218 research outputs found

    MATEDA: A suite of EDA programs in Matlab

    Get PDF
    This paper describes MATEDA-2.0, a suite of programs in Matlab for estimation of distribution algorithms. The package allows the optimization of single and multi-objective problems with estimation of distribution algorithms (EDAs) based on undirected graphical models and Bayesian networks. The implementation is conceived for allowing the incorporation by the user of different combinations of selection, learning, sampling, and local search procedures. Other included methods allow the analysis of the structures learned by the probabilistic models, the visualization of particular features of these structures and the use of the probabilistic models as fitness modeling tools

    A review on probabilistic graphical models in evolutionary computation

    Get PDF
    Thanks to their inherent properties, probabilistic graphical models are one of the prime candidates for machine learning and decision making tasks especially in uncertain domains. Their capabilities, like representation, inference and learning, if used effectively, can greatly help to build intelligent systems that are able to act accordingly in different problem domains. Evolutionary algorithms is one such discipline that has employed probabilistic graphical models to improve the search for optimal solutions in complex problems. This paper shows how probabilistic graphical models have been used in evolutionary algorithms to improve their performance in solving complex problems. Specifically, we give a survey of probabilistic model building-based evolutionary algorithms, called estimation of distribution algorithms, and compare different methods for probabilistic modeling in these algorithms

    Improving the efficiency of Bayesian Network Based EDAs and their application in Bioinformatics

    Get PDF
    Estimation of distribution algorithms (EDAs) is a relatively new trend of stochastic optimizers which have received a lot of attention during last decade. In each generation, EDAs build probabilistic models of promising solutions of an optimization problem to guide the search process. New sets of solutions are obtained by sampling the corresponding probability distributions. Using this approach, EDAs are able to provide the user a set of models that reveals the dependencies between variables of the optimization problems while solving them. In order to solve a complex problem, it is necessary to use a probabilistic model which is able to capture the dependencies. Bayesian networks are usually used for modeling multiple dependencies between variables. Learning Bayesian networks, especially for large problems with high degree of dependencies among their variables is highly computationally expensive which makes it the bottleneck of EDAs. Therefore introducing efficient Bayesian learning algorithms in EDAs seems necessary in order to use them for large problems. In this dissertation, after comparing several Bayesian network learning algorithms, we propose an algorithm, called CMSS-BOA, which uses a recently introduced heuristic called max-min parent children (MMPC) in order to constrain the model search space. This algorithm does not consider a fixed and small upper bound on the order of interaction between variables and is able solve problems with large numbers of variables efficiently. We compare the efficiency of CMSS-BOA with the standard Bayesian network based EDA for solving several benchmark problems and finally we use it to build a predictor for predicting the glycation sites in mammalian proteins

    Multi-objective Estimation of Distribution Algorithm Based on Joint Modeling of Objectives and Variables

    Full text link
    This paper proposes a new multi-objective estimation of distribution algorithm (EDA) based on joint modeling of objectives and variables. This EDA uses the multi-dimensional Bayesian network as its probabilistic model. In this way it can capture the dependencies between objectives, variables and objectives, as well as the dependencies learnt between variables in other Bayesian network-based EDAs. This model leads to a problem decomposition that helps the proposed algorithm to find better trade-off solutions to the multi-objective problem. In addition to Pareto set approximation, the algorithm is also able to estimate the structure of the multi-objective problem. To apply the algorithm to many-objective problems, the algorithm includes four different ranking methods proposed in the literature for this purpose. The algorithm is applied to the set of walking fish group (WFG) problems, and its optimization performance is compared with an evolutionary algorithm and another multi-objective EDA. The experimental results show that the proposed algorithm performs significantly better on many of the problems and for different objective space dimensions, and achieves comparable results on some compared with the other algorithms

    On the application of estimation of distribution algorithms to multi-marker tagging SNP selection

    Get PDF
    This paper presents an algorithm for the automatic selection of a minimal subset of tagging single nucleotide polymorphisms (SNPs) using an estimation of distribution algorithm (EDA). The EDA stochastically searches the constrained space of possible feasible solutions and takes advantage of the underlying topological structure defined by the SNP correlations to model the problem interactions. The algorithm is evaluated across the HapMap reference panel data sets. The introduced algorithm is effective for the identification of minimal multi-marker SNP sets, which considerably reduce the dimension of the tagging SNP set in comparison with single-marker sets. New reduced tagging sets are obtained for all the HapMap SNP regions considered. We also show that the information extracted from the interaction graph representing the correlations between the SNPs can help to improve the efficiency of the optimization algorithm. keywords: SNPs, tagging SNP selection, multi-marker selection, estimation of distribution algorithms, HapMap

    An Optimisation-Driven Prediction Method for Automated Diagnosis and Prognosis

    Get PDF
    open access articleThis article presents a novel hybrid classification paradigm for medical diagnoses and prognoses prediction. The core mechanism of the proposed method relies on a centroid classification algorithm whose logic is exploited to formulate the classification task as a real-valued optimisation problem. A novel metaheuristic combining the algorithmic structure of Swarm Intelligence optimisers with the probabilistic search models of Estimation of Distribution Algorithms is designed to optimise such a problem, thus leading to high-accuracy predictions. This method is tested over 11 medical datasets and compared against 14 cherry-picked classification algorithms. Results show that the proposed approach is competitive and superior to the state-of-the-art on several occasions

    How dependencies affect the capability of several feature selection approaches to extract important variables

    Get PDF
    The goal of our research is to find how dependencies affect the capability of several feature selection approaches to extract of the relevant features for a classification purpose. A new method using pre-designed Bayesian Networks is proposed to generate the test datasets with an easy tuning level of complexity. Relief, CFS, NB-GA, NB-BOA, SVM-GA, SVM-BOA and SVM-mBOA these feature selection approaches are used and evaluated. The higher level of dependency among the relevant features can affect the capability to find the relevant features for classification. For Relief, SVM-BOA and SVM-mBOA, if the dependencies among the irrelevant features are altered, the performance changes as well. Relief is an efficient method in normal case except some extreme situations. Moreover, a multi-objective optimization method is used to keep the diversity of the populations in each generation of the BOA search algorithm improving the overall quality of solutions in our experiments

    Mining Markov Network Surrogates for Value-Added Optimisation

    Get PDF
    Surrogate fitness functions are a popular technique for speeding up metaheuristics, replacing calls to a costly fitness function with calls to a cheap model. However, surrogates also represent an explicit model of the fitness function, which can be exploited beyond approximating the fitness of solutions. This paper proposes that mining surrogate fitness models can yield useful additional information on the problem to the decision maker, adding value to the optimisation process. An existing fitness model based on Markov networks is presented and applied to the optimisation of glazing on a building facade. Analysis of the model reveals how its parameters point towards the global optima of the problem after only part of the optimisation run, and reveals useful properties like the relative sensitivities of the problem variables
    corecore