5,680 research outputs found

    A look ahead approach to secure multi-party protocols

    Get PDF
    Secure multi-party protocols have been proposed to enable non-colluding parties to cooperate without a trusted server. Even though such protocols prevent information disclosure other than the objective function, they are quite costly in computation and communication. Therefore, the high overhead makes it necessary for parties to estimate the utility that can be achieved as a result of the protocol beforehand. In this paper, we propose a look ahead approach, specifically for secure multi-party protocols to achieve distributed k-anonymity, which helps parties to decide if the utility benefit from the protocol is within an acceptable range before initiating the protocol. Look ahead operation is highly localized and its accuracy depends on the amount of information the parties are willing to share. Experimental results show the effectiveness of the proposed methods

    A Semantic Graph-Based Approach for Mining Common Topics From Multiple Asynchronous Text Streams

    Get PDF
    In the age of Web 2.0, a substantial amount of unstructured content are distributed through multiple text streams in an asynchronous fashion, which makes it increasingly difficult to glean and distill useful information. An effective way to explore the information in text streams is topic modelling, which can further facilitate other applications such as search, information browsing, and pattern mining. In this paper, we propose a semantic graph based topic modelling approach for structuring asynchronous text streams. Our model in- tegrates topic mining and time synchronization, two core modules for addressing the problem, into a unified model. Specifically, for handling the lexical gap issues, we use global semantic graphs of each timestamp for capturing the hid- den interaction among entities from all the text streams. For dealing with the sources asynchronism problem, local semantic graphs are employed to discover similar topics of different entities that can be potentially separated by time gaps. Our experiment on two real-world datasets shows that the proposed model significantly outperforms the existing ones

    Mining frequent biological sequences based on bitmap without candidate sequence generation

    Get PDF
    Biological sequences carry a lot of important genetic information of organisms. Furthermore, there is an inheritance law related to protein function and structure which is useful for applications such as disease prediction. Frequent sequence mining is a core technique for association rule discovery, but existing algorithms suffer from low efficiency or poor error rate because biological sequences differ from general sequences with more characteristics. In this paper, an algorithm for mining Frequent Biological Sequence based on Bitmap, FBSB, is proposed. FBSB uses bitmaps as the simple data structure and transforms each row into a quicksort list QS-list for sequence growth. For the continuity and accuracy requirement of biological sequence mining, tested sequences used during the mining process of FBSB are real ones instead of generated candidates, and all the frequent sequences can be mined without any errors. Comparing with other algorithms, the experimental results show that FBSB can achieve a better performance on both run time and scalability

    Exploring Causal Influences

    Get PDF
    Recent data mining techniques exploit patterns of statistical independence in multivariate data to make conjectures about cause/effect relationships. These relationships can be used to construct causal graphs, which are sometimes represented by weighted node-link diagrams, with nodes representing variables and combinations of weighted links and/or nodes showing the strength of causal relationships. We present an interactive visualization for causal graphs (ICGs), inspired in part by the Influence Explorer. The key principles of this visualization are as follows: Variables are represented with vertical bars attached to nodes in a graph. Direct manipulation of variables is achieved by sliding a variable value up and down, which reveals causality by producing instantaneous change in causally and/or probabilistically linked variables. This direct manipulation technique gives users the impression they are causally influencing the variables linked to the one they are manipulating. In this context, we demonstrate the subtle distinction between seeing and setting of variable values, and in an extended example, show how this visualization can help a user understand the relationships in a large variable set, and with some intuitions about the domain and a few basic concepts, quickly detect bugs in causal models constructed from these data mining techniques

    Scaling Nonparametric Bayesian Inference via Subsample-Annealing

    Full text link
    We describe an adaptation of the simulated annealing algorithm to nonparametric clustering and related probabilistic models. This new algorithm learns nonparametric latent structure over a growing and constantly churning subsample of training data, where the portion of data subsampled can be interpreted as the inverse temperature beta(t) in an annealing schedule. Gibbs sampling at high temperature (i.e., with a very small subsample) can more quickly explore sketches of the final latent state by (a) making longer jumps around latent space (as in block Gibbs) and (b) lowering energy barriers (as in simulated annealing). We prove subsample annealing speeds up mixing time N^2 -> N in a simple clustering model and exp(N) -> N in another class of models, where N is data size. Empirically subsample-annealing outperforms naive Gibbs sampling in accuracy-per-wallclock time, and can scale to larger datasets and deeper hierarchical models. We demonstrate improved inference on million-row subsamples of US Census data and network log data and a 307-row hospital rating dataset, using a Pitman-Yor generalization of the Cross Categorization model.Comment: To appear in AISTATS 201
    corecore