5 research outputs found

    ieee access special section editorial recent advances on radio access and security methods in 5g networks

    Get PDF
    Serviceability is the ability of a network to serve user equipments (UEs) within desired requirements (e.g., throughput, delay, and packet loss). High serviceability is considered as one of the key foundational criteria towards a successful fog radio access infrastructure satisfying the Internet of Things paradigm in the 5G era. In the article by Dao et al. , "Adaptive resource balancing for serviceability maximization in fog radio access networks," the authors propose an adaptive resource balancing (ARB) scheme for serviceability maximization in fog radio access networks wherein the resource block (RB) utilization among remote radio heads (RRHs) is balanced using the backpressure algorithm with respect to a time-varying network topology issued by potential RRH motilities. The optimal UE selection for service migration from a high-RB-utilization RRH to its neighboring low RB-utilization RRHs is determined by the Hungarian method to minimize RB occupation after moving the service. Analytical results reveal that the proposed ARB scheme provides substantial gains compared to the standalone capacity-aware, max-rate, and cache-aware UE association approaches in terms of serviceability, availability, and throughput

    An Approach to Guide Users Towards Less Revealing Internet Browsers

    Get PDF
    When browsing the Internet, HTTP headers enable both clients and servers send extra data in their requests or responses such as the User-Agent string. This string contains information related to the sender’s device, browser, and operating system. Previous research has shown that there are numerous privacy and security risks result from exposing sensitive information in the User-Agent string. For example, it enables device and browser fingerprinting and user tracking and identification. Our large analysis of thousands of User-Agent strings shows that browsers differ tremendously in the amount of information they include in their User-Agent strings. As such, our work aims at guiding users towards using less exposing browsers. In doing so, we propose to assign an exposure score to browsers based on the information they expose and vulnerability records. Thus, our contribution in this work is as follows: first, provide a full implementation that is ready to be deployed and used by users. Second, conduct a user study to identify the effectiveness and limitations of our proposed approach. Our implementation is based on using more than 52 thousand unique browsers. Our performance and validation analysis show that our solution is accurate and efficient. The source code and data set are publicly available and the solution has been deployed

    Mitigating DoS Attacks Against Pseudonymous Authentication Through Puzzle-Based Co-Authentication in 5G-VANET

    No full text
    corecore