and Events Workshop (DCASE), New York, NY, USA, pages 25–26, 2019.

[170] Octave Mariotti, Matthieu Cord, and Olivier Schwander. Exploring deep vision models for acoustic

scene classification. Proc. DCASE, pages 103–107, 2018.

[171] Stanley Smith Stevens, John Volkmann, and Edwin B Newman. A scale for the measurement of the

psychological magnitude pitch. The Journal of the Acoustical Society of America, 8(3):185–190, 1937.

[172] Derry Fitzgerald. Harmonic/percussive separation using median filtering. In Proc. of DAFX, volume 10,

2010.

[173] Jonathan Driedger, Meinard Müller, and Sascha Disch. Extending harmonic-percussive separation of

audio signals. In ISMIR, pages 611–616, 2014.

[174] Logan Ford, Hao Tang, François Grondin, and James R Glass. A deep residual network for large-scale

acoustic scene analysis. In INTERSPEECH, pages 2568–2572, 2019.

[175] Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles of

relatively shallow networks. In Advances in neural information processing systems, pages 550–558,

2016.

[176] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 7132–7141, 2018.

[177] Abhijit Guha Roy, Nassir Navab, and Christian Wachinger. Concurrent spatial and channel ‘squeeze &

excitation’in fully convolutional networks. In International conference on medical image computing and

computer-assisted intervention, pages 421–429. Springer, 2018.

[178] Liping Yang, Xinxing Chen, Lianjie Tao, and Xiaohua Gu. Multi-scale fusion and channel weighted

cnn for acoustic scene classification. In Proceedings of the 2019 2nd International Conference on Signal

Processing and Machine Learning, pages 41–45, 2019.

[179] Jongpil Lee, Taejun Kim, Jiyoung Park, and Juhan Nam. Raw waveform-based audio classification

using sample-level cnn architectures. arXiv preprint arXiv:1712.00866, 2017.

[180] Osamu Akiyama and Junya Sato. Multitask learning and semisupervised learning with noisy data for

audio tagging. DCASE2019 Challenge, 2019.

[181] Maximilian Schmitt and Björn Schuller. End-to-end audio classification with small datasets–making it

work. In 2019 27th European Signal Processing Conference (EUSIPCO), pages 1–5. IEEE, 2019.



BIBLIOGRAPHY 63

[182] Jonathan J Huang and Juan Jose Alvarado Leanos. Aclnet: efficient end-to-end audio classification cnn.

arXiv preprint arXiv:1811.06669, 2018.

[183] Jordi Pons, Oriol Nieto, Matthew Prockup, Erik Schmidt, Andreas Ehmann, and Xavier Serra. End-to-

end learning for music audio tagging at scale. arXiv preprint arXiv:1711.02520, 2017.

[184] Sander Dieleman and Benjamin Schrauwen. End-to-end learning for music audio. In 2014 IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 6964–6968. IEEE,

2014.

[185] Yuan Gong and Christian Poellabauer. How do deep convolutional neural networks learn from raw audio

waveforms? 2018.

[186] Jiaxu Chen, Jing Hao, Kai Chen, Di Xie, Shicai Yang, and Shiliang Pu. An end-to-end audio classification

system based on raw waveforms and mix-training strategy. arXiv preprint arXiv:1911.09349, 2019.

[187] Javier Naranjo-Alcazar, Sergi Perez-Castanos, Pedro Zuccarrello, and Maximo Cobos. An open-set

recognition and few-shot learning dataset for audio event classification in domestic environments. arXiv

preprint arXiv:2002.11561, 2020.

[188] Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen. Acoustic scene classification in dcase 2019

challenge: Closed and open set classification and data mismatch setups. In Proceedings of the Detection

and Classification of Acoustic Scenes and Events 2019 Workshop (DCASE2019), pages 164–168, New

York University, NY, USA, October 2019.

[189] Paul Primus, Hamid Eghbal-zadeh, David Eitelsebner, Khaled Koutini, Andreas Arzt, and Gerhard

Widmer. Exploiting parallel audio recordings to enforce device invariance in cnn-based acoustic scene

classification. In Proceedings of the Detection and Classification of Acoustic Scenes and Events 2019

Workshop (DCASE2019), pages 204–208, New York University, NY, USA, October 2019.

[190] Truc Nguyen and Franz Pernkopf. Acoustic scene classification with mismatched recording devices using

mixture of experts layer. In 2019 IEEE International Conference on Multimedia and Expo (ICME), pages

1666–1671. IEEE, 2019.

[191] Truc Nguyen and Franz Pernkopf. Acoustic scene classification with mismatched devices using cliquenets

and mixup data augmentation. In Interspeech, pages 2330–2334, 2019.

[192] Seongkyu Mun and Suwon Shon. Domain mismatch robust acoustic scene classification using channel

information conversion. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 845–849. IEEE, 2019.

[193] Irene Martin-Morato, Maximo Cobos, and Francesc J Ferri. Adaptive mid-term representations for

robust audio event classification. IEEE/ACM Transactions on Audio, Speech, and Language Processing,

26(12):2381–2392, 2018.
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ABSTRACT Acoustic scene classification (ASC) is a problem related to the field of machine listening
whose objective is to classify/tag an audio clip in a predefined label describing a scene location (e. g. park,
airport, etc.). Many state-of-the-art solutions to ASC incorporate data augmentation techniques and model
ensembles. However, considerable improvements can also be achieved only by modifying the architecture
of convolutional neural networks (CNNs). In this work we propose two novel squeeze-excitation blocks
to improve the accuracy of a CNN-based ASC framework based on residual learning. The main idea of
squeeze-excitation blocks is to learn spatial and channel-wise feature maps independently instead of jointly
as standard CNNs do. This is usually achieved by combining some global grouping operators, linear operators
and a final calibration between the input of the block and its learned relationships. The behavior of the block
that implements such operators and, therefore, the entire neural network, can be modified depending on the
input to the block, the established residual configurations and the selected non-linear activations. The analysis
has been carried out using the TAU Urban Acoustic Scenes 2019 dataset presented in the 2019 edition of
the Detection and Classification of Acoustic Scenes and Events (DCASE) challenge. All configurations
discussed in this document exceed the performance of the baseline proposed by the DCASE organization
by 13% percentage points. In turn, the novel configurations proposed in this paper outperform the residual
configurations proposed in previous works.

INDEX TERMS Acoustic scene classification, deep learning, machine listening, pattern recognition,
squeeze-excitation.

I. INTRODUCTION
The analysis of everyday ambient sounds can be very use-
ful when developing intelligent systems in applications such
as domestic assistants, surveillance systems or autonomous
driving. Acoustic scene classification (ASC) is one of the
most typical problems related to machine listening [1]–[4].
Machine listening is understood as the field of artificial intel-
ligence that attempts to create intelligent algorithms capa-
ble of extracting meaningful information from audio data.

The associate editor coordinating the review of this manuscript and

approving it for publication was Shiqing Zhang .

Therefore, ASC can be defined as the area of machine listen-
ing that attempts to tag an audio clip in one of the predefined
tags related to the description of a scene (for example, airport,
park, subway, etc.).

The first approaches to the ASC problem were centered
on the design of proper inputs to the classifier, this is, fea-
ture engineering [5]. Most research efforts tried to create
meaningful representations of the audio data to later feed
gaussian mixture models (GMMs), hidden Markov mod-
els (HMM) or support vector machines (SVMs) [6]. In this
context, a wide range of input representations were proposed
such asMel-frequency cepstral coefficients (MFCCs) [7], [8],
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Wavelets [8], constant-Q transform (CQT) or histograms of
oriented gradientes (HOG) [9], among others.

With the years and the emergence of convolutional net-
works in the field of image and computer vision, CNNs have
become a preferred option for the design of machine listening
systems, usually fed with a 2D audio representation such as
log-Mel spectrograms [1], [10]. These networks have shown
very satisfactory results, especially when they are trained on
large datasets. This is why data augmentation techniques are
commonly applied, such as mixup strategies [11] or temporal
cropping [12]. In addition, to improve the final accuracy,
many studies use ensembles, combining the output from dif-
ferent classifiers to obtain a single more robust prediction.
Unfortunately, the use of ensembles makes it more difficult
to analyze the contribution to the classification performance
of a new CNN architecture integrated within the proposed
ensemble. To avoid such issue, this work considers isolated
contributions of several CNN architectures implemented with
different residual blocks based on squeeze-excitation, with-
out any extra modifications during the training or inference
phases.

CNNs are built with stacked convolutional layers. These
layers learn its filter coefficients by capturing local spatial
relationships (neighbourhood information) along the input
channels and generate features maps (filtered inputs) by
jointly encoding the spatial and channel information. In all
application domains (image classification/segmentation,
audio classification/tagging, etc.), the idea of encoding
the spatial and the channel information independently
has been less studied, despite having shown promising
results [13], [14].

In order to provide insight about the behaviour of CNNs
when analyzing spatial and channel information indepen-
dently, several squeeze-excitation (SE) blocks have been pre-
sented in the image classification literature [13], [14]. In [14],
a block that ‘‘squeezes’’ spatially and ‘‘excites’’ channel-wise
with linear relationships was presented. The idea behind this
block, denoted as cSE in this work, is tomodel the interdepen-
dencies between the channels of feature maps by exciting in a
channel-wise manner. This type of block showed its effective-
ness in image classification tasks, outperforming other state-
of-the-art networks only by inserting it at a specific point
of the network. Following this idea, two more blocks were
presented in [13]. The first one, denoted as sSE, ‘‘squeezes’’
along the channels and ‘‘excites’’ spatially, whereas the last
block, scSE, combines both strategies. The scSE block recali-
brates the feature maps along spatial and channel dimensions
independently (cSE and sSE) and then combines the infor-
mation of both paths by adding their outputs. This last block
showed the most promising results in image-related tasks.
According to [13], this block forces the feature maps to be
more informative, both spatially and channel-wise.

This work analyzes the performance of conventional SE
blocks for addressing the ASC problem and proposes two
novel block configurations in this context. The new con-
figurations are intended to enhance the benefits of residual

learning and feature map recalibration in a jointly fash-
ion. This is achieved by a double short-cut connection that
enforces residual learning both with and without recalibrated
outputs. The use of SE techniques allows the network to
extract more meaningful information during training, while
residual learning facilitates the training procedure by miti-
gating vanishing gradient problems. The results show that,
by using the proposed block configurations, results are con-
siderably improved.Moreover, it is shown that all the residual
SE configurations perform better than a classical convolu-
tional residual block in the considered task.

The following of the paper is organized as follows.
Section II presents the the background for the tech-
niques used in this work in the context of ASC, namely
Squeeze-Excitation and residual learning. Section III intro-
duces the different SE blocks analyzed in this work and the
baseline CNN architecture. Section IV describes the dataset
used in the experiments, the audio pre-processing and the
training procedure of the CNN. SectionV discusses the exper-
imental results, while Section VI concludes our work.

II. BACKGROUND
This section summarizes the technical background for this
work and describes the ideas underlying SE blocks and resid-
ual networks.

A. RELATED WORK
Some previous works have shown that the use of SE mod-
ules can be a simple and effective approach to tackle audio
classification problems. In [15], a multi-scale fusion and
channel weighted CNNwas proposed within an ASC context.
The framework consists of two stages: a multi-scale feature
fusion scheme that integrates a hierarchy of semantic-features
extracted from a simplified Xception architecture, and a final
SE-based channel weighting stage. However, such work con-
siders only channel recalibration by using a cSE-like block
at a final stage, without further integration of other SE-based
calibration modules. In contrast, the configurations proposed
in this work consider both spatial and channel-wise weighting
within a residual learning framework jointly and at multiple
depths within the network architecture.

Another work using SE techniques in the audio domain
is [16], which presented a VGG-style CNN and compared
its performance with an enhanced version including residual
connections and SE modules. In contrast to the work pre-
sented in this paper, an end-to-end 1D architecture accept-
ing raw audio inputs was proposed, with cSE channel-wise
recalibration. The results over three different tasks (music
auto-tagging, speech command recognition and acoustic
event detection) confirmed the superiority of the enhanced
network.

Finally, although some technical reports could not corrob-
orate the improvements offered by SE modules over plain
residual networks in audio-oriented tasks [17], few details
were given, which motivates further the analysis carried out
in this work.
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B. SQUEEZE-EXCITATION BLOCKS
Squeeze-excitation (SE) blocks can be understood as mod-
ules for channel recalibration of feature maps [13]. Let’ s
assume an input feature map, X ∈ RH×W×C ′ , that feeds any
convolutional block, usually implemented by convolutional
layers and non-linearities, and generates an output feature
map U ∈ RH×W×C . Here, U could also be expressed as
U = [u1,u2, . . . ,uC ], being ui ∈ RH×W a channel output.
Considering this notation, H and W represents the height
and the width, while C ′ and C defines the number of input
and output channels, respectively. The convolutional process
function can be defined as F(·), so that F(X) = U. The output
U is generated by combining the spatial and channel informa-
tion of X. The objective of SE blocks is to recalibrate U with
FSE (·) to generate Û, i.e. FSE (·) : U→ Û . This recalibrated
feature map, Û, can be stacked after every convolutional
block and then used as input to the forthcoming pooling
layers. This recalibration can be carried out with different
types of block functions FSE (·), as it is next explained.

1) SPATIAL SQUEEZE AND CHANNEL EXCITATION BLOCK
(cSE)
In a cSE module (depicted in Fig. 1(a)) for spatial squeeze
and channel excitation, a unique feature map of each channel
from U is first obtained by means of global average pooling.
This operator produces a vector z ∈ R1×1×C . The kth element
of such vector can be expressed as:

zk =
1

H ×W

H∑
i

W∑
j

uk (i, j), k = 1, . . . ,C, (1)

where uk (i, j) denotes the (i, j) element of the kth channel
feature map.

As suggested by Eq. (1), global spatial information is
embedded in vector z. This representation is then used to
extract channel-wise dependencies using two fully-connected
layers, obtaining the transformed vector ẑ. Therefore, ẑ can
be expressed as ẑ = W1(δ(W2z)), where δ represents ReLU
activation. W1 ∈ RC×C

ρ and W2 ∈ R
C
ρ
×C are the weights

of the fully-connected layers, and ρ is a ratio parameter.
As last step, the activation range is compressed to the inter-
val [0, 1] using a sigmoid activation function, σ . This final
step indicates the importance of each channel and how they
should be rescaled. The purpose of this recalibration is to
let the network ignore channels with less information and
emphasize the ones that provide more meaningful informa-
tion. Then, the rescaled feature maps, Û, can be expressed
as [13], [14]:

ÛcSE = FcSE (U) = [σ (ẑ1)u1, . . . , σ (ẑC )uC ], (2)

where ẑk are the elements of the transformed vector ẑ.

2) CHANNEL SQUEEZE AND SPATIAL EXCITATION BLOCK
(sSE)
In the case of an sSE block [13], as shown in Fig. 1(b),
a unique convolutional layer with one filter and (1, 1)

FIGURE 1. Diagram of different SE blocks: (a) describes cSE block
procedure, (b) ilustrates sSE block framework and (c) shows scSE block
by combining (a) and (b).

kernel size is implemented to obtain a channel squeeze
and spatial excitation effect. Here, it is assumed an
alternative representation of the input tensor as U =

[u1,1,u1,2, . . . ,ui,j, . . . ,uH ,W ] where ui,j ∈ R1×1×C . The
convolution can be expressed as q = W ? U, being W ∈
R1×1×C×1 and q ∈ RH×W . Each qi,j represents the combi-
nation of all channels in location (i, j). As done with cSE,
the output of this convolution is passed through a sigmoid
function. Each σ (qi,j) determines the importance of the spe-
cific location (i, j) across the feature map. Like the previous
block, this recalibration process indicates which locations are
more meaningful during the training procedure. As a result,
the output of the SE block can be expressed as [13]:

ÛsSE = FsSE (U ) = [σ (q1,1)u1,1, . . . , σ (qH ,W )uH ,W ]. (3)
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3) SPATIAL AND CHANNEL SQUEEZE & EXCITATION BLOCK
(scSE)
The scSE block [13] is implemented by declaring cSE and
sSE blocks in parallel and adding both outputs (see Fig. 1(c)).
It has been reported that the scSE block shows better perfor-
mance than cSE and sSE used independently. In this case,
a location (i, j, c) gets a higher sigmoid or activation value
when both channel and spatial recalibration get it at the same
time [13]:

ÛscSE = ÛcSE + ÛsSE . (4)

In this case, the network focuses on feature maps that are
meaningful from both a spatial and channel-wise point of
view.

C. RESIDUAL NETWORKS
Residual networks were first proposed in [18]. A network
of this kind replaces the standard stacked convolutional lay-
ers [19] by residual blocks. Residual layers are designed to
approximate a residual function: F(X) := H(X)− X, where
H(·) represents the mapping to be fit by a set of stacked
layers and X represents the input to the first of such stacked
layers. The original function H can therefore be defined as
H(X) = F(X) + X. The main motivation of choosing this
kind of network corresponds to the intuition that optimizing
a residual mapping may be easier than optimizng the original
unreferenced one, as in a classical convolutional network.
A simple way of implementing residual learning in CNNs is
by adding a shortcut connection that performs as an identity
mapping, adding back the inputX to the output of the residual
block F(X). In the first proposition of the residual block,
Rectified ReLU activation is applied after the addition and
the result of such activation becomes the input for the next
residual block. Note, that in the first configuration, shortcut
connections do not add more parameters nor extra compu-
tational cost. Therefore, deeper networks can be trained with
little additional effort, reducing vanishing-gradient problems.
As it will be later explained, in this work, the identitymapping
is replaced with a 1× 1 convolutional layer as it is explained
in Section III. Therefore, this work function can be expressed
as H(X) = F(X) + g(X), where g(·) represents the convo-
lutional process with the learnt filter coefficients.

III. CONFIGURATIONS FOR SQUEEZE-AND-EXCITATION
RESIDUAL NETWORKS
According to [14], SE blocks exhibit better performance
when deployed on networks with residual configuration than
on VGG-style networks. Therefore, two novel residual blocks
implementing scSE modules are presented in this paper. The
performance of these two newly proposed blocks is com-
pared against other state-of-the-art residual configurations
that incorporate SE modules.

A. SE BLOCK DESCRIPTION
All the configurations analyzed in this work are depicted in
Fig. 2. In the following, we describe in details these blocks.

1) Conv-RESIDUAL
Shown in Fig. 2(a), is inspired by [18]. It is used as a baseline
in order to validate the network performance without any
SE and how much it can be improved when incorporating
these blocks. In the present work some slight modifications
for a more convenient implementation were introduced: the
shortcut connection was implemented with a 1 × 1 convolu-
tional layer and the activation after the addition was set to an
exponential linear unit (ELU) function [20], [21].

2) Conv-POST
Shown in Fig. 2(b), is inspired by the block referred to as se-
POST in [14]. The scSE block is included at the end and is
equivalent to a recalibration of the Conv-residual block.

3) Conv-POST-ELU
Shown in Fig. 2(c), is very similar to the above Conv-
POST block, but the recalibration is performed over the
ELU-activated output of the residual block.

4) Conv-STANDARD
Shown in Fig. 2(d), is inspired by [14], where the scSE block
is stacked after the convolutional block for recalibrating prior
to adding the shortcut branch.

5) Conv-StandardPOST
Shown in Fig. 2(e) is proposed in this work to create a double
shortcut connection, one before SE calibration and one after.
The idea is to let the network learn residual mappings simulta-
neously with and without SE recalibration, thus, affecting the
way in which the block optimizes the residual by considering
jointly standard and post SE-calibrated outputs.

6) Conv-StandardPOST-ELU
Shown in Fig. 2(f) is the other proposed block, correspond-
ing to the above explained Conv-StandardPOST block, but
followed by ELU activation.

To summarize, the output Xl+1 of each block for an input
X is given by:

a) Xl+1 = R (F(X)+ g(X))) , (5)

b) Xl+1 = FSE (F(X)+ g(X))) , (6)

c) Xl+1 = FSE (R (F(X)+ g(X)))) , (7)

d) Xl+1 = F(SE)(X)+ g(X), (8)

e) Xl+1 = FSE (R (F(X)+ g(X))))+ g(X), (9)

f) Xl+1 = R (FSE (R (F(X)+ g(X))))+ g(X)), (10)

whereR(·) refers to ELU activation function with α parame-
ter set to 1 andF(SE) denotes a residual function that includes
SE calibration. As it will be discussed in Section V, the two
proposed configurations have been shown to outperform the
rest in the considered acoustic scene analysis task.

In order to avoid possible duplications or expansion pro-
cesses in the channel dimension, the identity branch is
replaced by a convolutional layer with a (1, 1) kernel size
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FIGURE 2. Different residual squeeze-excitation blocks analyzed in this work: (a) is inspired by the first residual block proposed in [18];
(b), (c) and (d) are inspired by the work done in [14]; (e) and (f) are the two novel configurations proposed in this work.

and with the same number of filters as the residual branch.
Including such convolutional layer in the shortcut branch
creates a projection that avoids dimensionality conflicts in the
residual block addition.

By looking at Fig. 2, it can be clearly observed that
the most representative feature of the two proposed blocks,
(e) and (f), resides in the use of two skip connections:
one before SE re-calibration and one after. This double
short-cut connection leads the network towards the learn-
ing of a global residual function embedding an inner and
SE-calibrated partial residual. The objective is to facilitate the
learning of calibration weightings by using the same residual
rationale.

In general, the presence or absence of relevant acoustic
events within an input audio clip can be very impor-
tant when addressing the ASC problem. The use of spa-
tial and channel-wise recalibration at different depths of
the network adds a mechanism to allow the network
weight properly, according to their importance, the differ-
ent dimensions of the information flowing throughout the
network. Therefore, SE modules are expected to add flex-
ibility for identifying relevant acoustic textures or events,
making easier to infer the type of underlying acoustic
scene.

B. NETWORK ARCHITECTURE
The CNN implemented in order to validate the behaviour
of the different SE configurations has been inspired on [22]
where a VGG-style [19] network with 3 convolutional blocks
followed by different max-pooling and dropout [23] operators
is implemented. In the present work, the original convolu-
tional blocks have been replaced with the different residual
squeeze-excitation blocks proposed in this study. The max-
pooling, dropouts and linear layers are configured with the
same parameters as in [22]. The network architecture can be
found in Table 1.

As the database used in the current work is much smaller
than the one in [14], some of the hyperparameters that define
the components of the scSE block had to be modified. The
number of elements in the Dense layer with ReLU activation
in Fig. 1(a) has been set to 16 in the first Residual-scSE
block, the same as in [14] in its cSE block, but the number
of filters at the input, C , has been set to C = 32. Therefore,
the ratio between these parameters throughout the network is
two, as observed Table 1. The number of network parameters
that implement SE residual blocks, i.e. those represented in
Fig. 2(b)-(f), is 528,334. On the other hand, the network that
does not integrate SE modules has 506,606. Note, therefore,
that there is only a slight increase of approximately 4% in the
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TABLE 1. Proposed network for validating the scSE configurations of
Fig. 2. Values preceeded by # correspond to the number of filters. Kernel
sizes are set as indicated in Fig. 2. This architecture is inspired by the
work in [22].

SE networks. Table 2 shows as well the number of floating
point operations (FLOPs) involved in each network.

IV. EXPERIMENTAL DETAILS
This section describes in detail the experimental implemen-
tation carried out to conduct the analysis of the presented
SE residual blocks, including the datasets, the audio rep-
resentation selected to feed the network and the training
configuration.

A. DATASET
To check the behavior of these implementations in an ASC
problem, the TAU Urban Acoustic Scenes 2019, Develop-
ment dataset presented in Task 1A of the 2019 edition of
DCASE has been used [10]. The database consists of 40 hours
of stereo audio-recording in different urban environments and
landscapes such as parks, metro stations, airports, etc. making
a total of 10 different scenes. These have been recorded in
different cities such as Barcelona, Paris or Helsinki, among
others. All audio clips are 10-second long. They are divided
into two subsets of 9185 and 4185 clips for training and val-
idation, respectively. Although there are a slightly different
number of samples available for each class, the data set is not
severely unbalanced.

B. AUDIO PROCESSING
The input to the network is a 2D log-Mel spectrogram repre-
sentation with 3 audio channels. The three channels are com-
posed of the harmonic and percussive component [24], [25]
of the signal converted to mono and the difference between
left (L) and right (R) channels. That is, the first channel cor-
responds to the log-Mel spectrogram of the harmonic source,
the second channel corresponds to the same representation
but over the percussive source and the last one to the log-Mel
spectrogram of the difference between channels calculated by

TABLE 2. Parameters and FLOPs analysis from the studied network
configurations.

subtracting left and right channels (L − R). This represen-
tation, known as HPD, was presented in [22]. The log-Mel
spectrogram is calculated using 64 Mel filters with a window
size of 40 ms and 50% overlap. Therefore, an audio clip
becomes a 64×T × 3 array with T being the number of time
frames. In this specific dataset, the input audio representation
corresponds to an array of dimension 64× 500× 3.

C. TRAINING PROCEDURE
The training process was optimized using the Adam opti-
mizer [26]. The cost function used was the categori-
cal crossentropy. Training was limited to a maximum
of 500 epochs but early stopping is applied if the validation
accuracy does not improve by 50 epochs. If this same metric
does not improve in 20 epochs, the learning rate is decreased
by a factor of 0.5. The batch size used was 32 samples.

V. RESULTS
In order to analyze the contributions of this work with respect
to other state-of-the-art approaches, the results obtained with
the different configurations presented in this work (see Fig. 2)
are compared to the ones obtained by different authors in Task
1A ofDCASE 2019 using the same dataset. For a fair compar-
ison, only submissions not making use of data augmentation
techniques are considered. In the case of submissions that
presented an ensemble of several models, only the results of
the best performing model making up the ensemble are taken
into account. For example, in [27] a global development
accuracy of 78.3% is reported, but that value was obtained
by averaging 5 models. The best individual model obtained
72.4%, so this is the value presented in Table 3. This said,
please be aware that the accuracy of the final submission1

may differ from that presented in Table 3. Next, we summa-
rize some important features of the competing approaches.

• Wang_NWPU_task1a [27]: the audio representation
considers two channels using a log-Mel Spectrogram
from harmonic and percussive sources similar to our
representation. The number of Mel filters is set to 256.
The window size is set to 64 ms and the hop size
to 15 ms. Mel filters are calculated with cutoff frequen-
cies from 50 Hz to 14 kHz. A VGG-style CNN [19] is
used as a classifier.

1http://dcase.community/challenge2019/task-acoustic-scene-
classification-results-a
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TABLE 3. Accuracy results from the validation partition in development
phase.

• Fmta91_KNToosi_task1a [28]: wavelet scattering
spectral features are extracted from the mono audio
signal. A random subspace method is used as classifier.

• MaLiu_BIT_task1a [29]: Deep Scattering Spectra fea-
tures (DSS) are extracted from each stereo channel.
Classification is performed with a Convolutional Recur-
rent Neural Network (CRNN). For this network, Table 3
does not report the accuracy on the development set
(only on the evaluation set). This is because of some
mismatch reported by the authors in the validation pro-
cedure with the configuration of the dataset.

• DSPLAB_TJU_task1a [30]: this submission
approaches the problem in a more classical way extract-
ing audio statistical features such as ZRC, RMSE, spec-
trogram centroid, etc. A GMM is used as a classifier.

• Kong_SURREY_task1a [31]: this submssion can be
defined as the state-of-the-art framework in ASC prob-
lem. The audio representation considers also the log-Mel
spectrogram. The classifier is a VGG-based [19] CNN.
This network is a fully convolutional network with
no linear layers implemented. The feature maps are
reshaped into a one dimensional vector using a global
average pooling before the decision layer.

• Liang_HUST_task1a [32]: in this method, the log-Mel
spectrogram is first extracted after converting the audio
signal to mono. Interestingly, the log-Mel spectrogram
is divided into two-seconds spectrograms, that means
that spectrogram shapes change from [F × T × 1] to
[F× (T/5)×1]. This configuration allows training with
audio samples consisting of 5 different spectrograms
instead of one. A CNN with frequency attention mecha-
nism is implemented as classifier. For more detail of the
attention implementation, see [32].

• Salvati_DMIF_task1a [33]: unlike the other submis-
sions, this one works directly on the audio vector.

To this end, a 1D convolutional network is implemented.
Although some recent efforts have been made in this
direction [34], the state-of-the-art literature shows that
2D audio representations, such as spectrograms, still
obtain the better classification results [35].

• DCASE baseline [10]: the audio is first converted to
mono and a log-Mel spectrogram is extracted. In this
case, only 40 Mel bins are calculated instead of 64,
which is the typical state-of-the-art choice. A CNN is
used as a classifier with 2 convolutional layers. The 1D
conversion before classification layers is performed by a
flatten layer. A dense layer is stacked before the decision
layer.

A. GLOBAL PERFORMANCE
Although the results of the DCASE challenge only report
the mean accuracy value, we consider 10 runs to provide
not only the mean accuracy value, but also the standard
deviation. As it can be seen in Table 3, all the configurations
detailed in Fig. 2 obtain better accuracy than the DCASE
baseline. The contribution of the scSE block is easily justified
as Conv-Residual gets the lowest performance among the
studied configurations. In general,POST configurations show
a slight improvement compared to the Standard configura-
tion. This behaviour differs from what was reported in the
original paper, [14], in which these blocks were analyzed
in the image domain, where the Standard block outperforms
the POST block. There is no remarkable difference between
Conv-POST and Conv-POST-ELU. It is also shown that the
networks that incorporate the two novel blocks presented in
this work, the ones depicted in Figs. 2(e) and (f), exhibit the
best accuracy values. The shortcut addition at two differente
points of the residual block, this is, before and after the
scSE block, allowed the network to obtain a more precise
classification in this ASC task.

B. CLASS-WISE PERFORMANCE
Fig. 3 shows confusion matrices for each of the analyzed
residual blocks in this work. In general, the performance
across the different classes is considerably balanced. The
‘‘Public square’’ class is the one showing the worst perfor-
mance, tending to be misclassified as ‘‘Street, Pedestrian’’.
Other similar classes such as ‘‘Airport’’ and ‘‘Shoppingmall’’
or ‘‘Tram’’ and ‘‘Bus’’ or ‘‘Metro’’ tend also to produce
common errors in the analyzed networks.

By analyzing the class-wise performance of the two pro-
posed blocks with respect to the conventional Conv-Residual
block, substantial improvements are observed. Consider-
ing the proposed Conv-StandardPOST block, a significant
improvement is observed for the classes ‘‘Metro station’’ and
‘‘Street, Pedestrian’’. Other classes showing slight improve-
ments are ‘‘Shopping mall’’, ‘‘Park’’ or ‘‘Public square’’. The
class showing the worst relative result was ‘‘Airport’’. On the
other hand, the second proposed block Conv-StandardPOST-
ELU provides substantial improvements in ‘‘Street traffic’’
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FIGURE 3. Confusion matrices for the generated models over the evaluation dataset.

and ‘‘Park’’, but other classes like ‘‘Airport’’ or ‘‘Bus’’ were
degraded.

Finally, when considering the performance of networks
implementing SE blocks together, from a general perspective,
it is noticed that classes like ‘‘Street, Pedestrian’’, ‘‘Park’’
or ‘‘Public square’’ are improved with respect to the con-
ventional residual network. Only the class ‘‘Airport’’ shows
the best performance in the conventional network, followed
by ‘‘Bus’’. The remaining classes are improved or worsened
across all configurations in a degree not as significant as the
aforementioned ones.

C. SIGNIFICANCE TEST
To determine if there are statistically significant differences
in the performance of the different blocks analyzed in this
work, a McNemar’s test has been carried out [36]. This test,
which is a paired non-parametric hypothesis test, has been
widely recommended for evaluating deep learning models,
which are often trained on very large datasets. The test is
based on a contingency table created from the results obtained
for two methods trained on exactly the same training test and
evaluated on the same test set. The null hypothesis of the test
is that the performance of the two analyzed systems disagree
to the same amount. If the null hypothesis is rejected, there
is evidence to suggest that the two systems have different

FIGURE 4. Pairwise analysis of the studied residual networks using
McNemar’s test. Gray cells indicate p-values below a 0.05 significance
level.

performance when trained on a particular training set. Given
a significance level α, if p < α, there may be sufficient
evidence to claim that the two classifiers show different
proportions of errors. The result of applying the McNemar’s
test to all the available system pairs is shown in Fig. 4.
Gray cells indicate p-values below a significance level of
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0.05. It is confirmed that the two proposed blocks, Conv-
StandardPOST and Conv-StandardPOST-ELU, show signif-
icant differences in performance with respect to all the other
blocks but Conv-POST, which was the third best performing
block. However, no significant differences can be observed
between these new blocks, which only differ in the final ELU
activation.

VI. CONCLUSION
The use of squeeze-excitation blocks in convolutional neural
networks allows to perform a spatial and channel-wise recal-
ibration of its inner feature maps. This work presented the
use of squeeze-excitation residual networks for addressing
the acoustic scene classification problem, and presented two
novel block configurations that consider residual learning
of standard and recalibrated outputs jointly. Results over
the well-known DCASE dataset confirm that the proposed
blocks provide meaningful improvements by adding a slight
architecture modification, outperforming other competing
approaches when no data augmentation or model ensembles
are considered.
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Abstract: Open-set recognition (OSR) is a challenging machine learning problem that appears when
classifiers are faced with test instances from classes not seen during training. It can be summarized
as the problem of correctly identifying instances from a known class (seen during training) while
rejecting any unknown or unwanted samples (those belonging to unseen classes). Another problem
arising in practical scenarios is few-shot learning (FSL), which appears when there is no availability
of a large number of positive samples for training a recognition system. Taking these two limitations
into account, a new dataset for OSR and FSL for audio data was recently released to promote research
on solutions aimed at addressing both limitations. This paper proposes an audio OSR/FSL system
divided into three steps: a high-level audio representation, feature embedding using two different
autoencoder architectures and a multi-layer perceptron (MLP) trained on latent space representations
to detect known classes and reject unwanted ones. An extensive set of experiments is carried
out considering multiple combinations of openness factors (OSR condition) and number of shots
(FSL condition), showing the validity of the proposed approach and confirming superior performance
with respect to a baseline system based on transfer learning.

Keywords: open set recognition; open set classification; audio classification; autoencoders;
few-shot learning

1. Introduction

Machine listening is the branch of artificial intelligence that aims to create intelligent systems
that are capable of extracting relevant information from audio data. Acoustic event classification
(AEC) and acoustic scene classification (ASC) are two areas that have grown significantly in the last
years [1–4], often included within the machine listening field. The increase in research proposals related
to these areas is motivated by the number of applications that can benefit from automation systems
incorporating audio-based solutions, such as home assistants or autonomous driving. This interest is
also evidenced by the multiple editions of the successful international DCASE challenge (Detection
and Classification of Acoustic Scenes and Events). From its very first edition in 2013 [5], different ASC
and AEC tasks have been presented during the past years (2013, 2016, 2017 and 2018). In fact, the 2019
edition incorporated an open-set recognition (OSR) task within the scope of ASC, where the idea was
to classify an audio clip to a known scene type or to reject it when it belonged to an unknown scene.

In general terms, OSR is a problem that appears when an intelligent system has to classify
(in inference stage) a sample from an unknown class, i.e., a class that has not been seen during training.
The complexity of the OSR problem can be quantified by using the openness factor (O∗) presented
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in [6], which measures the relationship between the number of classes seen during training and the
number of classes seen during the inference stage only. The objective of a system that is deployed
to face an OSR environment is to classify correctly the samples that belong to classes that have been
seen during training, while properly rejecting samples from unknown classes. The most popular
solutions aimed at solving OSR problems make use of classic machine learning algorithms such as
support vector machines [7] or nearest neighbors [8]. In this context, deep learning solutions are not so
common in this problem, showing the need for further investigation in this direction [9,10].

Few-shot learning (FSL) is another phenomenon related to real-world applications that aims to
detect a specific pattern or class with little amount of data for training the classification system,
i.e., using few examples per class. FSL has been widely investigated in face recognition tasks.
However, contributions in the audio domain are not so common and are mostly related to music fraud
detection [11] or speaker identification [12,13]. A main feature of FSL has to do with the “intra-class”
behavior of coarse categories. As an example, assume that a general class “bell” groups samples from
different types of bells. The goal of FSL would be to discern among the different bell types, even if
all of them can be categorized into a general “bell” class. Two different approaches can be followed
to tackle FSL. On the one hand, the transfer learning (TL) approach [14] tries to solve the problem of
having only few samples by using prior knowledge. This prior-knowledge is usually represented by
the use of a neural network pre-trained on external data that is employed as a feature extractor [15].
The other approach lies on novel neural network architectures such as Siamese [16,17], facenet (trained
with triplets) [18,19] or on classical networks trained with novel loss functions such as ring loss [20]
or center loss [21]. The main problem with these networks is that a relatively large amount of data is
required to properly generalize FSL tasks, i.e., the need to consider many different classes even if only
few samples are available per each class.

Recently, a dataset that takes into account both limitations (OSR and FSL) has been made public
by the authors [22]. This dataset is composed by two coarse classes: pattern and unwanted sounds.
The pattern sounds class is made up of 24 subclasses. These subclasses correspond to specific patterns
of different domestic alarms such as bells or fire alarms. Therefore, all these 24 subclasses can be
considered as a coarse, more general, “domestic alarm” class, but providing intra-class differentiation
within it. On the other hand, the unwanted sounds are grouped into 10 different subclasses with more
general and likely to appear domestic sounds, such as keyboard tapping, cough or music among others.
These samples must be rejected by an OSR classification algorithm. All these subclasses, either pattern
and unwanted, contain 40 samples. The dataset is provided with different configurations depending
on the openness factor or the number of shots. In turn, these configurations are divided into different
k-fold configurations depending on the number of training examples to facilitate the analysis of the
generalization of the proposed solutions.

This paper proposes a novel deep learning approach to tackle OSR and FSL problems within
an AEC context, based on a combined two-stage method. As a first step, an embedded or
bottleneck representation from the audio log-Mel spectrogram is obtained by means of an autoencoder
architecture. Once the autoencoder is trained, the bottleneck representation is used to train a simple
multi-layer perceptron (MLP) classifier with sigmoid activation for OSR classification. The autoencoder
part aims at solving the FSL limitation, while the MLP classifier mitigates the OSR problem.
Moreover, two autoencoder alternatives are suggested within the considered framework, considering
both semi-supervised and unsupervised training. Thus, the contributions of this paper reside on the
proposal of a full framework for AEC OSR/FSL tasks, the analysis of this framework in different
OSR/FSL conditions (different openness values and number of training samples) and the comparison
with the baseline method presented in the dataset release [22], showing significant improvement
without the need to use prior knowledge from external data.

The rest of the paper is organized as follows. The required background describing OSR openness
and autoencoders can be found in Section 2. The proposed system and its different parts are presented
in Section 3. The experimental details, including datasets and parameter configuration are described
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in Section 4, while the results are discussed in Section 5. Finally, conclusions and future work are
summarized in Section 6.

2. Background

This section reviews the background and previous works related to the proposed framework,
including FSL, OSR and the use of autoencoders in audio-related tasks.

2.1. Few-Shot Learning

Few-shot learning (FSL) is the problem that appears in machine learning applications when
a small amount of data is provided per class. In fact, machine learning techniques have become
state-of-the-art solutions in many domains due to the huge data sets available.

The FSL limitation can be addressed in three different strategies according to [23].
The three possible approaches are: modifying the available data (increasing the training data),
choosing a particular model with FSL considerations during the training and testing stages or using
prior knowledge solutions. In this work, FSL was approached by the creation of a specific model
making use of autoencoders. Within the strategy of creating specific models for FSL there are, in turn,
different approximations. In our particular case, the use of autoencoders represents a solution based
on embedding learning, that is, a model that is capable of discovering important structure within
the input data by forcing a reduction of dimensionality. For a complete review of FSL approaches,
the reader is referred to [23].

One of the first appearances of an architecture to solve an FSL task with an embedding learning
approach was in signature recognition. The proposed architecture is known as the Siamese network [16].
The main feature of a framework based on Siamese networks is that it instances two networks having
the same architecture and tied weights, forcing the network to learn the similarities between the two
inputs. The purpose of this framework is to train a network that is able to embed the inputs into
a domain having lower dimensionality in a smart way. That means that if the two entries are very
similar, the embeddings must be similar. Once the network is trained, two entries are passed through
the network and a measurement metric is calculated to determine if both entries are in the same class.

Triplet networks appeared as a modification of Siamese networks [18]. In a similar way,
the framework is created by instantiating three networks with tied weights. In each step, the network
is fed with one example called anchor, one positive and one negative. The positive sample has
to belong to the same class as the anchor and the negative one to a different class. In both cases
(Siamese or triplet networks), the selection of pairs or triplets is crucial for an efficient training process.

A different approach to address the FSL issue is to modify the network loss function to emphasize
the distance between classes in the feature map space during training [24]. Some examples are ring
loss [20], center loss [21] or prototypical networks [25]. Ring loss and center loss can be understood
as a modified softmax that tries to obtain more discriminative features with a modification during
loss calculation. The objective of prototypical networks is to obtain a cluster center for each class.
During the inference stage, the classification is carried out by using the distances to each center.

The above solutions have shown promising results in the field of image and computer vision.
Note, however, that although there are few samples per class, the datasets are considerably large.
For example, in [26], there are about 13,500 examples in total. This number of examples might be
enough to train the above kind of solutions. However, as far as this group is concerned, in the
audio domain, there are not FSL datasets with such amount of data. As a result, the proposed
autoencoder-based approach accommodates better the scenario considered in this work.

2.2. Open-Set Recognition

In realistic scenarios there is usually an incomplete knowledge of all the possible surrounding
classes at the time of training, and a trained classifier may face unknown classes during testing.
As a result, algorithms need to accurately classify the known classes, but also to deal effectively with
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the unknown ones. OSR approaches are designed to do both things properly. When dealing with
OSR problems, certain considerations should be kept in mind when defining which classes are to be
recognized and which should be rejected. The evaluation of OSR systems is based on the concept of
openness factor O∗ [6], which introduces a categorization on the classes involved in the training and
testing stages:

• Known Known (KK) classes: classes that are used in the training and validation stage and that
must be correctly classified by the system.

• Known Unknown (KU) classes: classes that are available during the training stage but must not be
categorized into the specific class they belong to. In other words, they must be rejected by the
classifier. These classes are very useful since they allow the system to make representations and
generate boundaries that can help to discern samples from the unwanted category.

• Unknown Known (UK) classes: classes for which no samples are available during training
but side-information such as semantic/attribute information is available during training.
This category is not considered in this work.

• Unknown Unknown (UU) classes: classes that are not used nor in the training nor in the validation
stage and must obviously be rejected by the classifier. The system only sees these classes in the
test stage.

According to [27], the openness factor is defined as

O∗ = 1−
√

2× TTR
TTR + TTE

, (1)

where TTR corresponds to the total number of classes used in the training stage (either KK or KU) and
TTE corresponds to the number of classes used in inference stage. When O∗ = 0, TTR = TTE, meaning
that there is no UU class. On the other hand, when TTE becomes larger and TTE > TTR, O∗ −→ 1,
leading to a more complex OSR task. Note that, by definition, the openness factor is bounded to the
range 0 ≤ O∗ < 1.

Different approaches have been taken to address the issue of OSR, either with discriminative
models or generative models. Traditional machine learning frameworks have been used as enhanced
discriminatory models, such as those based on SVM solutions, including the Weibull-calibrated SVM
(W-SVM) [28] or PI-SVM [29]. Other approaches based on classic techniques are those based on sparse
representation (SROSR) [30]. As reported in the original paper, the training set must be large enough to
cover the conditions that may be present in the test stage. Distance-based methods with modifications
have also been proposed [8,27,31,32].

With regard to deep-learning-based solutions, there is the problem of their original close-set nature.
The first approach to create deep neural networks of open-set nature was to replace the commonly
used final Softmax layer with an OpenMax layer [9]. Other approaches are the deep open classifier
(DOC) [33] or the competitive overcomplete output layer (COOL) [34]. More solutions provided in the
context of DNN are discussed in [27].

While all the these approaches have shown to improve classification systems in OSR conditions,
they also have their limitations [27]. One of the main problems is that the classifier is not able to
understand the whole context when dealing with unknown classes. The framework presented in this
paper relies on the latent space distribution learned by autoencoders, which is assumed to compact the
information from the training classes into a space that can be more easily handled by a subsequent
decision stage. As it will be explained in Section 3, a DNN with sigmoid activation will be used for
this task.

2.3. Autoencoders in Audio Processing Tasks

The autoencoder is a machine learning solution made up of two blocks, encoder and decoder,
whose purpose is to obtain internal representations usually with smaller dimensionality than the
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input. This process is known as encoding. For this representation to be obtained, the decoding phase
is also necessary so that the system can encode efficiently the input data. The purpose of this block
of the autoencoder is to reconstruct the input signal from the intermediate representation obtained
by the encoder. The difference between the reconstructed signal by the autoencoder and the original
input signal is known as the reconstruction error. In essence, the autoencoder tries to learn an identity
function h(x) ≈ x, which makes the output x̂ be similar to the input x. By placing constraints on the
network, such a limitation in the number of hidden units, interesting structure about the data can be
discovered. Although there are different types of autoencoders (e.g., vanilla multi-layer autoencoders,
denoising autoencoders, convolutional autoencoders or variational autoencoders) the underlying
fundamental principle is the same. For example, convolutional autoencoders are designed to encode
the input into a set of simpler signals and reconstruct the input from them. The encoder layers are in
this case convolutional layers and the decoder layers are called deconvolution or upsampling layers.

In the audio domain, autoencoders have become the state-of-the-art solution for speech
translation applications [35]. Besides, other tasks such as learning more sophisticated or universal
audio representations or anomalous sound detection currently tend to solve their limitations
using autoencoders. The following paragraphs describe some previous work in this direction,
where autoencoders are used to solve the aforementioned problems.

In [36,37], different autoencoder architectures and approaches were presented to obtain robust
audio representations that can be used in a variety of audio tasks. In [36], audio representations are
learned by addressing a phase prediction task. The autoencoder in [37] was trained in an unsupervised
way using Audioset [38], one of the largest audio datasets. In this case, the autoencoder was
implemented with convolutional layers. The experimental work is performed considering small
encoder architectures that can be potentially deployed on mobile devices.

Another interesting audio application of autoencoders is anomalous sound detection, which is
the task of identifying whether a sound corresponds to a normal (known) or abnormal (unwanted)
class [39,40]. The main challenge of this problem is to detect the anomaly having only training samples
of normal behavior. The objective can be to detect machine faults only by monitoring the sound
produced by these machines. The mean squared error obtained when reconstructing the signal can
provide information on whether the sample is normal or abnormal.

The approach presented in this work uses an autoencoder in order to obtain discriminative
intra-class audio representations. The use of autoencoders to discriminate unwanted classes has already
been suggested in the literature. For example, in [41], a solution to detect known or unwanted scenes is
presented. In this method, an autoencoder is trained for each known class and the reconstruction error
is used to decide if the class is known or not. In contrast, our proposal considers a single autoencoder
trained on all the known classes (KK) and the intermediate layer or bottleneck is used to train a MLP
to distinguish unwanted samples.

3. Proposed Approach

This section presents the proposed solution to address the problems of FSL and OSR jointly,
which consists of three blocks: a high-level 2D time-frequency audio representation, a smaller
dimensional encoding of such representation using an autoencoder and a final MLP classifier aimed at
discerning whether the input corresponds to a known class or to an unknown class. The full framework
is depicted in Figure 1.
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Figure 1. Proposed open-set recognition (OSR)/few-shot learning (FSL) framework for audio
classification. In this scheme, an unsupervised autoencoder is considered. (a) Log-Mel spectrogram
representation. (b) Autoencoder. (c) multi-layer perceptron (MLP) classifier.

3.1. Input Audio Representation

To facilitate learning from few data, the raw audio input is first transformed into a meaningful
time-frequency audio representation. A state-of-the-art choice for many audio processing tasks is the
use of log-Mel spectrograms [3,42]. This representation is calculated with a window size of 40 ms and
an 50% overlap. The number of Mel filters is set to 64. Each frequency bin is normalized to zero mean
and unit standard deviation using all the available training data.

3.2. Convolutional Autoencoder

The proposed system considers the use of a convolutional autoencoder made up of convolutional
layers. In this work, a convolutional block is understood to consist of a convolutional layer, a
batch normalization layer (BN) and a non-linear activation, in our case rectified linear units (ReLU).
This same configuration is stacked again with an increasing number of filters and ends with an
average pooling layer (2, 2) [43]. Therefore, each convolutional block (ConvBlock) is made up
of seven layers (see Figure 2). The decoder follows a symmetric structure with respect to the
encoder, that is, the number of filters in each decoding ConvBlock decreases until reaching the
last convolutional layer, which has only a single filter and is in charge of obtaining the reconstructed
input. Another consideration is that average pooling layers are replaced by upsampling layers. The
ConvBlock architecture can be seen in Figure 2. The last convolutional layer is not accompanied by a
normalization or activation layer. The only layers with linear activation are the last convolutional layer
of the decoder and the bottleneck layer that corresponds to a dense layer. This dense layer acts as a
representation of the encoded audio and is made up of 128 neurons. To prevent the autoencoder from
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learning the identity function, a dropout layer is introduced at the start of the encoder [44,45]. The
autoencoder architecture is detailed in Table 1.

3 x 3

ReLU

BN

3 x 3

ReLU

BN

X

Encoder ConvBlock

l

Xl+1

Average Pooling (2,2)

3 x 3

ReLU

BN

3 x 3

ReLU

BN

X

Decoder ConvBlock

l

Xl+1

Upsampling (2,2)

Figure 2. Architecture of the ConvBlocks for the two parts of the autoencoder. Xl denotes the input to
the block, while Xl+1 denotes the output.

Table 1. Autoencoder architecture. Values preceded by # correspond to the number of filters and values
in parenthesis correspond to kernel size.

Autoencoder Architecture

Dropout(0.1)
Enc. ConvBlock(#8, (3, 3))
Enc. ConvBlock(#16,(3, 3))
Enc. ConvBlock(#32,(3, 3))

Flatten

Bottleneck/Dense(128, ‘linear’)

Upsampling
Reshape

Dec. ConvBlock(#32,(3, 3))
Dec. ConvBlock(#16,(3, 3))
Dec. ConvBlock(#8, (3, 3))
Conv2D (#1, (3, 3), ‘linear’)

3.2.1. Unsupervised Autoencoder

Autoencoders originally appeared as a solution to unsupervised problems [46], where no
information about the class to which each sample belonged was available. Autoencoders can not be
used for supervised classification problems and audio labels are not used in this stage of the training.
The objective of the autoencoder is only to extract meaningful internal representations of each audio
independently, leading to similar audio representations for samples belonging to the same class. In this
case, the loss function during training corresponds to the mean squared error (MSE):

Lmse =
1
N

N

∑
i=1

(
Xi − X̂i

)2 (2)
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where Xi corresponds to an original log-Mel spectrogram and X̂i to the one reconstructed by the
autoencoder. Finally, N represents the number of samples in the batch.

3.2.2. Semi-Supervised Autoencoder

In order to mitigate the assumption that samples of the same class have a similar representation
and try to achieve more similar representations within the same intra-class, the autoencoder has been
modified so that it not only takes into account the reconstruction error but also the classification error.
The goal is to force the encoder to approximate representations of the same class in the feature space.
Therefore, the bottleneck layer is stacked with a classification layer, a dense layer with the number
of neurons equal to the number of KK classes. A block diagram of this architecture can be found
in Figure 3. In this case, the total loss is a weighted sum of the reconstruction error (MSE) and the
classification error, which in our case is the binary cross-entropy (BCE):

Lbce = −
1
N

N

∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)] (3)

Lss =
1
2
Lmse +

1
2
Lbce (4)

where yi corresponds to the label of the original class instance and ŷi to the predicted label. Lss is
the loss used in the semi-supervised configuration. Each partial loss is multiplied by 1/2 to use a
uniform weighting between reconstruction and classification. The choice of these weights is designed
so that the framework is purely semi-supervised. If more weight is given to the reconstruction error,
the framework will be more likely to appear to be the unsupervised system. On the other hand, if more
weight is given to the classification error, the autoencoder will be more likely to address a closed-set
classification problem and the open-set consideration will not be properly handled.

Encoder
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Figure 3. Semi-supervised autoencoder architecture.

3.3. Multi-Layer Perceptron

Once the autoencoder has been trained, a MLP is trained on the learned latent space
representations. This block will be in charge of classifying a sample if it belongs to a KK class
(pattern category) or rejecting it either if it belongs to KU or UU classes (unwanted category). The
MLP is trained with the representations that are obtained in the bottleneck layer of the autoencoder.
Each audio sample is represented by 128 features. The MLP consists of three layers. The first two
layers have 512 and 128 units respectively with ReLU activation. The last layer has as many units as
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KK classes and its activation is a sigmoid function. The output of the sigmoid is used as a likelihood
score, so that a threshold is established for deciding if a given audio sample belongs to a KK class. This
threshold is set to 0.5. If none of the outputs corresponding to the KK classes is above the threshold,
the sample will be rejected. This MLP architecture is inspired in previous works, such as [15] or the
baseline method used in [22]. This also allows for emphasizing the contribution of the proposed
autoencoders, verifying their validity in a clearer way. In this context, the baseline method proposed
in [22] uses audio embeddings obtained from the L3net network [15]. As a result, while the baseline
employs transfer learning (the method relies on prior knowledge from a pre-trained network), we
only make use of the samples available in the training dataset. Training details will be presented in
Section 4.2.

4. Materials and Methods

This section describes the experimental framework considered in this paper, including the dataset
used, the FSL/OSR conditions, the performance metrics considered or the network training details.
Note that the proposed method is intended to address both the problem of OSR and the FSL problem.
State-of-the-art solutions for such learning problems may not be suitable when both problems appear
simultaneously. Therefore, special care must be taken when comparing systems not specifically
designed to tackle both aspects.

4.1. Dataset

The dataset used to validate the framework proposed in this paper was recently presented in [22].
The dataset contains audio samples of a domestic nature to address FSL audio event recognition in an
OSR context. The data set consists of two general classes or coarse categories defined as:

• Pattern sounds category: includes all the classes that must be recognized. Samples belonging to one
of these classes must be classified as such. In our scenario, this category is made up of KK classes.

• Unwanted category: includes all the classes that should not be classified. Samples from these classes
must be rejected by the system without labeling them. In this context, the unwanted category
consists of the KU and UU classes, depending on the openness configuration.

The pattern category contains 24 classes that correspond to different domestic alarms and the
unwanted category contains 10 classes of different nature such as cough, keyboard tapping or door slam
among others. The dataset comes prepared for different openness values and different shots during
training. As can be seen from Equation (1), the openness condition is affected by the number of KK
classes to be classified or the number of unwanted classes used for training. Therefore, two approaches
are presented within the dataset. In the first approach, the system is trained to recognize the full
set of pattern classes (24 KK classes). As far as the unwanted classes are concerned, the dataset is
designed so that the system is trained using all, half or no unwanted classes, leading to the set of
openness values O∗ ∈ {0, 0.04, 0.09}, respectively. Another scenario is the creation of known trios,
i.e., only 3 classes of KK are used for training/testing. With this configuration 8 different training
trios are created. By repeating the same process with respect to the unwanted ones, the resulting
openness values are 0∗ ∈ {0, 0.13, 0.39} with this configurations. The experiments that make up the
configuration O∗ = 0.39 were not carried out because it was not possible to get a feasible solution with
such an openness factor. The number of classes used during the training and inference stages that
correspond to the openness values previously explained are specified in Table 2.

On the other hand, all these settings can be trained with different shots. The dataset was
pre-configured for 4, 2 or 1-shot training. The number of shots modifies the k-fold cross-validation.
For example, when training with 4 shots a 10-fold configuration was used, while when training with
1 shot, a 40-fold configuration was employed.
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Table 2. Number of classes of each configuration and the corresponding openness value.

Pattern Sounds KK KU UU TTR TTE O∗

Full set 24
10 0 34 34 0
5 5 29 34 0.04
0 10 24 34 0.09

Trios 3
10 0 13 13 0
5 5 8 13 0.13
0 10 3 13 0.39

4.2. Training Procedure

The training setup was very similar for the autoencoder and the MLP. The optimizer used was
Adam and the batch size was set to 32 samples. The learning rate starts with an initial value of
0.001 and decreases when the validation metric had not improved for 20 epochs by a factor of 0.75.
The training was terminated if the validation metric did not improve for 50 epochs. The final selection
corresponds to the model that had obtained a better metric in validation. The difference was the
maximum number of epochs yet for the autoencoder is 500 epochs and for the MLP is 200 epochs.
It must be here considered that when training from the scratch with few samples the system can easily
converge to different local minima depending on its initialization. Therefore, each k-fold configuration
was also repeated 5 times in order to provide insight about its statistical behavior and robustness.

4.3. Performance Metrics

The metrics used to analyze the performance of the proposed systems are presented in [22] and
summarized here for the convenience of the reader. They are based on the weighted global accuracy,
ACCw, which is computed differently depending on the value of openness.

O∗ = 0 (without UU) :

ACCw = wACCKK + (1− w)ACCKU ,
(5a)

O∗ 6= 0 (with KU and UU) :

ACCw = wACCKK + (1− w)ACCKUU ,
(5b)

O∗ 6= 0 (with only UU) :

ACCw = wACCKK + (1− w)ACCUU ,
(5c)

where w represents a factor that weights the accuracy between the accuracy obtained over KK classes
and other unwanted classes (KU or UU). ACCKK corresponds to the accuracy with which the system
correctly classifies the KK samples into their respective classes. In this case, to accept a sample as
a valid KK class, the OSR threshold (0.5) must be exceeded.

The performance metrics involving the unwanted category (ACCKU , ACCKUU or ACCUU),
indicate the ability of the system to reject samples that do not belong to any KK class. For a sample to be
considered unwanted, none of the KK classes must exceed the OSR threshold. The reason why there are
three different metrics relates to the different openness conditions O∗. When the system sees all possible
unwanted classes during training, the unwanted category only consists of KU classes. On the other
extreme, if the system does not see any unwanted samples during training, the unwanted category is
only made up of UU classes. When the system sees some of the classes pertaining to the unwanted
category, the ACCKUU metric is used, which is defined as the average of ACCKU and ACCUU .
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5. Results and Discussion

This section discusses the results obtained for the different FSL/OSR configurations considered in
the described dataset. The performance of the two proposed autoencoder-based systems is compared
to the one obtained by the dataset baseline system. More detailed information about the number of
classes used in each experiment can be seen in Table 2.

5.1. Full Set (24 KK) Performance

All the results of this configuration can be seen in Table 3. In the one-shot case, a substantial
improvement over the baseline system for all the openness cases can be observed, with our two
proposed approaches achieving a considerably higher ACCw value. The lowest improvement is of
7 percentage points (O∗ = 0.04), while the highest is almost of 30 percentage points (O∗ = 0). With
this number of shots, both the ACCKK (in all cases) or the ACCUU (in O∗ = 0.09) are greatly improved.
As observed, the baseline is very likely to classify the pattern sounds (KK classes) into the unwanted
category, except when O∗ 6= 0.09. Using autoencoders, more reliable representations are obtained for
the KK classes, resulting in improved accuracy (see ACCKK and O∗ = 0). Something similar occurs
for ACCUU , where autoencoders can get more distant representations within the latent space for
unwanted classes. All the metrics remain very similar for the unwanted category when O∗ ∈ {0, 0.04}.

The behavior is very similar when the number of training samples is 2 or 4. When O∗ ∈ {0, 0.04}
most metrics are improved to a greater or lesser extent. Only the unsupervised autoencoder shows
worse behavior on the ACCKUU metric although it improves ACCUU . However, the most significant
contribution of the proposed frameworks can be seen when O∗ = 0.09. Just like for the one-shot
case, ACCUU is clearly enhanced with this framework. In this case, the ACCUU is considerably
improved with respect to the baseline, going from 33.3% to 72.5% (semi-supervised) and 26.1% to
69.9% (unsupervised).

Another factor to be analyzed is the standard deviation. That is to say, how the generalization
of the solution is affected by the fact that few training samples are available. Depending on the
initialization of the network, the results may differ. When a large data set is available, this fact is usually
not very decisive. This is not the case in an FSL context. If the standard deviation is analyzed, it must
be done taking into account the number of shots and the corresponding openness factor. Analyzing the
KK classes, when O∗ = 0 it can be seen how the framework with the semi-supervised autoencoder has
the lowest deviation in all possible cases depending on the number of shots. The unsupervised one has
a higher standard deviation than the baseline when the number of shots is 2 or 4. This may be due to
the fact that even though it is trained with more samples of the same class, the framework is not aware
of it since it does not have such an information. Also, when O∗ 6= 0 the standard deviation of the
unsupervised is higher than the baseline if the number of shots is greater than 1. Probably, the system
is becoming more prone to false negatives as the value of openness increases. When the framework
does have information about the sample class (semi-supervised architecture), and the number of shots
is bigger than one, the standard deviation is reduced. When O∗ > 0 and the number of shots is higher
than one, the semi-supervised architecture has lower standard deviation than the baseline. This does
not happen when the number of shots is equal to one since in this case the unsupervised has the lowest
deviation. Regarding the unwanted category, it can be observed how deviations increase for all the
methods as the value of openness increases. In this case, the framework with the semi-supervised
autoencoder shows better results than the unsupervised one except for a single case with ACCUU and
O∗ = 0.04. The reduction in standard deviation is much greater as the number of shots is increased,
as seem for ACCUU when O∗ ∈ {0.04, 0.09}.
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Table 3. Final classification results (%). Baseline results correspond to the L3 approach framework presented in [22]. The bold numbers indicate winning configurations
according to the number of shots.

Openness Coefficient

Shots Framework O∗ = 0 O∗ = 0.04 O∗ = 0.09

ACCKK ACCKU ACCw ACCKK ACCKUU ACCUU ACCw ACCKK ACCUU ACCw

1
Baseline 13.8 ± 12.9 99.8 ± 1.0 56.8 57.7 ± 8.4 90.4 ± 5.4 84.8 ± 9.8 74.1 60.1 ± 7.8 39.6 ± 13.4 49.9

Unsupervised 68.8 ± 10.3 95.4 ± 3.4 82.1 76.0 ± 7.6 90.1 ± 7.6 87.6 ± 10.9 83.1 78.5 ± 7.5 70.6 ± 15.5 74.5
Semi-supervised 73.5 ± 8.8 97.4 ± 2.8 85.4 73.1 ± 10.3 90.2 ± 7.4 86.9 ± 11.1 81.7 77.2 ± 9.7 69.7 ± 10.4 73.5

2
Baseline 81.1 ± 5.5 99.4 ± 0.8 90.3 83.2 ± 4.8 90.2 ± 5.1 82.5 ± 9.6 86.7 83.3 ± 5.6 33.3 ± 11.6 58.3

Unsupervised 82.4 ± 7.2 94.6 ± 3.2 88.5 86.0 ± 5.9 88.7 ± 6.3 84.4 ± 10.0 87.3 86.3 ± 6.6 59.3 ± 14.7 72.8
Semi-supervised 90.2 ± 4.9 98.6 ± 1.8 94.4 89.9 ± 4.4 93.4 ± 6.0 90.1 ± 9.5 91.6 90.7 ± 4.5 72.5 ± 8.6 81.6

4
Baseline 94.8 ± 2.2 99.6 ± 0.4 97.2 94.3 ± 2.2 88.3 ± 5.7 79.4 ± 9.5 91.3 94.8 ± 2.4 26.1 ± 10.1 60.5

Unsupervised 91.8 ± 3.8 94.6 ± 2.3 93.2 92.4 ± 4.4 85.8 ± 7.8 80.2 ± 12.0 89.1 91.1 ± 4.9 51.4 ± 17.1 71.2
Semi-supervised 97.7 ± 1.6 99.7 ± 0.5 98.7 97.7 ± 1.5 97.0 ± 3.1 95.0 ± 5.7 97.3 97.93 ± 1.3 69.9 ± 8.7 83.9
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5.2. Trio Performance

The results obtained with this configuration are presented in Tables 4 and 5. By looking first at the
results in Table 4 (O∗ = 0), it is observed that the baseline is very prone to false negatives, i.e., it tends
to reject examples from KK classes, as derived from its low ACCKK value. In contrast, the proposed
autoencoder-based approaches improve considerably the performance in all cases, discerning more
easily KK classes from the unwanted ones.

Table 4. Results with trios configuration and O∗ = 0. The number list under the trio number
corresponds to the number of patterns that make up that trio. The bold numbers indicate winning
configurations according to the number of shots.

Framework

Trio Shots Baseline Unsupervised Semi-Supervised

ACCKK ACCKU ACCw ACCKK ACCKU ACCw ACCKK ACCKU ACCw

1 65.1 ± 16.1 99.4 ± 1.1 82.3 97.4 ± 5.4 97.4 ± 2.5 97.4 91.5 ± 10.1 97.9 ± 2.2 94.7
0 2 80.2 ± 15.0 99.6 ± 0.5 89.9 98.4 ± 3.3 98.3 ± 1.5 98.4 96.2 ± 6.8 98.2 ± 2 97.2

(1, 9, 17) 4 90.1 ± 14.5 99.7 ± 0.4 94.9 99.0 ± 2.2 98.9 ± 1.0 98.9 98.8 ± 3.7 99.4 ± 0.7 99.1

1 68.9 ± 12.9 99.9 ± 0.2 84.4 96.9 ± 6.4 96.2 ± 3.8 96.6 94.8 ± 9.3 96.8 ± 3.7 95.8
1 2 84.7 ± 16.5 99.9 ± 0.4 92.3 99.0 ± 1.3 98.5 ± 1.5 96.8 98.4 ± 3.4 98.3 ± 2.1 98.4

(10, 12, 19) 4 88.0 ± 15.6 99.9 ± 0.4 93.9 99.5 ± 0.9 98.9 ± 1.2 99.2 99.2 ± 1.8 99.4 ± 1.1 99.3

1 55.5 ± 18.6 99.9 ± 1.0 77.7 92.1 ± 8.5 97.4 ± 3.1 94.8 86.4 ± 12.2 98.4 ± 2.9 92.4
2 2 76.1 ± 14.7 99.9 ± 0.1 88.0 95.9 ± 6.7 98.6 ± 1.6 97.3 94.8 ± 6.2 99.1 ± 1.3 97.0

(2, 14, 22) 4 83.1 ± 20.7 99.9 ± 0.1 91.5 97.8 ± 2.3 98.8 ± 1 98.3 98.6 ± 2.2 99.8 ± 0.8 99.2

1 53 ± 12.1 99.9 ± 0.4 76.5 90.0 ± 11.4 94.7 ± 3.7 92.3 83.5 ± 12.2 95.2 ± 3.6 89.3
3 2 64.6 ± 16.1 99.9 ± 0.3 82.2 93.8 ± 7.2 96.8 ± 2.2 95.3 89.8 ± 10.7 96.9 ± 2.4 93.4

(3, 6, 13) 4 77.4 ± 19.0 99.8 ± 0.9 88.6 96.9 ± 5.5 97.9 ± 1.4 97.4 97.1 ± 3.9 99.0 ± 1.1 98.0

1 71.7 ± 15.2 100 ± 0 85.8 91.2 ± 9.3 96.1 ± 3.1 93.7 87.3 ± 12.2 96.3 ± 3.2 91.8
4 2 86.8 ± 14.5 100 ± 0 93.4 94.7 ± 6.3 97.8 ± 1.7 95.3 93.2 ± 8.4 97.3 ± 2.1 95.3

(4, 5, 16) 4 88.1 ± 18.6 99.9 ± 0.6 94.0 96.3 ± 4.8 98.4 ± 1.5 97.4 99.1 ± 1.9 99.2 ± 1.0 99.1

1 76.5 ± 15.2 99.9 ± 0.2 88.2 92.3 ± 9.7 98.0 ± 2.3 95.2 92.4 ± 8.5 98.5 ± 2.6 95.4
5 2 85.1 ± 15.4 99.9 ± 0.1 92.5 95.4 ± 6.8 98.8 ± 1.6 97.1 96.0 ± 5.2 99.2 ± 1.2 97.6

(18, 21, 23) 4 89.3 ± 16.4 100 ± 0.1 94.6 98.0 ± 2.6 99.3 ± 0.9 98.6 99.0 ± 1.4 99.8 ± 0.3 99.4

1 87.0 ± 13.5 99.7 ± 0.5 93.4 95.3 ± 7.2 97.0 ± 3.1 96.1 94.4 ± 7.7 97.9 ± 2.7 96.2
6 2 87.6 ± 16.0 99.6 ± 0.6 93.6 96.2 ± 4.9 97.9 ± 1.9 97.1 97.1 ± 4.3 98.8 ± 1.5 98.0

(8, 11, 24) 4 89.9 ± 14.5 99.7 ± 0.5 94.8 99.1 ± 1.9 98.8 ± 1.2 98.9 99.3 ± 1.4 99.6 ± 0.6 99.4

1 66.4 ± 15.7 99.6 ± 0.6 83.0 89.0 ± 9.7 96.3 ± 3.0 92.7 77.4 ± 14.2 97.2 ± 3.1 87.3
7 2 82.1 ± 13.7 99.5 ± 0.7 90.8 92.8 ± 6.4 97.8 ± 1.8 95.3 86.4 ± 9.2 98.2 ± 1.9 92.3

(7, 15, 20) 4 83.7 ± 15.3 99.5 ± 0.9 91.6 95.5 ± 3.9 98.8 ± 1.1 97.2 91.0 ± 7.3 99.1 ± 1.1 95.1

A similar behavior is observed when looking at the results from the first five trios (from trio 0 to 4).
The unsupervised autoencoder shows better performance than the semi-supervised autoencoder with
few samples in training. When the number of training samples is four, the semi-supervised always
shows the best result. This may reflect that using classification error in the autoencoder training may
only have a relevant effect for a sufficient number of shots. Trios 5 and 6 show better results with
the semi-supervised autoencoder, especially for two and four shots. Finally, trio 7 shows a quite
different behavior, since the unsupervised autoencoder provides the best results for any number of
shots. This may be due to the closeness in the feature space of classes 7 and 20.

Regarding the analysis of trios with O∗ = 0.13 in Table 5, we can see that the semi-supervised
autoencoder obtains better performance in most cases. In this case, where not all unwanted classes are
seen in training, semi-supervision helps to obtain more discriminative representations even with few
samples. Note, however, that in this set of experiments, the baseline obtains the best result in some
cases, like in trios 4, 6 or in all the shots of the trio 7.

Comparing the results obtained in this section with those for the full set with the 24 KK
classes, a similar behavior is observed. When O∗ = 0 the system is more prone to false negatives,
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showing lower ACCKK with O∗ = 0 than with O∗ = 0.13. On the other hand, ACCKU and ACCKUU
show worse performance with O∗ = 0.13 than with O∗ = 0.

With respect to the performance concerning unwanted classes, Table 6 presents the analysis of
ACCKUU and ACCUU for the different trio configurations. Note that the former takes into account
both unwanted classes seen in training and those that are not. The second only corresponds to the
accuracy of the unwanted classes that are only seen in the test stage. The OSR system is expected
to have good generalization properties if both are similar. Thus, a more realistic behavior would
usually result in a slightly lower metric in ACCUU . It is observed that the accuracies are a little lower
for autoencoders than for the baseline. Note, however, that this lower performance is significantly
compensated by the tradeoff involving better accuracy in KK classes. This means that, although
the baseline may have better ability to reject unwanted classes, it is at the expense of rejecting as
well pattern sounds. Both the unsupervised and semi-supervised autoencoders show good rejection
generalization. Thus, these solutions can be competitive in OSR problems as long as some of the
classes to be rejected take part in the training stage.

Table 5. Results with trios configuration and O∗ = 0.13. The number list under the trio number
corresponds to the number of patterns that make up that trio. The bold numbers indicate winning
configurations according to the number of shots.

Framework

Trio Shots Baseline Unsupervised Semi-Supervised

ACCKK ACCKU ACCw ACCKK ACCKU ACCw ACCKK ACCKUU ACCw

1 85.88 ± 13.4 97.7 ± 4.6 91.8 97.7 ± 5.2 93.9 ± 5.7 95.8 95.4 ± 7.4 93.9 ± 6.6 94.6
0 2 89.2 ± 12.5 99.6 ± 0.5 94.4 99.1 ± 1.8 96.5 ± 3.7 97.8 97.7 ± 4.7 96.9 ± 3.7 97.3

(1, 9, 17) 4 97.5 ± 8.1 99.7 ± 0.4 98.6 99.4 ± 1.8 98.1 ± 2.5 98.7 99.2 ± 2.1 98.4 ± 1.9 98.8

1 88.8 ± 13.1 98.3 ± 2.8 93.5 98.5 ± 3.7 88.6 ± 9.4 93.6 97.6 ± 6.2 89.7 ± 9.8 93.7
1 2 89.0 ± 14.5 98.7 ± 2.4 93.8 99.4 ± 1.2 94.7 ± 5.8 97.0 98.6 ± 2.7 95.6 ± 4.7 97.2

(10, 12, 19) 4 96.2 ± 9.6 96.7 ± 3.1 96.5 99.5 ± 1.0 97.7 ± 3.0 99.6 99.4 ± 1.2 97.7 ± 4.4 98.6

1 78.4 ± 13.4 99.8 ± 0.9 89.1 95.2 ± 7.3 89.6 ± 9.0 92.4 94.1 ± 8.3 94.6 ± 6.4 94.3
2 2 82.6 ± 13.9 99.8 ± 0.5 91.2 97.6 ± 4.2 93.2 ± 7.1 95.4 97.7 ± 3.8 97.1 ± 5.1 97.4

(2, 14, 22) 4 91.9 ± 12.3 99.4 ± 0.9 95.6 98.9 ± 2.0 94.1 ± 6.9 96.5 98.6 ± 3.0 99.1 ± 1.8 98.9

1 72.3 ± 13.4 96.2 ± 4.2 84.3 94.2 ± 8.2 86.0 ± 8.7 90.1 90.4 ± 10.9 88.7 ± 8.3 89.6
3 2 78.37 ± 13.7 95.7 ± 4.6 87.2 96.9 ± 4.3 90.0 ± 7.9 93.5 94.8 ± 7.4 94.0 ± 5.9 94.4

(3, 6, 13) 4 90.3 ± 11.4 92.0 ± 3.2 91.1 97.1 ± 3.9 95.2 ± 4.6 96.1 97.0 ± 4.9 96.6 ± 3.6 96.8

1 88.5 ± 10.1 99.3 ± 1.3 93.9 94.6 ± 7.4 91.3 ± 6.7 92.9 94.2 ± 8.6 89.1 ± 9.9 91.6
4 2 93.2 ± 9.2 99.4 ± 1.1 96.3 96.2 ± 5.5 95.1 ± 4.8 95.6 97.1 ± 5.5 94.2 ± 5.8 95.7

(4, 5, 16) 4 97.0 ± 9.1 99.0 ± 1.2 98.0 98.2 ± 3.0 96.2 ± 3.8 97.2 99.1 ± 2.4 97.6 ± 2.9 98.4

1 87.9 ± 11.8 99.1 ± 1.2 93.5 96.2 ± 5.2 93.2 ± 6.1 94.7 95.9 ± 7.0 95.5 ± 6.2 95.7
5 2 93.4 ± 7.7 98.8 ± 1.2 96.1 98.0 ± 2.6 95.9 ± 4.0 97.0 98.8 ± 2.0 98.6 ± 2.9 98.7

(18, 21, 23) 4 97.2 ± 8.1 98.3 ± 1.2 97.7 98.8 ± 1.9 94.0 ± 5.9 96.4 99.6 ± 1.0 99.7 ± 0.6 99.6

1 96.0 ± 7.8 99.3 ± 0.8 97.6 96.4 ± 6.6 93.9 ± 5.07 95.1 97.00 ± 5.73 94.23 ± 6.35 95.6
6 2 95.8 ± 9.1 99.4 ± 0.7 97.6 98.6 ± 3.1 96.0 ± 3.9 97.3 99.0 ± 2.7 97.2 ± 3.9 98.1

(8, 11, 24) 4 96.8 ± 9.2 99.2 ± 0.8 98.0 99.5 ± 1.0 95.9 ± 4.4 97.7 99.5 ± 1.2 98.7 ± 2.1 99.1

1 87.0 ± 11.4 97.6 ± 2.9 92.3 91.1 ± 9.2 87.3 ± 7.8 89.2 84.9 ± 12.4 87.3 ± 8.9 86.1
7 2 90.0 ± 9.8 98.6 ± 1.7 94.3 94.8 ± 6.0 92.4 ± 5.6 93.6 89.2 ± 9.4 93.0 ± 6.2 91.1

(7, 15, 20) 4 94.4 ± 10.1 98.5 ± 1.5 96.5 96.0 ± 4.2 95.2 ± 4.2 95.6 93.8 ± 5.8 95.8 ± 4.2 94.8
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Table 6. Results of unwanted category with trios configuration and O∗ = 0.13. The number list under
the trio number corresponds to the number of patterns that make up that trio.

Framework

Trio Shots Baseline Unsupervised Semi-Supervised

ACCKUU ACCUU ACCKUU ACCUU ACCKUU ACCUU

1 97.7 ± 4.6 98.4 ± 4.1 93.9 ± 5.7 93.7 ± 8.8 93.9 ± 6.6 93.0 ± 9.2
0 2 99.6 ± 0.5 99.8 ± 0.6 96.5 ± 3.7 96.2 ± 5.6 96.9 ± 3.7 96.2 ± 6.5

(1, 9, 17) 4 99.7 ± 0.4 99.9 ± 0.4 98.1 ± 2.5 98.2 ± 3.7 98.4 ± 1.9 98.5 ± 2.8

1 98.3 ± 2.8 96.8 ± 5.6 88.6 ± 9.4 87.0 ± 12.5 89.7 ± 9.8 87.0 ± 13.5
1 2 98.7 ± 2.4 97.6 ± 4.7 94.7 ± 5.9 93.4 ± 8.9 95.6 ± 4.7 94.4 ± 7.1

(10, 12, 19) 4 96.7 ± 3.1 93.8 ± 5.8 97.7 ± 3.0 96.8 ± 4.6 97.7 ± 4.4 96.6 ± 6.8

1 99.8 ± 0.9 99.7 ± 1.7 89.6 ± 8.9 85.3 ± 13.9 94.6 ± 6.4 92.2 ± 9.7
2 2 99.8 ± 0.5 99.7 ± 0.6 93.2 ± 7.1 89.2 ± 11.7 97.1 ± 5.1 95.9 ± 7.7

(2, 14, 22) 4 99.4 ± 0.9 99.0 ± 1.5 94.1 ± 6.9 90.2 ± 12.3 99.1 ± 1.8 98.7 ± 3.3

1 96.2 ± 4.2 92.7 ± 8.2 86.0 ± 8.7 84.7 ± 13.4 88.7 ± 8.3 87.5 ± 12.6
3 2 95.7 ± 4.6 91.6 ± 8.7 90.0 ± 7.9 87.5 ± 13.3 94.0 ± 5.9 93.3 ± 9.5

(3, 6, 13) 4 92.0 ± 3.2 84.8 ± 6.0 95.2 ± 4.6 93.5 ± 7.3 96.6 ± 3.6 96.0 ± 5.7

1 99.3 ± 1.3 98.6 ± 2.5 91.3 ± 6.7 90.4 ± 9.5 89.1 ± 9.9 87.0 ± 13.6
4 2 99.4 ± 1.1 98.8 ± 2.2 95.1 ± 4.8 94.4 ± 7.1 94.2 ± 5.8 92.5 ± 9.8

(4, 5, 16) 4 99.0 ± 1.2 98.1 ± 2.2 96.2 ± 3.8 94.6 ± 6.6 97.7 ± 2.9 97.2 ± 4.7

1 99.1 ± 1.2 98.5 ± 2.2 93.2 ± 6.1 90.0 ± 9.7 95.5 ± 6.3 94.0 ± 9.0
5 2 98.8 ± 1.2 97.8 ± 2.3 95.9 ± 4.0 93.5 ± 6.9 98.6 ± 2.9 97.8 ± 5.1

(18, 21, 23) 4 98.3 ± 1.2 96.8 ± 2.1 94.0 ± 5.9 98.4 ± 10.9 99.7 ± 0.6 99.4 ± 1.2

1 99.3 ± 0.8 99.4 ± 0.6 93.9 ± 5.1 92.5 ± 7.9 94.2 ± 6.4 93.4 ± 8.9
6 2 99.4 ± 0.7 99.2 ± 1.0 96.0 ± 3.9 94.0 ± 7.0 97.2 ± 3.9 96.4 ± 6.8

(8, 11, 24) 4 99.2 ± 0.8 98.9 ± 1.0 95.9 ± 4.4 93.1 ± 8.0 98.7 ± 2.1 98.2 ± 3.0

1 97.6 ± 2.9 96.8 ± 5.4 87.3 ± 7.8 83.7 ± 12.1 87.3 ± 8.9 82.6 ± 13.6
7 2 98.6 ± 1.7 98.4 ± 3.0 92.4 ± 5.6 89.7 ± 9.3 93.0 ± 6.2 89.6 ± 9.9

(7, 15, 20) 4 98.5 ± 1.5 98.1 ± 2.7 95.2 ± 4.2 93.1 ± 7.6 95.8 ± 4.2 93.4 ± 7.4

5.3. Performance on ASC Task

Finally, to study the generalization capability of the proposed framework to other tasks not related
to the detection of specific sound patterns, we consider Task 1C of the DCASE 2019 [47] edition. This is
related to ASC in OSR conditions. The aim of the task is to classify a scene among one of the ten known
classes or to consider it as unknown (reject the sample) if it does not belong to any of them. The dataset
is designed so that unknown samples are available during training. Therefore, in this task, only the
AccKK and AccKU metrics are provided. The results are shown in Table 7.

Table 7. Results(%) of the proposed frameworks using DCASE (Detection and Classification of Acoustic
Scenes and Events) 2019 Task 1C dataset. The baseline results correspond to the one presented by the
task organization as a starting point.

Framework AccKK AccKU Accw

Baseline 54.2 43.1 48.7
Unsupervised 39.3 69.0 54.1

Semi-supervised 53.5 25.8 39.6

As it can be observed, the results for this task are considerably worse than those for the FSL/OSR
dataset. This is because even if there are many samples of a certain class, they are not necessarily very
similar or follow a certain spectro–temporal pattern. However, the unsupervised system improves the
trade-off of the system proposed as a baseline. It improves considerably the detection of unwanted
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sounds but worsens the classification of known classes. The semi-supervised system obtains practically
the same result of the baseline for the known classes but the detection capability of unwanted sounds
is lower. Such result is in line with our expectations. When the framework does not have information
about the class it is reconstructing, it tends to create independent internal representations that lead to
an improvement in the classification of unwanted ones. On the other hand, when it is forced to obtain
representations that do take into account the information of the class, the capability of classifying
known classes is improved to the detriment of the detection of unwanted classes.

6. Conclusions

This work presented a novel framework capable of classifying audio pattern samples with few
data within an open-set recognition context. The proposed system is based on the use of autoencoders
to learn latent space representations with few data and a multi-layer perceptron classifier to classify
target sound classes and reject unwanted ones. Both unsupervised and semi-supervised autoencoder
architectures were considered.

It has been confirmed that, by increasing the number of training samples, a smaller standard
deviation and a higher classification accuracy for target classes is obtained, reducing the number
of false negatives with respect to the baseline method. In this context, if the number of known
known classes is high, the semi-supervised autoencoder seems to perform best. On the other hand,
with a small number of known known classes, the autoencoder type has a bigger influence. In this
case, the semi-supervised approach usually outperforms the unsupervised one for most openness
conditions. Only for zero openness and very few training shots, the unsupervised approach showed
increased performance.
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ABSTRACT Residual learning is known for being a learning framework that facilitates the training of very
deep neural networks. Residual blocks or units are made up of a set of stacked layers, where the inputs are
added back to their outputs with the aim of creating identity mappings. In practice, such identity mappings
are accomplished by means of the so-called skip or shortcut connections. However, multiple implementation
alternatives arise with respect to where such skip connections are applied within the set of stacked layers
making up a residual block. While residual networks for image classification using convolutional neural
networks (CNNs) have been widely discussed in the literature, their adoption for 1D end-to-end architectures
is still scarce in the audio domain. Thus, the suitability of different residual block designs for raw audio clas-
sification is partly unknown. The purpose of this article is to compare, analyze and discuss the performance
of several residual block implementations, the most commonly used in image classification problems, within
a state-of-the-art CNN-based architecture for end-to-end audio classification using raw audio waveforms.
Deep and careful statistical analyses over six different residual block alternatives are conducted, considering
two well-known datasets and common input normalization choices. The results show that, while some
significant differences in performance are observed among architectures using different residual block
designs, the selection of the most suitable residual block can be highly dependent on the input data.

INDEX TERMS Audio classification, convolutional neural networks, residual learning, urbansound8k, ESC.

I. INTRODUCTION
Audio event classification (AEC) is the problem of cate-
gorizing an audio sequence into exclusive classes [1]–[3].
Basically, AEC is aimed at recognizing and understanding
the acoustic environment based on sound information. This
is usually treated as a supervised learning problem where a
set of labels (such as siren, dog barking, etc.) describe the
content of the different sound clips. In contrast to classical

The associate editor coordinating the review of this manuscript and

approving it for publication was Tallha Akram .

schemes based on feature extraction followed by classifica-
tion, Deep Neural Networks (DNNs) [4] reduce these steps
by working both as feature extractors and classifiers. Among
the many different deep learning techniques, the ones based
on Convolutional Neural Networks (CNNs) have shown very
successful results in areas such as image classification and
object detection [5]–[8]. CNNs are able to learn spatial or
time invariant features from pixels (i.e. images) or from
time-domain waveforms (i.e. audio signals). Several con-
volutional layers can be stacked to get different levels of
representation of the input signal. As a result, CNNs have
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been proposed to tackle audio related problems such as sound
event detection or audio tagging [9]–[11].

Although audio signals are natively one-dimensional
sequences, most state-of-the-art approaches to audio clas-
sification based on CNNs use a two-dimensional (2D)
input [12], [13]. Usually, these 2D inputs computed from
the audio signal are well-known time-frequency representa-
tions such as Mel-spectrograms [14]–[17] or the output of
constant-Q transform [18] (CQT) filterbanks, among others.
Time-frequency 2D audio representations are able to accu-
rately extract acoustically meaningful patterns but require a
set of parameters to be specified, such as the window type
and length, hop size or the number of frequency bins. The
choice of these hyperparameters can lead to different optimal
settings depending on the particular problem being treated or
the particular type of input signals [19]. In order to overcome
these problems and providing an end-to-end solution, other
approaches have proposed the use of 1D convolutions using
the raw audio signals as input. Recent works have shown
satisfactory results in this direction [20]–[28].

This article is focused on the analysis of the performance
of a particular CNN architecture, called Residual Network
(ResNet), fed with 1D audio data. The ResNet architecture
was first introduced in [29] with the purpose of dealing with
the vanishing gradient issue. The core idea of ResNet is to
introduce the so-called identity weight shortcut connection
that skips one or more layers and adds the input of such
layers to their stacked output. After the first residual unit
was presented in [29], an exhaustive analysis of different
variations of such a configuration was done for CNNs with
2D input signals to tackle the image classification problem
[30]. Nevertheless, although other works have studied the
contribution of residual blocks in the context of 1D raw audio
input waveforms [28], [31], a comprehensive analysis of how
different residual block designs may affect the overall perfor-
mance of audio recognition systems has not been provided
so far.

The main objective of this work is to analyze the influ-
ence on the performance of different residual block alterna-
tives, the ones more commonly used in the image domain,
within the context of 1D raw audio classification. To this
end, a baseline architecture is slightly modified considering
six different residual block implementations that have been
shown to lead to satisfactory results in image classification
problems. These blocks provide a varying schemewith regard
to where identity mappings are created within the set of
stacked layers that conform the block. The common baseline
architecture is the one presented in [20], which proposed a
1D CNN for raw audio waveform classification using the
public dataset UrbanSound8k.1 For the sake of consistency,
the same dataset will be considered in this work. Additionally,
the public dataset ESC-502 (concretely, the ESC-10 subset)
is also used in the experimentation to evaluate the potential

1https://urbansounddataset.weebly.com/urbansound8k.html
2https://github.com/karoldvl/ESC-50

FIGURE 1. Originally proposed residual block or unit [29].

differences arising over different datasets. The results suggest
that the best performing blocks in the image domain are not
the ones showing significant advantages in performance for
raw audio classification [30], nor the one originally suggested
in [20] for audio data using the baseline architecture.

II. BACKGROUND
Residual neural networks -or ResNets- can be understood as
modular networks whose building blocks are the so-called
residual units or blocks. These residual blocks (RB) are
usually characterized by two or three convolutional layers
and a shortcut connection that guarantees residual learning
during the network training process. The original residual
block proposed in [29] is shown in Fig. 1. Consider H(x)
an underlying mapping to be fit by a set of stacked layers
in a particular network module, where x is the input to the
first of such layers. Residual blocks are designed to let such
layers approximate a residual function, F(x) := H(x) − x,
which means that the original function can be expressed as
H(x) = F(x)+x. Similar to predictive coding, the motivation
of using residual blocks comes from the intuition that it may
be easier to optimize the above residual mapping than to
optimize the original, unreferenced mapping. A straightfor-
ward way of implementing residual learning is by adding
shortcut connections performing identity mappings. In such
connections, the input to the set of layers x is added back
to their output, so that y = x + F(x). The function F(x)
represents the residual to be learned by a set of stacked
layers of the CNN, where the weight layers are convolutional.
In the original residual block, Rectified Linear Unit (ReLU)
activation is applied to the result after each identity mapping,
resulting in a final output f (y) that acts as input to the next
residual block, where f (·) denotes the ReLU function. Thus,
in general, the input to the l-th block, Xl , is the output from
the previous block and its output becomes the input to the next
one, Xl+1. Note that shortcut connections do not add extra
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FIGURE 2. Network analyzed [20]. The architecture is explained as follows: [80/4, #48] denotes a layer with 48 filters, 80 of kernel size and stride equal to
4. RB blocks are indicated with kernel size, stride and number of filters.

parameters nor additional computational cost. Thus, deeper
networks can be trained with little additional effort, sub-
stantially reducing vanishing-gradient problems. However,
CNNs often include Batch Normalization (BN) layers and
vary slightly with regard to where the activation function
is applied. Therefore, the performance of residual learning
may also depend both on the order followed by these layers
and on the selected point at which shortcut connections are
established. In [30], a careful discussion on identity mappings
is provided, proposing the use of pre-activated residual units
where f is an identity mapping, i.e. Xl+1 = yl . Such slight
modification is shown to benefit the training process and to
achieve better results in image recognition tasks. However,
such analysis has only been performed for 2D architectures
and, to the best of the authors’ knowledge, a similar study
analyzing residual blocks in 1DCNNs has not been addressed
so far.

A. RELATED WORK
The use of residual networks for audio-related tasks has
already been explored in the literature, usually taking as input
frame-level features such as the outputs from mel-scale or
logarithmic filterbanks [32]–[34]. As in the present work,
several variants of a CNN-based audio classification system
accepting raw audio waveforms as input was proposed in
[20], including a particular residual architecture. Similarly,
end-to-end audio classification systems using residual net-
works were covered by Kim et al. in [28], [31], proposing
as well the use of squeeze-and-excitation strategies [35] for
increased accuracy. Such strategies are aimed at rescaling
the convolutional feature maps by learning proper weight-
ings using temporal aggregation (squeeze) and channel-wise
recalibration (excitation). The residual blocks presented in
these works, named Res−n (purely residual) and ReSE−n
(combinining squeeze-and-excitation), considered the origi-
nal residual design of [29] depicted in Fig. 1. Both works
showed that CNN architectures making use of such blocks
provided promising results for learning from raw data and
analyzed in detail the effect of including squeeze-and-
excitation recalibration. However, the influence of the spe-
cific residual block design, as considered in [30] for the image
domain, has not been covered so far and its effect in 1D raw
audio learning is still unclear.

III. NETWORK ARCHITECTURE
The experimentation conducted in this work considers as
a baseline the architecture originally proposed in [20] for

raw audio waveforms, consisting in a fully-convolutional
network intercalating convolutional and pooling layers.
Fully-convolutional networks can usually obtain better gen-
eralization properties, whereas, fully-connected layers at the
end of the network are more prone to suffer from overfitting.
In [20], the convolutional layers are configured with small
receptive fields, with the exception of the first layer, whose
receptive field is bigger in order to emulate a band-pass
filter. Therefore, temporal resolution is reduced in the first
two layers with large convolution and max pooling strides.
After these layers, resolution reduction is complemented by
doubling the number of filters in specific layers. Finally,
after the last residual unit, global average pooling is applied
to reduce each feature into a single value by averaging the
activation across the input. To study the behavior of a given
residual block (RB), this article focuses on the residual vari-
ant proposed in [20] (originally labeled as M34-res), which
follows the general architecture shown in Fig. 2.

Six different RB implementation alternatives are analyzed:
the original block proposed by He et al. [29] plus the other
four blocks proposed by the same authors in [30] and the
one introduced by Dai et al. in [20] (see Fig. 3). In ResNets,
convolutional layers are replaced by different RBs. To isolate
the effect of these blocks from the rest of parameters of the
network, the number of filters, the receptive field size and the
number of convolutional layers remain the same as in [20].
The analyzed residual blocks are the following:

• RB1 [29]: the input is first convolved and the output
of the second convolution is the input of a batch nor-
malization layer. After the addition, ReLU activation is
applied.

• RB2 [30]: the input is first convolved and no
post-processing is done after the second convolution.
The only difference with respect to RB1 is that normal-
ization is applied after adding the input and consequently
f corresponds to the composition of BN and ReLU.

• RB3 [30]: the input is first convolved as in [20] and the
activation is performed before the addition.

• RB4 [30]: the input is first passed through a ReLU
activation layer and then normalized after the second
convolution.

• RB5 [30]: the input is first normalized and there are no
layers after the second convolution as well as after the
addition. RB3-5 constitute a family in which there are
no layers after the addition and consequently f is exactly
the identity. The differences are in the order in the layers
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FIGURE 3. Residual units implemented in this work. RB1 to RB5 (a-e) were first introduced in [30], whereas RB6 (f) was presented in [20].

ranging from post-activation (RB3) to pre-activation
(RB5).

• RB6 [20]: the input is first convolved and the output of
the second convolution is the input of a batch normal-
ization layer. After the addition, a new normalization is
applied followed by ReLU activation which constitutes
a very slight variation of RB2.

The M34-res presented in [20] has 4,001,242 parameters
because it uses RB6. When using RB5 the network has
3,988,570 parameters while using RB1-4 the network is com-
posed by 3,989,914 parameters. Dropout layers [36] have not
been implemented neither after the pooling layers nor in the
residual block, as set out in [20].

IV. EXPERIMENTAL DETAILS
A. DATASETS AND AUDIO PRE-PROCESSING
As in [20], the experimental setup of the present work is based
on UrbanSound8k (UBS8k) [37], a public sound-database
that contains 8732 sound clips of duration of up to 4 sec-
onds with 10 different classes such as dog barking, car horn,
drilling, etc. The dataset is partitioned into 10 different folds
and the last one is commonly used as a test while the pre-
vious ones are left for training and validation. Additionally,
the ESC-10 dataset [38], a public sound-database that con-
tains 400 clips of 5 seconds of duration with 10 different
categories (40 samples each category), is also considered.
This dataset contains the same number of categories than
UBS8k, making the comparison more precise. This dataset is
also officially partitioned into different folds (5 in this case).

Clips from both datasets were resampled to 8 kHz and
padded with zeros to reach 4 s or 5 s length if necessary
after being pre-processed. Once an audio sequence has been
read, two different pre-processings have been carried out to
check how these can affect the behavior of the final sys-
tem. The first processing is the scaling of the audio to the

maximum absolute value (Scalemax). The second processing
consists in normalizing to a signal with zero mean and unit
standard deviation (Mean 0 Std 1) as in [20]. As mentioned
earlier, padding is done once the signal has been accordingly
pre-processed.

B. EXPERIMENTAL SETUP
Instead of using only the last fold of each dataset as a test,
a full k-fold cross validation analysis will be carried out
in order to obtain more accurate averaged measurements
related to the generalization capabilities of the systems under
study. The value of k is 10 and 5 for UBS8k and ESC-10,
respectively.

Due to the stochastic nature of the experiments and to
account for variability, the k-fold cross validation run is
repeated a number of times for each dataset (5 and 10 for
UBS8k and ESC-10, respectively) so that a total of 50 models
are fully trained for each dataset. The final performance
measures correspond to the classification accuracy over the
whole dataset and averaged over all repetitions along with
the corresponding standard deviation.

C. IMPLEMENTATION DETAILS
The optimizer used was Adam [39]. The models were trained
with a maximum of 400 epochs. Batch size was set to 128.
The learning rate started with a value of 0.001 decreas-
ing with a factor of 0.2 in case of no improvement in the
validation accuracy after 15 epochs. The training is early
stopped if the validation accuracy does not improve during
50 epochs. The initialization method was glorot-uniform [40]
and all weight parameters were subject to L2 regularization
with a 0.0001 coefficient as in [20]. Keras with Tensorflow
backend was used to implement the models in the experi-
ments. The audio manipulation module used in this work was
LibROSA [41].
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TABLE 1. Averaged accuracies of the different blocks presented in this article depending on the pre-processing of the audio and dataset used for the
experimentation.

V. RESULTS
Given the number of folds and repetitions in the two datasets
considered, a total number of 50 independent results are avail-
able in each case. With these we have carried out a careful
analysis, first comparing averaged accuracies, and second
performing a rank-based analysis. Note that the results can
not be fairly compared to other previous published results
(e.g. [20]) that are more challenge-oriented, but instead
the followed procedure allows to compare the different
alternatives more accurately.

A. AVERAGED PERFORMANCE ANALYSIS
Averaged rates of accuracy for all the experiments carried out
are shown in Table 1 along with standard deviations across
repetitions. Best results for each dataset and pre-processing
method are marked in bold. We naively assume Gaussianity
and perform a parametric multiple comparison test [42] that
only discovers significant differences between RB3 and RB5
(shaded in the table) and the remaining options depending on
dataset but regardless of pre-processing.

From this first analysis we can hardly observe differences
among RBs but it is worth mentioning several surprising
facts. First, the RB3 is significantly worse in all cases. Even
though this was also the worst in the exact identity family
(RB3-5) according to [30], its behavior in the image context
was clearly better than that of RB2 which is now among the
bests along with its slight variation RB6. Second, the full-
preactivation option, RB5, which was the best in the image
context is now significantly the worst for ESC-10.

It can be also observed that systems trained on the ESC-10
dataset seem to be more sensitive to the selected input pre-
processing. Blocks RB1, RB3 and RB4 show better perfor-
mance when the audios have been processed with Scalemax.
On the other hand, blocks RB2, RB5 and RB6 show better
performance when the audios have been normalized to zero
mean and unit standard deviation.

Apart form putting forward normalization sensibility and
the surprising dependence on data of RB5, the clearest con-
clusion that we can draw from comparing averaged rates is the
very poor behavior of RB3. This could be somewhat expected
as RB3 is the only block having a ReLU activation just before
the addition leading to a non-negative output which is an
unnatural option for a residual function. Note that having
a non-negative residual function can have an undesirable
impact on learned internal representations, which in turn
may substantially affect the robustness and generalization
capabilitites of the network.

B. NON-PARAMETRIC RANK-BASED COMPARISON
In order to provide more insight about the RB choice, a
non-parametric Friedman test with Holm post-hoc has been
carried out [43]. Moreover, medians of all repetitions and an
optimistic bound obtained by selecting the best model for
each fold have been computed and are shown in Fig. 4 along
with averaged rates. Table 2 shows the test results including
average ranks and corrected p-values. Significance level has
been set to α = 0.05. The value 0.00 means p < 0.005.
Apart from the results for each dataset, we also show the ones
corresponding to both datasets. Results that are significantly
worse than the best according to the selected level appear as
shaded in the table, with the corresponding p-values in bold.

The results of the non-parametric analysis confirm the
findings from the parametric one and uncovers further dif-
ferences among the best performing options. Unfortunately,
and as previously observed, different datasets imply slightly
different conclusions.

According to UBS8k results, the best performing blocks
are RB1, RB4 and RB5, partially confirming the inappro-
priateness of RB2 as in [30]. Even though RB1 ranks the
first and all means are indistinguishable we can still find
some interesting differences. On the one hand, RB4 using
both pre-processing options has almost the best median (0.69)
whichmay suggest that the RB4 option is more robust. On the
other hand, we obtain an optimistic bound of 0.72 both for
RB5 and RB1 with Mean 0 Std 1 pre-processing. The value
of this bound for the next best options is 0.71 for RB4 using
the same preprocessing.

When considering the ESC-10 results, the previous sur-
prising behavior of RB5 is confirmed in all cases. Moreover,
the more specific differences among methods also confirm
that pre-processing affects the behavior of RB options for this
dataset. In particular, RB1 andRB4 on one hand, andRB2 and
RB6 on the other, are the best performing blocks depending
on pre-processing, all with indistinguishable means. If we
compute the medians as with the previous dataset we find
slight differences between RB2 and RB4 (0.80) and RB1 and
RB6 (0.79). Finally, the best options according to the opti-
mistic bound when the best models are selected are RB4,
RB2 and RB1 (0.84) for different pre-processing options.
These bounds, together with the fact that RB1 exhibits sig-
nificantly worse medians, suggest that both RB4 and RB2
constitute a more robust alternative.

Given these overall results, drawing a general conclusion
looks difficult. The more remarkable fact is that the best
block considered for the image domain RB5 is not, in general,
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FIGURE 4. Means, medians and optimistic bounds on accuracies of the considered residual blocks on two datasets for different
pre-processings: Scalemax (SC) in blue and Mean 0 Std 1 (ZM) in green. The best medians and optimistic bounds are marked as cercles
and triangles, respectively.

TABLE 2. Ranking results of the different RB configurations.

among the bests. Also interesting is the fact that the block
RB6 proposed in [20] and specially its close variant RB2with
normalized inputs are among the bests but only for one of
the datasets. Finally, the original block RB1 is among the
bests for all datasets even though it exhibits a dependence
on pre-processing. Also among the bests for all datasets is
the RB4 option that can be considered as a small variation
of the RB5 recommended in [30]. If one had to put one
of the options ahead of the others for 1D end-to-end audio
classification from the experimentation carried out in the
present work it would be the RB4 design. This ReLU-only
pre-activation, as named in [30] had also a very good behav-
ior in image classification. Moreover, it consistently pro-
duces median accuracies among the best in all datasets and
pre-processing options (except Mean 0 Std 1 in the case of
ESC-10).

VI. CONCLUSION
End-to-end 1D architectures are very convenient for address-
ing audio classification tasks, as they avoid making certain

decisions related to the adoption of suitable input repre-
sentations for the input audio data. As a result, raw audio
waveforms can be fed directly into convolutional networks
without the need for a prior feature extraction process. While
residual learning has been widely demonstrated to be a suc-
cessful approach for training deep neural networks, different
residual block designs may affect the final performance of the
classification system. In this context, while the study of the
appropriateness of different residual block designs has been
previously addressed in the image domain, similar analyses
have not been previously reportedwhen considering 1D audio
data. In this work, it has been shown that previous results
obtained for image classification can not be easily extrapo-
lated to the audio domain. Moreover, significant differences
in the performance provided by different residual blocks have
been observed when considering different audio datasets and
pre-processings. With the considered baseline architecture,
some of the recommended residual blocks in the literature
did not achieve the best performance, nor even the the most
successful block recommended for image classification tasks.

188880 VOLUME 8, 2020



J. Naranjo-Alcazar et al.: Comparative Analysis of Residual Block Alternatives for End-to-End Audio Classification

REFERENCES
[1] S. Adavanne and T. Virtanen, ‘‘A report on sound event detection with

different binaural features,’’ 2017, arXiv:1710.02997. [Online]. Available:
http://arxiv.org/abs/1710.02997

[2] H. Zhang, I. McLoughlin, and Y. Song, ‘‘Robust sound event recognition
using convolutional neural networks,’’ in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), Apr. 2015, pp. 559–563.

[3] P. Foggia, N. Petkov, A. Saggese, N. Strisciuglio, and M. Vento, ‘‘Reli-
able detection of audio events in highly noisy environments,’’ Pat-
tern Recognit. Lett., vol. 65, pp. 22–28, Nov. 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167865515001981

[4] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, p. 436, 2015.

[5] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online]. Avail-
able: http://arxiv.org/abs/1409.1556

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097–1105.

[7] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
‘‘Rethinking the inception architecture for computer vision,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 2818–2826.

[8] F. Chollet, ‘‘Xception: Deep learning with depthwise separable convo-
lutions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 1251–1258.

[9] L. Zhang and J. Han, ‘‘Acoustic scene classification using multi-
layer temporal pooling based on convolutional neural network,’’ 2019,
arXiv:1902.10063. [Online]. Available: http://arxiv.org/abs/1902.10063

[10] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen,
R. C. Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold, M. Slaney,
R. J. Weiss, and K. Wilson, ‘‘CNN architectures for large-scale audio
classification,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Mar. 2017, pp. 131–135.

[11] Y. Xu, Q. Kong, W. Wang, and M. D. Plumbley, ‘‘Large-scale weakly
supervised audio classification using gated convolutional neural network,’’
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Apr. 2018, pp. 121–125.

[12] E. Cakır, T. Heittola, and T. Virtanen, ‘‘Domestic audio taggingwith convo-
lutional neural networks,’’ in Proc. IEEE AASP Challenge Detection Clas-
sification Acoustic Scenes Events (DCASE), 2016. [Online]. Available:
http://dcase.community/documents/challenge2016/technical_reports/
DCASE2016_Cakir_4003.pdf

[13] E. Cakir, G. Parascandolo, T. Heittola, H. Huttunen, and T. Virtanen,
‘‘Convolutional recurrent neural networks for polyphonic sound event
detection,’’ IEEE/ACM Trans. Audio, Speech, Language Process., vol. 25,
no. 6, pp. 1291–1303, Jun. 2017.

[14] J. Naranjo-Alcazar, S. Perez-Castanos, P. Zuccarello, and M. Cobos,
‘‘Acoustic scene classification with squeeze-excitation residual networks,’’
IEEE Access, vol. 8, pp. 112287–112296, 2020.

[15] J. Naranjo-Alcazar, S. Perez-Castanos, P. Zuccarello, F. Antonacci, and
M. Cobos, ‘‘Open set audio classification using autoencoders trained on
few data,’’ Sensors, vol. 20, no. 13, p. 3741, Jul. 2020.

[16] M. Valenti, A. Diment, G. Parascandolo, S. Squartini, and T. Virtanen,
‘‘DCASE 2016 acoustic scene classification using convolutional neural
networks,’’ in Proc. Workshop Detection Classification Acoust. Scenes
Events, 2016, pp. 95–99.

[17] A. Mesaros, T. Heittola, and T. Virtanen, ‘‘Acoustic scene classifica-
tion in DCASE 2019 challenge: Closed and open set classification
and data mismatch setups,’’ in Proc. Detection Classification Acoustic
Scenes Events Workshop (DCASE), New York, NY, USA, Oct. 2019,
pp. 164–168.

[18] T. Lidy and A. Schindler, ‘‘CQT-based convolutional neural networks for
audio scene classification,’’ in Proc. Detection Classification Acoustic
Scenes Events Workshop (DCASE), vol. 90, 2016, pp. 1032–1048.

[19] K. J. Piczak, ‘‘The details that matter: Frequency resolution of spectro-
grams in acoustic scene classification,’’ in Proc. Detection Classification
Acoustic Scenes Events Workshop (DCASE), Nov. 2017, pp. 103–107.

[20] W. Dai, C. Dai, S. Qu, J. Li, and S. Das, ‘‘Very deep convolutional neural
networks for raw waveforms,’’ in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), Mar. 2017, pp. 421–425.

[21] S. Qu, J. Li, W. Dai, and S. Das, ‘‘Understanding audio pattern using con-
volutional neural network from rawwaveforms,’’ 2016, arXiv:1611.09524.
[Online]. Available: http://arxiv.org/abs/1611.09524

[22] J. Lee, J. Park, K. Kim, and J. Nam, ‘‘SampleCNN: End-to-end deep convo-
lutional neural networks using very small filters for music classification,’’
Appl. Sci., vol. 8, no. 1, p. 150, Jan. 2018.

[23] Y. Gong and C. Poellabauer, ‘‘How do deep convolutional neural networks
learn from raw audio waveforms?’’ Tech. Rep., 2018. [Online]. Available:
https://openreview.net/pdf?id=S1Ow_e-Rb

[24] J. Lee, J. Park, K. L. Kim, and J. Nam, ‘‘Sample-level deep con-
volutional neural networks for music auto-tagging using raw wave-
forms,’’ 2017, arXiv:1703.01789. [Online]. Available: http://arxiv.org/
abs/1703.01789

[25] J. J. Huang and J. J. A. Leanos, ‘‘AclNet: Efficient end-to-end
audio classification CNN,’’ 2018, arXiv:1811.06669. [Online]. Available:
http://arxiv.org/abs/1811.06669

[26] J. Vera-Diaz, D. Pizarro, and J. Macias-Guarasa, ‘‘Towards end-to-end
acoustic localization using deep learning: From audio signals to source
position coordinates,’’ Sensors, vol. 18, no. 10, p. 3418, Oct. 2018.

[27] S. Abdoli, P. Cardinal, and A. L. Koerich, ‘‘End-to-end environmental
sound classification using a 1D convolutional neural network,’’ Expert
Syst. Appl., vol. 136, pp. 252–263, Dec. 2019.

[28] T. Kim, J. Lee, and J. Nam, ‘‘Comparison and analysis of SampleCNN
architectures for audio classification,’’ IEEE J. Sel. Topics Signal Process.,
vol. 13, no. 2, pp. 285–297, May 2019.

[29] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[30] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Identity mappings in deep residual
networks,’’ in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer,
2016, pp. 630–645.

[31] T. Kim, J. Lee, and J. Nam, ‘‘Sample-level CNN architectures for music
auto-tagging using raw waveforms,’’ in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), Apr. 2018, pp. 366–370.

[32] J.-W. Jung, H.-S. Heo, I. Yang, S.-H. Yoon, H.-J. Shim, and H.-J. Yu.
(2017). DNN-Based Audio Scene Classification for DCASE 2017: Dual
Input Features, Balancing Cost, and Stochastic Data Duplication Detec-
tion and Classification of Acoustic Scenes and Events. [Online]. Available:
http://dcase.community/documents/workshop2017/proceedings/
DCASE2017Work shop_Jung_187.pdf

[33] J. H. Yang, N. K. Kim, and H. K. Kim. (2018). Se-Resnet With Gan-
Based Data Augmentation Applied to Acoustic Scene Classification
Detection and Classification of Acoustic Scenes and Events. [Online].
Available: https://pdfs.semanticscholar.org/e95f/b1ac75c42943c4a74e
5c082bfdcc07d90c1f.pdf

[34] M. Liu, W. Wang, and Y. Li. (2019). The System for Acoustic Scene
Classification Using Resnet Detection and Classification of Acous-
tic Scenes and Events. [Online]. Available: http://dcase.community/
documents/challenge2019/technical_reports/DCASE 2019_SCUT_19.pdf

[35] J. Hu, L. Shen, and G. Sun, ‘‘Squeeze-and-excitation networks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7132–7141.

[36] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014. [Online]. Available: http://jmlr.org/papers/v15/srivastava14a.html

[37] J. Salamon, C. Jacoby, and J. P. Bello, ‘‘A dataset and taxonomy for
urban sound research,’’ in Proc. 22nd ACM Int. Conf. Multimedia, 2014,
pp. 1041–1044.

[38] K. J. Piczak, ‘‘ESC: Dataset for environmental sound classification,’’
in Proc. 23rd ACM Int. Conf. Multimedia (MM), 2015,
pp. 1015–1018.

[39] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-
mization,’’ 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.org/
abs/1412.6980

[40] X. Glorot and Y. Bengio, ‘‘Understanding the difficulty of training deep
feedforward neural networks,’’ in Proc. Int. Conf. Artif. Intell. Statist.
(AISTATS), 2010, pp. 249–256.

[41] B. McFee, C. Raffel, D. Liang, D. Ellis, M. McVicar, E. Battenberg, and
O. Nieto, ‘‘Librosa: Audio and music signal analysis in Python,’’ in Proc.
14th Python Sci. Conf., 2015, pp. 18–25.

[42] J. W. Tukey, ‘‘Comparing individual means in the analysis of vari-
ance,’’ Biometrics, vol. 5, no. 2, pp. 99–114, 1949. [Online]. Available:
http://www.jstor.org/stable/3001913

[43] S. Garcia and F. Herrera, ‘‘An extension on ‘statistical comparisons of
classifiers over multiple data sets’ for all pairwise comparisons,’’ J. Mach.
Learn. Res., vol. 9, pp. 2677–2694, Dec. 2008.

VOLUME 8, 2020 188881



J. Naranjo-Alcazar et al.: Comparative Analysis of Residual Block Alternatives for End-to-End Audio Classification

JAVIER NARANJO-ALCAZAR (Graduate Student
Member, IEEE) received the Telecommunications
degree and the master’s degree in telecommunica-
tions engineering from the Universitat Politècnica
de València, Valencia, Spain, in 2016 and 2018,
respectively. He is currently pursuing the Ph.D.
degree with the Department of Computer Sci-
ence, Universitat de València, funded by the Tor-
res Quevedo Program and the valencian start-up
Visualfy. His research interests include machine

listening, few-shot learning, and open-set recognition. He was a recipient
of the Best M.Sc. Thesis Award from the Regional Telecommunications
Engineering Association in 2019.

SERGI PEREZ-CASTANOS received the Telecom-
munications degree and the master’s degree in
telecommunications engineering from the Uni-
versitat Politècnica de València, Valencia, Spain,
in 2016 and 2018, respectively. He is cur-
rently working as a Machine Learning Engi-
neer with Visualfy. His research interests include
machine listening, anomaly detection, and audio
captioning.

IRENE MARTÍN-MORATÓ (Graduate Student
Member, IEEE) received the bachelor’s (Hons.)
and M.Sc. degrees in telecommunications and
the Ph.D. degree in information technology, com-
munications, and computing under the Univer-
sity Faculty Training Program (FPU) from the
Universitat de València, in 2014, 2016, and
2019, respectively. She is currently a Postdoctoral
Researcher with Tampere University, Finland. Her
research interests include acoustic signal process-

ing, machine learning, and audio event detection and classification.

PEDRO ZUCCARELLO received the Electron-
ics Engineering degree from the University of
Buenos Aires, Argentina, the M.Sc. degree in
telecommunications from the Universitat Politèc-
nica de València, Valencia, Spain, and the Ph.D.
degree from the Universitat de València, Valencia.
He developed most of his career as a Researcher
in several public research and development insti-
tutions such as the Institute of Microelectronics
of Barcelona, Barcelona, Spain, or the Institute of

Corpuscular Physics, Valencia. From 2017 to June 2020, he has developed
as the Head of the Artificial Intelligence Group, Visualfy, a private startup
company. He currently works as a Senior Artificial Intelligence Researcher
with Tyris IA private company. He has coauthored nearly 30 papers in
international peer-review journals and conferences in topics that include
artificial intelligence, machine learning, signal processing, electronics, and
microelectronic design. He received several postdoctoral fellowships such as
the Val-I+D, from the Valencian Government, or the Torres Quevedo, from
the Spanish Ministry of Science and Education.

FRANCESC J. FERRI (Senior Member, IEEE)
received the Licenciado degree in physics (elec-
tricity, electronics, and computer science) and
the Ph.D. degree in pattern recognition from
the Universitat de València, in 1987 and 1993,
respectively. He has been with the Computer Sci-
ence Department, Universitat de València, since
1986. His current research interests include fea-
ture selection, nonparametric classification meth-
ods, machine learning, computer vision, and image

retrieval. He has authored or coauthored more than 100 technical papers
in international conferences and well established journals in his fields of
interest. He is a member of ACM and IAPR.

MAXIMO COBOS (Senior Member, IEEE)
received themaster’s degree in telecommunications
and the Ph.D. degree in telecommunications
engineering from the Universitat Politècnica de
València, Valencia, Spain, in 2007 and 2009,
respectively. In 2011, he joined the Universi-
tat de València, where he is currently an Asso-
ciate Professor. His research interests include
digital signal processing and machine learning
for audio and multimedia applications. He has

authored/coauthored more than 100 technical papers in international journals
and conferences in his areas of interest. He is a member of the Audio Signal
Processing Technical Committee of the European Acoustics Association.
He completed with honors his studies under the University Faculty Training
program (FPU) and was a recipient of the Ericsson Best Ph.D. Thesis Award
from the Spanish National Telecommunications Engineering Association.
In 2010, he received the Campus de Excelencia Postdoctoral Fellowship to
work at the Institute of Telecommunications and Multimedia Applications.
He serves as an Associate Editor for IEEE SIGNAL PROCESSING LETTERS and
the EURASIP Journal on Audio, Speech, and Music Processing.

188882 VOLUME 8, 2020


	List of Figures
	Introduction
	Motivation
	Objectives
	Structure of the thesis

	Background
	Brief overview
	Artificial Intelligence history review
	Machine Learning and Deep Learning
	Basics of Deep Learning
	Machine Listening pipeline
	Detection and Classification of Acoustic Scenes and Events (DCASE)

	Open-Set Recognition
	Definition
	Background

	Few-Shot Learning
	Definition
	Background

	Complexity Considerations
	Definition
	Background

	End-to-end Frameworks
	Definition
	Background

	Metrics and Performance Analysis
	Accuracy

	Datasets
	ESC-10
	UrbanSound8k
	TAU Urban Acoustic Scenes 2019
	An Open-Set Recognition and Few-Shot Learning Dataset for Audio Event Classification in Domestic Environments


	Contributions
	Conclusions
	Further work
	Publications

	Bibliography
	Annexes
	A. Acoustic Scene Classification With Squeeze-Excitation Residual Networks
	B. Open set audio classification using autoencoders trained on few data
	C. A Comparative Analysis of Residual Block Alternatives for End-to-End Audio Classification

