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Abstract

We consider the problem of online prediction in
changing environments. In this framework the
performance of a predictor is evaluated as the
loss relative to an arbitrarily changing predictor,
whose individual components come from a base
class of predictors. Typical results in the litera-
ture consider different base classes (experts, lin-
ear predictors on the simplex, etc.) separately.
Introducing an arbitrary mapping inside the mir-
ror decent algorithm, we provide a framework
that unifies and extends existing results. As an
example, we prove new shifting regret bounds for
matrix prediction problems.

1. Introduction
In the standard online learning framework, the goal of the
forecaster is to compete with a set of static reference pre-
dictors. However, this goal is only meaningful if a static
predictor can be expected to perform well on the given
problem. When the environment changes over time, it
makes more sense to consider dynamic, time-varying ref-
erence predictors. In this paper we consider the problem
where the goal of the forecaster is to compete with switch-
ing predictors that can switch between elements of a base
predictor class and for each prediction mimic the forecast
of the actually selected base predictor.

This problem received substantial attention in both learning
and information theory, resulting in several algorithms that
can compete with switching predictors. Most of these algo-
rithms are based on variants of the exponentially weighted
average prediction method, bearing different computational
advantages depending on the base predictor class: variants
of the fixed-share algorithm of Herbster & Warmuth (1998)
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are used when the base class is small, while variants of the
transition diagram based method of Willems (1996) are ap-
plied for large base reference classes that admit efficient
solutions for the static prediction problem. While the al-
gorithms for small expert classes achieve near-optimal be-
havior in complexity that is linear both in the time horizon
T and the number of experts N , the algorithms for large
classes can typically be implemented with O(T 2 logN) or
O(T 2d) complexity, where d is the dimension of the expert
set when it is infinite. Computationally efficient combina-
tions of the two methods have been proposed for large base
predictor classes (Willems & Krom, 1997; Hazan & Se-
shadhri, 2009; György et al., 2012) whose computational
complexity is almost linear in T and maintains the mild de-
pendence on the size of the expert class, while only slightly
deteriorating performance (see György et al. 2012 for a
general overview of tracking algorithms.) In fact, these
methods are general reduction methods that can transform
any low-regret algorithm to one with low switching (or
tracking) regret: here the regret scales with the complex-
ity of the comparator sequence, measured by the number
of switches. Another measure introduced by Hazan & Se-
shadhri (2009) considers regret over contiguous time inter-
vals, called the adaptive regret, while recently a stronger
version of the same concept was introduced by Daniely
et al. (2015) (see, also, Adamskiy et al. 2012). Although
strongly adaptive regret and adaptive regret are stronger
measures than switching regret, the algorithms developed
for these problems are essentially identical, and can be
showed to perform well under all of these criteria.

A notable case when (near-) optimal performance relative
to switching predictors is achievable with computational
complexity that is linear both in time and the dimension
of the predictors is the case of online linear and convex
optimization: Here, Herbster & Warmuth (2001) unified
earlier methods and combined gradient-descent type algo-
rithms with projections, while Zinkevich (2003) showed
that the mirror descent algorithm (Nemirovski & Yudin,
1998; Beck & Teboulle, 2003, e.g.) with a quadratic reg-
ularizer also enjoys favorable performance guarantees. In
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these problems the complexity of the reference predictors
is typically measured by some norm of the variation of its
predictions, measuring how much the predictor shifts over
time; hence the resulting bounds are usually called shifting
bounds (when the prediction set is discrete, the complexity
measure usually reduces to the number of switches). Note
that the general wrapper algorithms derived for switch-
ing regret (see Hazan & Seshadhri, 2009; György et al.,
2012; Adamskiy et al., 2012; Daniely et al., 2015) are not
directly applicable to obtain shifting bounds. Recently,
Cesa-Bianchi et al. (2012) combined the tracking results of
Herbster & Warmuth (1998); Bousquet & Warmuth (2002)
with the projection ideas of (Herbster & Warmuth, 2001)
to obtain a projected exponential weighting scheme for lin-
ear/convex optimization that improves upon previous re-
sults. Finally, Hall & Willett (2013) included models of the
temporal behavior of the optimal predictor in the mirror de-
scent algorithm when the regularizer Bregman-divergence
is bounded.

In this paper we present a unified view and analysis of algo-
rithms derived for online learning with changing environ-
ments (including tracking, shifting, adaptive and strongly
adaptive regret), and extend the results of Cesa-Bianchi
et al. (2012) to cover any instantiation of the mirror descent
algorithm. In particular, after the projection step in the mir-
ror descent algorithm, we allow another, arbitrary transfor-
mation of the prediction (this can also be viewed as a gen-
eralization of the algorithm of Hall & Willett (2013), al-
though their transformation has different semantics and, as
a result, they give regret bounds of different kind). We give
sufficient conditions when this twisted predictor achieves
good shifting regret bounds. We extend these results by
providing shifting bounds for contiguous time intervals, ex-
tending the recently introduced strongly adaptive regret no-
tion of Daniely et al. (2015). As an example, we apply
the results to prove shifting bounds for matrix prediction
problems, which is the first result for the matrix case with
non-stationary comparators.

2. Preliminaries
We consider the following standard set-up of online convex
optimization. LetX be a finite dimensional vector spaceX
that is equipped with an inner product 〈·, ·〉. For simplicity,
the reader may think of X as the d-dimensional Euclidean
space Rd where 〈x, y〉 =

∑d
i=1 xiyi. Online optimization

is a repeated game. In each round t = 1, 2, . . . of the game,
the forecaster chooses a prediction wt from some decision
set K ⊂ X , the environment chooses a loss function `t :
K → R from a classL of functions mapping fromK → R.
At the end of round t, the loss function `t is revealed to
the forecaster and the forecaster incurs loss `t(wt). In this
paper we consider online convex optimization where K is

convex and compact, and the loss functions `t are convex
and bounded.

The goal of the forecaster is to keep its cumulative loss

L̂T =

T∑
t=1

`t(wt)

for some (or any) time horizon T as small as possi-
ble. While minimizing the loss L̂T is clearly not possi-
ble in general, we aim at comparing the loss of the fore-
caster to the loss of an arbitrary predictor sequence uT1 =
(u1, . . . , uT ) ∈ KT , defined as

LT (u
T
1 ) =

T∑
t=1

`t(ut).

The regret of the forecaster against uT1 is defined as

R(uT1 ) = L̂T − LT (uT1 ).

Instead of considering the regret on the whole time interval
[1, T ], we will consider the strongly adaptive notion of re-
gret (Daniely et al., 2015), which bounds the regret of the
algorithm on any interval [q, s] for any 1 ≤ q ≤ s ≤ T .
More precisely, we will consider this interval regret against
a changing predictor sequence usq = (uq, . . . , us) defined
as

R(usq) = L̂q:s − LT (usq)

where L̂q:s =
∑s
t=q `t(wt) (note that to simplify the nota-

tion, the time interval in the regret is only denoted through
the index of usq). By convexity of the losses, for any u ∈ K,

`t(wt)− `t(u) ≤ 〈∇ `t(wt), wt − u〉, (1)

where∇ `t denotes a subgradient of `t, hence we will focus
on bounding 〈ft, wt − u〉. We will use the notation ft =
∇ `t(wt), and assume that ft is bounded.

Our method is based on the mirror descent (MD) algorithm
(Nemirovski & Yudin, 1998; Beck & Teboulle, 2003). To
define the mirror descent algorithm, we need some extra
definitions. Let A ⊂ Rd be a convex set, and we will con-
sider competing with predictors taking values in K ∩ A,
which is assumed to be non-empty. Let R : A → R be
a Legendre function: R is strictly convex, its derivative,
∇R(u), exists for any u ∈ A◦ (A◦ denotes the interior
of A) and ‖∇R(u)‖ → ∞ as u approaches the boundary
of A. The Bregman divergence DR : A × A◦ → R with
respect to R is defined, for any (u, v) ∈ A×A◦ as

DR(u, v) = R(u)−R(v)− 〈∇R(v), u− v〉 .

The dual norm ‖ · ‖∗ of ‖ · ‖ is defined as ‖u‖∗ =
supv∈X,‖v‖≤1 |〈u, v〉|.
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3. The twisted mirror descent algorithm
Starting at a point w1 ∈ K ∩ A◦, the mirror descent algo-
rithm recursively predicts, at time t+ 1,

wt+1 = argmin
u∈K∩A

[ηt〈ft, u〉+DR(u,wt) ]

where ηt > 0 (recall that ft = ∇ `t(wt) denotes a sub-
gradient of `t at wt). We consider a generalization of
the mirror descent algorithm given in Algorithm 1. We
call this algorithm the twisted mirror descent (TMD) al-
gorithm. The main point is that once the standard mini-
mization step in the mirror descent algorithm is performed,
the resulting value vt is transformed using some func-
tion φt : K × Lt−1 → A◦ to get the final prediction
wt = φt(vt, `1, . . . , `t−1). In what follows we will omit
the notation showing the dependence of φt on the loss func-
tions, and will simply write φt(vt). Obviously, when φt is
identity, the TMD algorithm becomes the standard mirror
descent algorithm. Several other algorithms can also be
put into this form (Herbster & Warmuth, 2001; Bousquet
& Warmuth, 2002; Cesa-Bianchi et al., 2012; Hall & Wil-
lett, 2013). In particular, Hall & Willett (2013) propose a
variant where φt is time-invariant and depends on vt only.
We will discuss specific instances later. In the analysis of
the algorithm we will also use the unconstrained minimum

ṽt+1 = argmin
u∈A

[ηt〈∇ `t(wt), u〉+DR(u,wt) ] .

It is well-known that, due to our assumptions, both
vt and ṽt+1 are unique and belong to A◦, and vt =
argminv∈K∩ADR(v, ṽt+1) (in practice, usually first ṽt+1

is computed and then it is projected to K ∩ A to obtain
vt+1).

Algorithm 1 Twisted mirror descent.

1. Set w1 ∈ K ∩A◦.

2. At time t = 1, 2, . . . predict wt, and compute

vt+1 = argmin
u∈K∩A

[ηt〈∇ `t(wt), u〉+DR(u,wt) ]

wt+1 = φt+1(vt+1, `1, . . . , `t)

Similarly to the two standard analyses of the mirror descent
algorithm, we will analyze the TMD algorithm based on the
following lemma (Herbster & Warmuth, 2001):

Lemma 1. Let w ∈ A◦, g ∈ X , and define
v = argminw′∈K∩A[〈g, w′〉 + DR(w

′, w)] and ṽ =
argminw′∈A[〈g, w′〉 + DR(w

′, w)]. Then for any u ∈
K ∩A,

〈g, w − u〉 ≤ DR(u,w)−DR(u, v) +DR(v, ṽ) .

Note that if, in additionR is σ-strongly convex with respect
to the norm ‖ · ‖, that is, Dr(u, v) ≥ σ

2 ‖u − v‖2 for all
u ∈ A, v ∈ A◦, then

DR(w, ṽ) ≤ 〈g, w − ṽ〉 ≤ ‖g‖
2
∗

2σ . (2)

This yields the so-called prox-lemma (Beck & Teboulle,
2003; Nemirovski et al., 2009)

〈g, w − u〉 ≤ DR(u,w)−DR(u, v) +
‖g‖2∗
2σ

.

Below we will usually state the general bound of Lemma 1
in the statements, and use the nicer-looking prox-lemma
bounds in the examples, except for the matrix prediction
case in Section 4 where the divergence form gives qualita-
tively better results.

3.1. Shifting regret

In this section we generalize the methods of (Cesa-Bianchi
et al., 2012) who only considered prediction on the sim-
plex, that is, when K = Pd is the d-dimensional probabil-
ity simplex, R(v) =

∑d
i=1 vi log vi−vi for any vector v =

(v1, . . . , vd) ∈ K, and the resulting Bregman divergence is
DR(v, v

′) =
∑d
i=1 vi log

vi
v′i

when v′ = (v′1, . . . , v
′
d) ∈ K.

The results show that the regret of the algorithm relative to
uT1 scales with the speed of change of uT1 .

We start with a few simple reformulations of Lemma 1
that helps writing telescoping terms and define meaning-
ful mappings φt. The first result is a generalization of the
decomposition given by (Cesa-Bianchi et al., 2012) for the
simplex.

Lemma 2. AssumingA contains the 0 vector, the following
bound holds for the TMD algorithm for any t = 1, 2, . . . ,
and any ut, ut+1 ∈ K ∩A:

〈ft, wt − ut〉

≤ 1

ηt

(
DR(ut, wt)−DR(ut+1, wt+1) +R(ut+1)−R(ut)

+DR(0, wt+1)−DR(0, vt+1)

+ 〈∇R(vt+1)−∇R(wt+1), ut〉

+ 〈∇R(wt+1), ut − ut+1〉+DR(wt, ṽt+1)
)

Proof. The lemma is an easy application of Lemma 1 for
the TMD algorithm with g = ηtft, w = wt, followed by
the decomposition

D(ut, wt)−D(ut, vt+1)

= D(ut, wt)−D(ut+1, wt+1) +D(ut+1, wt+1)−D(ut, vt+1)
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and some algebra:

D(ut+1, wt+1)−D(ut, vt+1)

= R(ut+1)−R(wt+1)− 〈∇R(wt+1), ut+1 − wt+1〉
−R(ut) +R(vt+1) + 〈∇R(vt+1), ut − vt+1〉

= R(ut+1)−R(ut) + 〈∇R(vt+1)

−∇R(wt+1), ut〉+ 〈∇R(wt+1), ut − ut+1〉
+R(0)−R(wt+1)− 〈∇R(wt+1),−wt+1〉
−R(0) +R(vt+1) + 〈∇R(vt+1),−vt+1〉.

To make use of the above result, one needs to define the
mappings φt such that the following three terms be small

• DR(0, wt+1)−DR(0, vt+1);

• ∇R(vt+1)−∇R(wt+1);

• ∇R(wt+1).

The following theorem shows that controlling these quanti-
ties by an appropriate choice of φt indeed results in a mean-
ingful bound.

Theorem 3. Assume that, for all t, TMD is run with ηt =
η > 0 and with a choice of the mappings φt guaranteeing

DR(0, wt+1)−DR(0, vt+1) ≤ Lt

sup
u∈K∩A\{0}

〈∇R(vt+1)−∇R(wt+1), u〉
‖u‖

≤ Mt

‖∇R(wt+1)‖∗ ≤ Nt

for some Lt,Mt, Nt ∈ R. Then, for any interval [q, s] ⊂
[1, T ], the regretR(usq) is bounded from above by

1

η

(
DR(uq, wq)−DR(us+1, ws+1) +R(us+1)−R(uq)

+

s∑
t=q

(Lt +Mt‖ut‖+Nt‖ut − ut+1‖)

+

s∑
t=q

DR(wt, ṽt+1)
)
.

(3)

Proof. The Cauchy-Schwartz inequality implies that the
second inner product in Lemma 2 can be bounded as

〈∇R(wt+1), ut − ut+1〉 ≤ ‖∇R(wt+1)‖∗‖ut − ut+1‖,

while the conditions on φt imply

〈∇R(vt+1)−∇R(wt+1), ut〉 ≤Mt‖ut‖.

Applying these results in Lemma 2 shows

〈ft, wt − ut〉

≤ 1

η

(
DR(ut, wt)−DR(ut+1, wt+1) +R(ut+1)−R(ut)

+ Lt +Mt‖ut‖+Nt‖ut − ut+1‖+DR(wt, ṽt+1)
)

Summing this inequality for all q ≤ t ≤ s, the statement of
the theorem follows immediately by (1).

The above result is a typical example of a regret bound
with respect to a time-varying reference sequence uT1 , as
it depends on the variations of usq: assuming Lt = L and
Mt = M for all T , the dependence is on the total norm∑s
t=q ‖ut‖ and the variationDV (u

s
q) =

∑s−1
t=q ‖ut−ut+1‖

of the sequence (note that us+1 can always be chosen to be
equal to us when we express the bound in the theorem).

Example 4. The simplest example when TMD, and actu-
ally the pure MD, works is the case when we use a p-norm
regularizer with p ∈ (1, 2] over a ball, that is, A = X =
Rd, R(u) = 1

2‖u‖
2
p, K = {u ∈ Rd : ‖u‖p ≤ D/2}. In

this case the dual norm is the q-norm with q = p/(p − 1).
Furthermore, DR is known to be (p − 1)-strongly convex
with respect to the p-norm. Thus, assuming ‖ft‖q ≤ G, (2)
implies that DR(wt, ṽt+1) ≤ η2G2/(2(p − 1)). It is easy
to see that in this setup the identity mapping φt(v) = v is a
good choice (reducing TMD to MD), giving Lt =Mt = 0,
and Nt = D/2 since ‖∇R(u)‖q = ‖u‖p. Selecting
w1 = 0, we have DR(u,w1) = R(u1) ≤ D2/8 for any
u ∈ K, and setting uT+1 = uT yields R(uT+1) ≤ D2/8,
giving the following regret bound

R(uT1 ) ≤
D2 + 2D ·DV (u

T
1 )

4η
+

ηTG2

2(p− 1)

where DV (u
T
1 ) =

∑T−1
t=1 ‖ut−ut+1‖p (for simplicity and

illustrational purposes, we consider the regret only over
the whole interval [1, T ]). Optimizing η independently of

DV (u
T
1 ) gives η = D

G

√
p−1
2T and results in the bound

R(uT1 ) ≤ G
(
D +

DV (u
T
1 )

2

)√
T

2(p− 1)
.

Optimizing η also as a function of an a priori known upper
bound DV ≥ DV (u

T
1 ), we get

R(uT1 ) ≤ G

√
T (D2 + 2D ·DV )

2(p− 1)
.

A slightly different (sometimes improved) version of The-
orem 3 can be obtained if we can give coordinatewise con-
ditions for the gradients of R in the theorem. In the follow-
ing we consider the case when X = Rd and all coordinates
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of the subgradients of R are non-positive, and the predic-
tors are taken from the non-negative orthant. In what fol-
lows we make ∇iR denote the ith coordinate of the sub-
gradient of R and D+

TV (u, v) =
∑d
i=1 max{ui − vi, 0}

for all u, v ∈ Rd; note that when ‖u‖1 = ‖v‖1 then
D+
TV = 1

2‖u− v‖1 equals the total variation distance.

Theorem 5. Assume K ⊂ [0,∞)d, and ∇iR(u) ≤ 0 for
all u ∈ K ∩ A. Suppose that, for all t, TMD is run with
ηt = η > 0 and R that is σ-strongly convex with respect to
‖ · ‖, and with a choice of the mappings φt guaranteeing

DR(0, wt+1)−DR(0, vt+1) ≤ Lt

∇iR(vt+1)−∇iR(wt+1) ≤ Mt

−∇iR(wt+1) ≤ Nt

for some Lt,Mt, Nt ∈ R. Then, for any interval [q, s] ⊂
[1, T ], the regretR(usq) can be bounded from above by

1

η

(
DR(uq, wq)−DR(us+1, ws+1) +R(us+1)−R(uq)

+

s∑
t=q

(
Lt +Mt(‖ut‖1 −D+

TV (ut+1, ut))

+NtD
+
TV (ut+1, ut)

))
+

η

2σ

s∑
t=q

‖ft‖2∗.

Proof. The proof of the theorem follows the same lines as
that of Theorem 3. The slight difference is in how the inner
products in Lemma 2 are bounded. We will use the fact that

∇iR(vt+1) ≤ 0:

〈∇R(vt+1)−∇R(wt+1), ut〉+ 〈∇R(wt+1), ut − ut+1〉

≤
∑

i:ut,i≤ut+1,i

[
(∇iR(vt+1)−∇iR(wt+1))ut,i

−∇iR(wt+1)(ut+1,i − ut,i)
]

+
∑

i:ut,i>ut+1,i

[
(∇iR(vt+1)−∇iR(wt+1))ut,i

−∇iR(wt+1)(ut+1,i − ut,i)

+∇iR(vt+1)(ut+1,i − ut,i)
]

=
∑

i:ut,i≤ut+1,i

[
(∇iR(vt+1)−∇iR(wt+1))ut,i

−∇iR(wt+1)(ut+1,i − ut,i)
]

+
∑

i:ut,i>ut+1,i

(∇iR(vt+1)−∇iR(wt+1))ut+1,i

= Nt
∑

i:ut,i≤ut+1,i

[
(ut+1,i − ut,i)

+Mt

( d∑
i=1

ut+1,i −
∑

i:ut,i≤ut+1,i

(ut+1,i − ut,i)
)]

= NtD
+
TV (ut+1, ut) +Mt(‖u‖1 −D+

TV (ut+1, ut)).

The proof can be finished in the same way as in Theorem 3.

Example 6. The above theorem is very useful when one
works on the simplex, as in (Cesa-Bianchi et al., 2012).
Then K = Pd is the d-dimensional probability sim-
plex, R(v) =

∑d
i=1 vi log vi − vi for any vector v =

(v1, . . . , vd) ∈ K, and the resulting Bregman divergence is
DR(v, v

′) =
∑d
i=1 vi log

vi
v′i

when v′ = (v′1, . . . , v
′
d) ∈ K.

Note that in this case the norm is the 1-norm and σ = 1
(by Pinsker’s inequality). Then selecting φt as the fixed
share update of Herbster & Warmuth (2001) satisfies the
assumptions of the theorem, and gives rise to the bound in
Proposition 1 in (Cesa-Bianchi et al., 2012). That is, φt is
defined as

wt+1 = φt(vt+1) = (1− α)vt+1 +
α
d1

for some α > 0, where 1 denotes a d-dimensional vector
whose entries are all 1. Then Lt = 0,Mt = log 1

1−α , Nt =

log d
α . Let m(uT1 ) =

∑T−1
t=1 ‖ut+1−ut‖1. Assuming each

ft ∈ [0, 1]d and, starting the algorithm from the uniform
distribution w1 = 1/d, the bound becomes

R(uT1 )

≤ 1

η

(
log d+ (T −m(uT1 )) log

1
1−α +m(uT1 ) log

d
α

)
+
ηT

8
.
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The 1/8 factor instead of 1/2 in the last term can be
obtained by shifting ft to [−1/2, 1/2]d, which does not
change the linearized regret. This result exactly recovers
the corresponding results in (Herbster & Warmuth, 2001;
Cesa-Bianchi et al., 2012). The slight improvement com-
pared to Theorem 3 is the appearence of the −m(uT1 ) in
multiplying log d

α .

4. Application to linear prediction over
trace-bounded positive definite matrices

In this section we consider the application of the previous
result to a natural online matrix-prediction problem, taken
from Hazan et al. (2012), who showed that a number of
matrix-valued prediction problems, such as collaborative
filtering, gambling and max-cut can be reduced to this com-
mon problem. Here we show how TMD can be applied to
this problem to compete with a changing sequence of ma-
trices, thereby extending the scope of results of Hazan et al.
(2012).

In order to define the problem, we need some notation. We
let S denote the vector space of N × N real-valued sym-
metric matrices equipped with the inner product 〈X,Y 〉 =
tr(X>Y ). Further, we let S++ ⊂ S (and S+ ⊂ S) denote
the set ofN×N real-valued positive definite (respectively,
semi-definite) matrices.

Let τ, β be positive numbers. The competitor set is chosen
to be

Kτ,β =
{
X ∈ S+ : ‖X‖ ≤ τ,Xi,i ≤ β, 1 ≤ i ≤ N

}
,

where ‖X‖ is the trace-norm: ‖X‖ = ‖X‖tr, where
‖X‖tr =

∑N
i=1 |λi(X)|, λi(X) being the ith eigenvalue of

matrix X . We also introduce Kτ = ∪β>0Kτ,β . The loss
is assumed to be linear: `t(X) = 〈Ft, X〉. Here, Ft ∈ S is
constrained to belong to the set

Lγ =
{
F ∈ S : ‖F 2‖∗ ≤ γ, F 2 diagonal

}
.

The (β, τ, γ) online matrix prediction problem is to com-
pete with the best matrix from Kτ,β in hindsight given a
sequence of loss matrices F1, . . . , FT ∈ Lγ .

Note that the dual norm of the trace-norm is the spectral (or
operator) norm: ‖X‖∗ = max1≤i≤N |λi(X)|. Further, by
duality, Hölder’s inequality holds: 〈X,Y 〉 ≤ ‖X‖‖Y ‖∗,
X,Y ∈ S.

Let us now consider how TMD can be applied to this set-
ting. Unsurprisingly, we choose the unnormalized nega-
tive entropy regularizer to instantiate TMD. To introduce
this define the application of a function f : R → R to a
symmetric matrix X as f(X) =

∑N
i=1 f(λi)uiu

>
i , where

X =
∑N
i=1 λiuiu

>
i is an eigendecomposition of X . Note

that f(X) is well defined.

For X positive definite, we let R(X) denote the unnormal-
ized negative entropy of X:

R(X) = tr(X log(X)−X).

It is well-known that R is a Legendre function over A =
S+. In particular, the derivative of R exists on A◦ = S++

and satisfies ∇R(X) = log(X). Thus, the underlying
Bregman divergence is equal to

DR(X,Y ) = tr(X logX −X log Y −X + Y ) .

For brevity, we will call DR(X,Y ) the relative entropy of
X with respect to Y .

It remains to choose the mappings φt : Kτ → Kτ . For
0 ≤ α ≤ 1, cφ > 0 to be chosen later, let fα(λ) = (1 −
α)λ+ αcφ/N . With this we let

φt(X) = fα(X) . (4)

Let IN×N denote the N ×N identity matrix. From Theo-
rem 3, we get the following result:

Theorem 7. Choose φt as in the previous paragraph and
let ηt = η > 0 for all t > 0 such that η

√
γ ≤ 1. Let N∗ =

max(log((1− α)τ + α
cφ
N ), | log(α cφN )|), cφ ≥ τ , FT1 , U

T
1

be sequences such that Ut ∈ Kτ,β and Ft ∈ Fγ . Let W1 =
τ
N IN×N and WT

2 be the sequence of vectors chosen by
TMD beginning from t = 2 when the adversary’s choices
are FT1 , and letR(UT1 ) =

∑T
t=1〈Ft,Wt〉−〈Ft, Ut〉 be the

regret of TMD against UT1 on this sequence. Then,

R(UT1 )

≤ 1

η

{
cφ log(N) + cφ − ‖U1‖+ αcφT

+ log
(

1
1−α

) T∑
t=1

‖Ut‖+N∗
T∑
t=1

‖Ut − Ut+1‖
}

+ η
{
(1− α)β + α

cφ
N

}
γ T .

The result follows from Theorem 3. Note that Theorem 13
of Hazan et al. (2012) follows from this result (when Ut is
the constant sequence). Furthermore, by appropriately tun-
ing the parameters, one can easily obtain from this result
the matrix analogues of the results discussed beforehand
for the vector case, obtaining the first tracking/shifting re-
gret result for the matrix case (which is the exact analogue
of the vector case, hence left out). This clearly demon-
strates the power of Theorem 3.

Proof. The result follows from Theorem 3 once we choose
the appropriate values for the parameters of this theorem
and verify its conditions. Let us first choose values for Lt,
Nt and Mt. Fix a value for t.
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The sequence (Lt) must be selected so that

DR(0,Wt+1)−DR(0, vt+1) ≤ Lt .

Since DR(0, Y ) = tr(Y ), we have DR(0,Wt+1) −
DR(0, Vt+1) = tr(Wt+1 − Vt+1) = α(cφ − tr(Vt+1)) ≤
αcφ, thanks to Vt+1 ∈ S+. Hence, we choose Lt = αcφ.

Now, consider the condition

sup
U∈Kτ,β∩S++

〈∇R(Vt+1)−∇R(Wt+1), U〉
‖U‖

≤ Mt

(the domain of ∇R is S++). Fix some U ∈ K ∩ S++

and let Vt+1 =
∑N
i=1 λiziz

>
i be an eigendecomposition

of Vt+1. By the definition of φ, Wt+1 =
∑N
i=1((1 −

α)λi+αcφ/N)ziz
>
i . As noted earlier,∇R(X) = log(X).

Hence,

Z
.
= ∇R(Vt+1)−∇R(Wt+1)

=

N∑
i=1

log

(
λi

(1− α)λi + αcφ/N

)
ziz
>
i

and so

〈Z,U〉 =
N∑
i=1

log

(
λi

(1− α)λi + αcφ/N

)
〈ziz>i , U〉.

Now, since both ziz
>
i and U are nonnegative definite,

〈ziz>i , U〉 ≥ 0. Therefore,

〈Z,U〉 ≤ C
N∑
i=1

〈ziz>i , U〉

where C = max1≤j≤N log
(

λj
(1−α)λj+αcφ/N

)
. Therefore,

log

(
λj

(1− α)λj + αcφ/N

)
≤ log

(
λj

(1− α)λj

)
= log

(
1

1− α

)
and hence C ≤ log( 1

1−α ). Introduce Z ′ =∑N
i=1 log(

1
1−α )ziz

>
i . Thus, 〈Z,U〉 ≤ 〈Z ′, U〉 and from

Hölder’s inequality we get

〈Z,U〉 ≤ ‖Z ′‖∗‖U‖ ≤ log

(
1

1− α

)
‖U‖

and so we choose Mt = log 1
1−α .

Let us now turn to the choice of Nt. We need to choose Nt
such that

‖∇R(Wt+1)‖∗ ≤ Nt. (5)

We have

‖∇R(Wt+1)‖∗ = max
1≤i≤N

∣∣∣log ((1− α)λi + α
cφ
N

)∣∣∣ .
A simple case analysis gives that this is upper bounded by
N∗ = max(log((1− α)τ + α

cφ
N ), | log(α cφN )|), which can

be chosen to be the value of Nt.

Now, let us bound DR(Wt, Ṽt+1). For this, we use the
following lemma, which can be extracted from K. Tsuda
& Warmuth (2006); Arora & Kale (2007) or Hazan et al.
(2012):

Lemma 8. Let R be the negentropy regularizer, F ∈ S,
‖F‖∗ ≤ 1, W ∈ S++, Ṽ = argminV ∈S+〈F, V 〉 +
DR(V,W ). Then DR(W, Ṽ ) ≤ 〈W,F 2〉.

Proof. Note that Ṽ = ∇R−1(∇R(W ) − F ) =
exp(log(W )− F ). Plugging this into the definition of DR

we get

DR(W, Ṽ ) = tr(W logW −W log Ṽ −W + Ṽ )

= tr(W logW −W (logW − F )−W + Ṽ )

= tr(WF −W + exp(log(W )− F )) .

By the Golden-Thompson inequality, tr(exp(log(W ) −
F )) ≤ trW exp(−F ). Now, for any A ∈ S, ‖A‖∗ ≤
1, exp(A) ≤ IN×N + A + A2. Further, for any
W,A,B ∈ S+, A ≺ B implies 〈W,A〉 ≤ 〈W,B〉. Hence,
trW exp(−F ) ≤ trW (IN×N − F + F 2). Putting the
inequalities together, cancelling terms we get the claimed
inequality.

Using this lemma with F = ηFt, W = Wt, since η
√
γ ≤

1 by assumption, we get DR(Wt, Ṽt+1) ≤ η2〈Wt, F
2
t 〉.

Now, Wt = fα(Vt) where Vt ∈ Kτ,β . Then, if Vt =∑
i λiziz

>
i is the eigendecomposition of Vt, using that F 2

t

is diagonal, it is not hard to see that 〈Wt, F
2
t 〉 = (1 −

α)〈Vt, F 2
t 〉+ α

cφ
N 〈
∑
i ziz

>
i , F

2〉 ≤ ((1− α)β + α
cφ
N )γ.

To finish, we choose UT+1 = U1 and so it remains to
bound DR(U1,W1). Let us first consider DR(U1,W1)

for some U1 ∈ K ∩ S++. Let U1 =
∑N
i=1 λiziz

>
i

be the eigendecomposition of U1. Since W1 is the ma-
trix of scaling all vectors by a factor of cφ/N , we can
write W1 = cφ/N

∑N
i=1 ziz

>
i . Hence, DR(U1,W1) =

cφ +
∑N
i=1 λi log

λi
cφ/N

− λi = cφ + cφ log(N) +∑N
i=1 λi

(
log
(
λi
cφ

)
− 1
)
≤ cφ log(N)+cφ−‖U1‖, where

the last inequality follows if we assume that τ ≤ cφ, so that
λi/τ ≤ 1 and thus log

(
λi
τ

)
− 1 ≤ −1.
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Plugging in the bounds obtained into (3), we get

R(UT1 )

≤ 1

η

{
cφ log(N) + cφ − ‖U1‖+ αcφT

+ log
(

1
1−α

) T∑
t=1

‖Ut‖+N∗
T∑
t=1

‖Ut − Ut+1‖
}

+
{
(1− α)β + α

cφ
N

}
γ T .

which is the desired bound.

5. Conclusion
We presented a unifying framework for deriving mirror-
descent based algorithms for online learning in changing
environments. A generic result was provided that indicated
how mirror descent algorithms can be modified to obtain
shifting regret bounds and shifting regret bounds over inter-
vals. As corollaries, we derived existing variants of the mir-
ror descent algorithm (for various problems), and recovered
their shifting regret bounds, as well as derived a new matrix
prediction algorithm and the first shifting bound for matrix
prediction problems.
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