20,857 research outputs found

    Data Mining to Uncover Heterogeneous Water Use Behaviors From Smart Meter Data

    Get PDF
    Knowledge on the determinants and patterns of water demand for different consumers supports the design of customized demand management strategies. Smart meters coupled with big data analytics tools create a unique opportunity to support such strategies. Yet, at present, the information content of smart meter data is not fully mined and usually needs to be complemented with water fixture inventory and survey data to achieve detailed customer segmentation based on end use water usage. In this paper, we developed a data‐driven approach that extracts information on heterogeneous water end use routines, main end use components, and temporal characteristics, only via data mining existing smart meter readings at the scale of individual households. We tested our approach on data from 327 households in Australia, each monitored with smart meters logging water use readings every 5 s. As part of the approach, we first disaggregated the household‐level water use time series into different end uses via Autoflow. We then adapted a customer segmentation based on eigenbehavior analysis to discriminate among heterogeneous water end use routines and identify clusters of consumers presenting similar routines. Results revealed three main water end use profile clusters, each characterized by a primary end use: shower, clothes washing, and irrigation. Time‐of‐use and intensity‐of‐use differences exist within each class, as well as different characteristics of regularity and periodicity over time. Our customer segmentation analysis approach provides utilities with a concise snapshot of recurrent water use routines from smart meter data and can be used to support customized demand management strategies.TU Berlin, Open-Access-Mittel - 201

    Discovering Utility-driven Interval Rules

    Full text link
    For artificial intelligence, high-utility sequential rule mining (HUSRM) is a knowledge discovery method that can reveal the associations between events in the sequences. Recently, abundant methods have been proposed to discover high-utility sequence rules. However, the existing methods are all related to point-based sequences. Interval events that persist for some time are common. Traditional interval-event sequence knowledge discovery tasks mainly focus on pattern discovery, but patterns cannot reveal the correlation between interval events well. Moreover, the existing HUSRM algorithms cannot be directly applied to interval-event sequences since the relation in interval-event sequences is much more intricate than those in point-based sequences. In this work, we propose a utility-driven interval rule mining (UIRMiner) algorithm that can extract all utility-driven interval rules (UIRs) from the interval-event sequence database to solve the problem. In UIRMiner, we first introduce a numeric encoding relation representation, which can save much time on relation computation and storage on relation representation. Furthermore, to shrink the search space, we also propose a complement pruning strategy, which incorporates the utility upper bound with the relation. Finally, plentiful experiments implemented on both real-world and synthetic datasets verify that UIRMiner is an effective and efficient algorithm.Comment: Preprint. 11 figures, 5 table

    Efficiently Mining Temporal Patterns in Time Series Using Information Theory

    Get PDF

    Pattern mining under different conditions

    Get PDF
    New requirements and demands on pattern mining arise in modern applications, which cannot be fulfilled using conventional methods. For example, in scientific research, scientists are more interested in unknown knowledge, which usually hides in significant but not frequent patterns. However, existing itemset mining algorithms are designed for very frequent patterns. Furthermore, scientists need to repeat an experiment many times to ensure reproducibility. A series of datasets are generated at once, waiting for clustering, which can contain an unknown number of clusters with various densities and shapes. Using existing clustering algorithms is time-consuming because parameter tuning is necessary for each dataset. Many scientific datasets are extremely noisy. They contain considerably more noises than in-cluster data points. Most existing clustering algorithms can only handle noises up to a moderate level. Temporal pattern mining is also important in scientific research. Existing temporal pattern mining algorithms only consider pointbased events. However, most activities in the real-world are interval-based with a starting and an ending timestamp. This thesis developed novel pattern mining algorithms for various data mining tasks under different conditions. The first part of this thesis investigates the problem of mining less frequent itemsets in transactional datasets. In contrast to existing frequent itemset mining algorithms, this part focus on itemsets that occurred not that frequent. Algorithms NIIMiner, RaCloMiner, and LSCMiner are proposed to identify such kind of itemsets efficiently. NIIMiner utilizes the negative itemset tree to extract all patterns that occurred less than a given support threshold in a top-down depth-first manner. RaCloMiner combines existing bottom-up frequent itemset mining algorithms with a top-down itemset mining algorithm to achieve a better performance in mining less frequent patterns. LSCMiner investigates the problem of mining less frequent closed patterns. The second part of this thesis studied the problem of interval-based temporal pattern mining in the stream environment. Interval-based temporal patterns are sequential patterns in which each event is aligned with a starting and ending temporal information. The ability to handle interval-based events and stream data is lacking in existing approaches. A novel intervalbased temporal pattern mining algorithm for stream data is described in this part. The last part of this thesis studies new problems in clustering on numeric datasets. The first problem tackled in this part is shape alternation adaptivity in clustering. In applications such as scientific data analysis, scientists need to deal with a series of datasets generated from one experiment. Cluster sizes and shapes are different in those datasets. A kNN density-based clustering algorithm, kadaClus, is proposed to provide the shape alternation adaptability so that users do not need to tune parameters for each dataset. The second problem studied in this part is clustering in an extremely noisy dataset. Many real-world datasets contain considerably more noises than in-cluster data points. A novel clustering algorithm, kenClus, is proposed to identify clusters in arbitrary shapes from extremely noisy datasets. Both clustering algorithms are kNN-based, which only require one parameter k. In each part, the efficiency and effectiveness of the presented techniques are thoroughly analyzed. Intensive experiments on synthetic and real-world datasets are conducted to show the benefits of the proposed algorithms over conventional approaches

    A Comprehensive Scalable Framework for Cloud-Native Pattern Detection with Enhanced Expressiveness

    Full text link
    Detecting complex patterns in large volumes of event logs has diverse applications in various domains, such as business processes and fraud detection. Existing systems like ELK are commonly used to tackle this challenge, but their performance deteriorates for large patterns, while they suffer from limitations in terms of expressiveness and explanatory capabilities for their responses. In this work, we propose a solution that integrates a Complex Event Processing (CEP) engine into a broader query processsor on top of a decoupled storage infrastructure containing inverted indices of log events. The results demonstrate that our system excels in scalability and robustness, particularly in handling complex queries. Notably, our proposed system delivers responses for large complex patterns within seconds, while ELK experiences timeouts after 10 minutes. It also significantly outperforms solutions relying on FlinkCEP and executing MATCH_RECOGNIZE SQL queries
    • 

    corecore