1,042 research outputs found

    Unlocking the deployment of spectrum sharing with a policy enforcement framework

    Get PDF
    Spectrum sharing has been proposed as a promising way to increase the efficiency of spectrum usage by allowing incumbent operators (IOs) to share their allocated radio resources with licensee operators (LOs), under a set of agreed rules. The goal is to maximize a common utility, such as the sum rate throughput, while maintaining the level of service required by the IOs. However, this is only guaranteed under the assumption that all “players”respect the agreed sharing rules. In this paper, we propose a comprehensive framework for licensed shared access (LSA) networks that discourages LO misbehavior. Our framework is built around three core functions: misbehavior detection via the employment of a dedicated sensing network; a penalization function; and, a behavior-driven resource allocation. To the best of our knowledge, this is the first time that these components are combined for the monitoring/policing of the spectrum under the LSA framework. Moreover, a novel simulator for LSA is provided as an open access tool, serving the purpose of testing and validating our proposed techniques via a set of extensive system-level simulations in the context of mobile network operators, where IOs and several competing LOs are considered. The results demonstrate that violation of the agreed sharing rules can lead to a great loss of resources for the misbehaving LOs, the amount of which is controlled by the system. Finally, we promote that including a policy enforcement function as part of the spectrum sharing system can be beneficial for the LSA system, since it can guarantee compliance with the spectrum sharing rules and limit the short-term benefits arising from misbehavior

    Byzantine Attack and Defense in Cognitive Radio Networks: A Survey

    Full text link
    The Byzantine attack in cooperative spectrum sensing (CSS), also known as the spectrum sensing data falsification (SSDF) attack in the literature, is one of the key adversaries to the success of cognitive radio networks (CRNs). In the past couple of years, the research on the Byzantine attack and defense strategies has gained worldwide increasing attention. In this paper, we provide a comprehensive survey and tutorial on the recent advances in the Byzantine attack and defense for CSS in CRNs. Specifically, we first briefly present the preliminaries of CSS for general readers, including signal detection techniques, hypothesis testing, and data fusion. Second, we analyze the spear and shield relation between Byzantine attack and defense from three aspects: the vulnerability of CSS to attack, the obstacles in CSS to defense, and the games between attack and defense. Then, we propose a taxonomy of the existing Byzantine attack behaviors and elaborate on the corresponding attack parameters, which determine where, who, how, and when to launch attacks. Next, from the perspectives of homogeneous or heterogeneous scenarios, we classify the existing defense algorithms, and provide an in-depth tutorial on the state-of-the-art Byzantine defense schemes, commonly known as robust or secure CSS in the literature. Furthermore, we highlight the unsolved research challenges and depict the future research directions.Comment: Accepted by IEEE Communications Surveys and Tutoiral

    Dynamic Licensed Shared Access - a New Architecture and Spectrum Allocation Techniques

    Get PDF
    This paper proposes a new system architecture for Licensed Shared Access (LSA) wireless networks, as well as novel band management techniques for fair and ranking-based spectrum allocation. The proposed architecture builds upon recently standardized and regulatory-accepted LSA systems and stems from the work done in the EU-funded project ADEL. Two new resource allocation algorithms are introduced and their behaviour is validated via system-level simulations

    A comprehensive survey of V2X cybersecurity mechanisms and future research paths

    Get PDF
    Recent advancements in vehicle-to-everything (V2X) communication have notably improved existing transport systems by enabling increased connectivity and driving autonomy levels. The remarkable benefits of V2X connectivity come inadvertently with challenges which involve security vulnerabilities and breaches. Addressing security concerns is essential for seamless and safe operation of mission-critical V2X use cases. This paper surveys current literature on V2X security and provides a systematic and comprehensive review of the most relevant security enhancements to date. An in-depth classification of V2X attacks is first performed according to key security and privacy requirements. Our methodology resumes with a taxonomy of security mechanisms based on their proactive/reactive defensive approach, which helps identify strengths and limitations of state-of-the-art countermeasures for V2X attacks. In addition, this paper delves into the potential of emerging security approaches leveraging artificial intelligence tools to meet security objectives. Promising data-driven solutions tailored to tackle security, privacy and trust issues are thoroughly discussed along with new threat vectors introduced inevitably by these enablers. The lessons learned from the detailed review of existing works are also compiled and highlighted. We conclude this survey with a structured synthesis of open challenges and future research directions to foster contributions in this prominent field.This work is supported by the H2020-INSPIRE-5Gplus project (under Grant agreement No. 871808), the ”Ministerio de Asuntos Económicos y Transformacion Digital” and the European Union-NextGenerationEU in the frameworks of the ”Plan de Recuperación, Transformación y Resiliencia” and of the ”Mecanismo de Recuperación y Resiliencia” under references TSI-063000-2021-39/40/41, and the CHIST-ERA-17-BDSI-003 FIREMAN project funded by the Spanish National Foundation (Grant PCI2019-103780).Peer ReviewedPostprint (published version

    Trust and reputation management for securing collaboration in 5G access networks: the road ahead

    Get PDF
    Trust represents the belief or perception of an entity, such as a mobile device or a node, in the extent to which future actions and reactions are appropriate in a collaborative relationship. Reputation represents the network-wide belief or perception of the trustworthiness of an entity. Each entity computes and assigns a trust or reputation value, which increases and decreases with the appropriateness of actions and reactions, to another entity in order to ensure a healthy collaborative relationship. Trust and reputation management (TRM) has been investigated to improve the security of traditional networks, particularly the access networks. In 5G, the access networks are multi-hop networks formed by entities which may not be trustable, and so such networks are prone to attacks, such as Sybil and crude attacks. TRM addresses such attacks to enhance the overall network performance, including reliability, scalability, and stability. Nevertheless, the investigation of TRM in 5G, which is the next-generation wireless networks, is still at its infancy. TRM must cater for the characteristics of 5G. Firstly, ultra-densification due to the exponential growth of mobile users and data traffic. Secondly, high heterogeneity due to the different characteristics of mobile users, such as different transmission characteristics (e.g., different transmission power) and different user equipment (e.g., laptops and smartphones). Thirdly, high variability due to the dynamicity of the entities’ behaviors and operating environment. TRM must also cater for the core features of 5G (e.g., millimeter wave transmission, and device-to-device communication) and the core technologies of 5G (e.g., massive MIMO and beamforming, and network virtualization). In this paper, a review of TRM schemes in 5G and traditional networks, which can be leveraged to 5G, is presented. We also provide an insight on some of the important open issues and vulnerabilities in 5G networks that can be resolved using a TRM framework

    Cognitive Medium Access: Exploration, Exploitation and Competition

    Full text link
    This paper establishes the equivalence between cognitive medium access and the competitive multi-armed bandit problem. First, the scenario in which a single cognitive user wishes to opportunistically exploit the availability of empty frequency bands in the spectrum with multiple bands is considered. In this scenario, the availability probability of each channel is unknown to the cognitive user a priori. Hence efficient medium access strategies must strike a balance between exploring the availability of other free channels and exploiting the opportunities identified thus far. By adopting a Bayesian approach for this classical bandit problem, the optimal medium access strategy is derived and its underlying recursive structure is illustrated via examples. To avoid the prohibitive computational complexity of the optimal strategy, a low complexity asymptotically optimal strategy is developed. The proposed strategy does not require any prior statistical knowledge about the traffic pattern on the different channels. Next, the multi-cognitive user scenario is considered and low complexity medium access protocols, which strike the optimal balance between exploration and exploitation in such competitive environments, are developed. Finally, this formalism is extended to the case in which each cognitive user is capable of sensing and using multiple channels simultaneously.Comment: Submitted to IEEE/ACM Trans. on Networking, 14 pages, 2 figure

    Misbehavior in Nash Bargaining Solution Allocation

    Get PDF
    Nash Bargaining Solution (NBS) has been broadlysuggested as an efficient solution for problem of fair allocation ofmultiple resources, namely bandwidth allocation in datacenters.In spite of being thoroughly studied, and provably strategyprooffor most scenarios, NBS-based allocation methods lack researchon strategic behavior of tenants in case of proportionalityof resource demands, which is common in datacenter workloads.We found that misbehavior is beneficial: by lying aboutbandwidth demands tenants can improve their allocations. Weshow that the sequence of selfish improvements leads to trivialdemand vectors for all tenants. It essentially breaks sharingincentives which are very important for datacenter networks.We analytically prove that tenants can misbehave for 2 and 3tenants cases.We show that misbehavior is possible in one recently proposedNBS-based allocation system if demands proportionality is takeninto account. Monte-Carlo simulations were done for 2 --- 15tenants to show a misbehavior possibility and its impact onaggregated bandwidth.We propose to use another game-theoretic approach to allocatebandwidth in case of proportional demands. That method performssignificantly better on average than NBS after misbehavior.Non Peer reviewe
    corecore