8,481 research outputs found

    Mirror Descent Meets Fixed Share (and feels no regret)

    Get PDF
    Mirror descent with an entropic regularizer is known to achieve shifting regret bounds that are logarithmic in the dimension. This is done using either a carefully designed projection or by a weight sharing technique. Via a novel unified analysis, we show that these two approaches deliver essentially equivalent bounds on a notion of regret generalizing shifting, adaptive, discounted, and other related regrets. Our analysis also captures and extends the generalized weight sharing technique of Bousquet and Warmuth, and can be refined in several ways, including improvements for small losses and adaptive tuning of parameters

    Shifting Regret, Mirror Descent, and Matrices

    Get PDF
    We consider the problem of online prediction in changing environments. In this framework the performance of a predictor is evaluated as the loss relative to an arbitrarily changing predictor, whose individual components come from a base class of predictors. Typical results in the literature consider different base classes (experts, linear predictors on the simplex, etc.) separately. Introducing an arbitrary mapping inside the mirror decent algorithm, we provide a framework that unifies and extends existing results. As an example, we prove new shifting regret bounds for matrix prediction problems

    A Stochastic Interpretation of Stochastic Mirror Descent: Risk-Sensitive Optimality

    Get PDF
    Stochastic mirror descent (SMD) is a fairly new family of algorithms that has recently found a wide range of applications in optimization, machine learning, and control. It can be considered a generalization of the classical stochastic gradient algorithm (SGD), where instead of updating the weight vector along the negative direction of the stochastic gradient, the update is performed in a "mirror domain" defined by the gradient of a (strictly convex) potential function. This potential function, and the mirror domain it yields, provides considerable flexibility in the algorithm compared to SGD. While many properties of SMD have already been obtained in the literature, in this paper we exhibit a new interpretation of SMD, namely that it is a risk-sensitive optimal estimator when the unknown weight vector and additive noise are non-Gaussian and belong to the exponential family of distributions. The analysis also suggests a modified version of SMD, which we refer to as symmetric SMD (SSMD). The proofs rely on some simple properties of Bregman divergence, which allow us to extend results from quadratics and Gaussians to certain convex functions and exponential families in a rather seamless way

    Online Learning for Changing Environments using Coin Betting

    Full text link
    A key challenge in online learning is that classical algorithms can be slow to adapt to changing environments. Recent studies have proposed "meta" algorithms that convert any online learning algorithm to one that is adaptive to changing environments, where the adaptivity is analyzed in a quantity called the strongly-adaptive regret. This paper describes a new meta algorithm that has a strongly-adaptive regret bound that is a factor of log(T)\sqrt{\log(T)} better than other algorithms with the same time complexity, where TT is the time horizon. We also extend our algorithm to achieve a first-order (i.e., dependent on the observed losses) strongly-adaptive regret bound for the first time, to our knowledge. At its heart is a new parameter-free algorithm for the learning with expert advice (LEA) problem in which experts sometimes do not output advice for consecutive time steps (i.e., \emph{sleeping} experts). This algorithm is derived by a reduction from optimal algorithms for the so-called coin betting problem. Empirical results show that our algorithm outperforms state-of-the-art methods in both learning with expert advice and metric learning scenarios.Comment: submitted to a journal. arXiv admin note: substantial text overlap with arXiv:1610.0457
    corecore