28,151 research outputs found

    Discovering learning processes using inductive miner: A case study with learning management systems (LMSs)

    Get PDF
    Resumen tomado de la publicaciónDescubriendo procesos de aprendizaje aplicando Inductive Miner: un estudio de caso en Learning Management Systems (LMSs). Antecedentes: en la minería de procesos con datos educativos se utilizan diferentes algoritmos para descubrir modelos, sobremanera el Alpha Miner, el Heuristic Miner y el Evolutionary Tree Miner. En este trabajo proponemos la implementación de un nuevo algoritmo en datos educativos, el denominado Inductive Miner. Método: hemos utilizado datos de interacción de 101 estudiantes universitarios en una asignatura de grado desarrollada en la plataforma Moodle 2.0. Una vez prepocesados se ha realizado la minería de procesos sobre 21.629 eventos para descubrir los modelos que generan los diferentes algoritmos y comparar sus medidas de ajuste, precisión, simplicidad y generalización. Resultados: en las pruebas realizadas en nuestro conjunto de datos el algoritmo Inductive Miner es el que obtiene mejores resultados, especialmente para el valor de ajuste, criterio de mayor relevancia en lo que respecta al descubrimiento de modelos. Además, cuando ponderamos con pesos las diferentes métricas seguimos obteniendo la mejor medida general con el Inductive Miner. Conclusiones: la implementación de Inductive Miner en datos educativos es una nueva aplicación que, además de obtener mejores resultados que otros algoritmos con nuestro conjunto de datos, proporciona modelos válidos e interpretables en términos educativos.Universidad de Oviedo. Biblioteca de Psicología; Plaza Feijoo, s/n.; 33003 Oviedo; Tel. +34985104146; Fax +34985104126; [email protected]

    A Multi-Gene Genetic Programming Application for Predicting Students Failure at School

    Full text link
    Several efforts to predict student failure rate (SFR) at school accurately still remains a core problem area faced by many in the educational sector. The procedure for forecasting SFR are rigid and most often times require data scaling or conversion into binary form such as is the case of the logistic model which may lead to lose of information and effect size attenuation. Also, the high number of factors, incomplete and unbalanced dataset, and black boxing issues as in Artificial Neural Networks and Fuzzy logic systems exposes the need for more efficient tools. Currently the application of Genetic Programming (GP) holds great promises and has produced tremendous positive results in different sectors. In this regard, this study developed GPSFARPS, a software application to provide a robust solution to the prediction of SFR using an evolutionary algorithm known as multi-gene genetic programming. The approach is validated by feeding a testing data set to the evolved GP models. Result obtained from GPSFARPS simulations show its unique ability to evolve a suitable failure rate expression with a fast convergence at 30 generations from a maximum specified generation of 500. The multi-gene system was also able to minimize the evolved model expression and accurately predict student failure rate using a subset of the original expressionComment: 14 pages, 9 figures, Journal paper. arXiv admin note: text overlap with arXiv:1403.0623 by other author

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    On the role of pre and post-processing in environmental data mining

    Get PDF
    The quality of discovered knowledge is highly depending on data quality. Unfortunately real data use to contain noise, uncertainty, errors, redundancies or even irrelevant information. The more complex is the reality to be analyzed, the higher the risk of getting low quality data. Knowledge Discovery from Databases (KDD) offers a global framework to prepare data in the right form to perform correct analyses. On the other hand, the quality of decisions taken upon KDD results, depend not only on the quality of the results themselves, but on the capacity of the system to communicate those results in an understandable form. Environmental systems are particularly complex and environmental users particularly require clarity in their results. In this paper some details about how this can be achieved are provided. The role of the pre and post processing in the whole process of Knowledge Discovery in environmental systems is discussed
    corecore